7,001 research outputs found

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Guest Editorial Cardiovascular Health Informatics: Risk Screening and Intervention

    Get PDF
    Despite enormous efforts to prevent cardiovascular disease (CVD) in the past, it remains the leading cause of death in most countries worldwide. Around two-thirds of these deaths are due to acute events, which frequently occur suddenly and are often fatal beforemedical care can be given. New strategies for screening and early intervening CVD, in addition to the conventional methods, are therefore needed in order to provide personalized and pervasive healthcare. In this special issue, selected emerging technologies in health informatics for screening and intervening CVDs are reported. These papers include reviews or original contributions on 1) new potential genetic biomarkers for screening CVD outcomes and high-throughput techniques for mining genomic data; 2) new imaging techniques for obtaining faster and higher resolution images of cardiovascular imaging biomarkers such as the cardiac chambers and atherosclerotic plaques in coronary arteries, as well as possible automatic segmentation, identification, or fusion algorithms; 3) new physiological biomarkers and novel wearable and home healthcare technologies for monitoring them in daily lives; 4) new personalized prediction models of plaque formation and progression or CVD outcomes; and 5) quantifiable indices and wearable systems to measure them for early intervention of CVD through lifestyle changes. It is hoped that the proposed technologies and systems covered in this special issue can result in improved CVD management and treatment at the point of need, offering a better quality of life to the patient

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    CaloriNet: From silhouettes to calorie estimation in private environments

    Get PDF
    We propose a novel deep fusion architecture, CaloriNet, for the online estimation of energy expenditure for free living monitoring in private environments, where RGB data is discarded and replaced by silhouettes. Our fused convolutional neural network architecture is trainable end-to-end, to estimate calorie expenditure, using temporal foreground silhouettes alongside accelerometer data. The network is trained and cross-validated on a publicly available dataset, SPHERE_RGBD + Inertial_calorie. Results show state-of-the-art minimum error on the estimation of energy expenditure (calories per minute), outperforming alternative, standard and single-modal techniques.Comment: 11 pages, 7 figure

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand
    • …
    corecore