1,752 research outputs found

    Head reduction and normalization in a call-by-value lambda-calculus

    Get PDF
    Recently, a standardization theorem has been proven for a variant of Plotkin\u27s call-by-value lambda-calculus extended by means of two commutation rules (sigma-reductions): this result was based on a partitioning between head and internal reductions. We study the head normalization for this call-by-value calculus with sigma-reductions and we relate it to the weak evaluation of original Plotkin\u27s call-by-value lambda-calculus. We give also a (non-deterministic) normalization strategy for the call-by-value lambda-calculus with sigma-reductions

    First Class Call Stacks: Exploring Head Reduction

    Get PDF
    Weak-head normalization is inconsistent with functional extensionality in the call-by-name λ\lambda-calculus. We explore this problem from a new angle via the conflict between extensionality and effects. Leveraging ideas from work on the λ\lambda-calculus with control, we derive and justify alternative operational semantics and a sequence of abstract machines for performing head reduction. Head reduction avoids the problems with weak-head reduction and extensionality, while our operational semantics and associated abstract machines show us how to retain weak-head reduction's ease of implementation.Comment: In Proceedings WoC 2015, arXiv:1606.0583

    A Type System For Call-By-Name Exceptions

    Full text link
    We present an extension of System F with call-by-name exceptions. The type system is enriched with two syntactic constructs: a union type for programs whose execution may raise an exception at top level, and a corruption type for programs that may raise an exception in any evaluation context (not necessarily at top level). We present the syntax and reduction rules of the system, as well as its typing and subtyping rules. We then study its properties, such as confluence. Finally, we construct a realizability model using orthogonality techniques, from which we deduce that well-typed programs are weakly normalizing and that the ones who have the type of natural numbers really compute a natural number, without raising exceptions.Comment: 25 page

    Discriminating Lambda-Terms Using Clocked Boehm Trees

    Full text link
    As observed by Intrigila, there are hardly techniques available in the lambda-calculus to prove that two lambda-terms are not beta-convertible. Techniques employing the usual Boehm Trees are inadequate when we deal with terms having the same Boehm Tree (BT). This is the case in particular for fixed point combinators, as they all have the same BT. Another interesting equation, whose consideration was suggested by Scott, is BY = BYS, an equation valid in the classical model P-omega of lambda-calculus, and hence valid with respect to BT-equality but nevertheless the terms are beta-inconvertible. To prove such beta-inconvertibilities, we employ `clocked' BT's, with annotations that convey information of the tempo in which the data in the BT are produced. Boehm Trees are thus enriched with an intrinsic clock behaviour, leading to a refined discrimination method for lambda-terms. The corresponding equality is strictly intermediate between beta-convertibility and Boehm Tree equality, the equality in the model P-omega. An analogous approach pertains to Levy-Longo and Berarducci Trees. Our refined Boehm Trees find in particular an application in beta-discriminating fixed point combinators (fpc's). It turns out that Scott's equation BY = BYS is the key to unlocking a plethora of fpc's, generated by a variety of production schemes of which the simplest was found by Boehm, stating that new fpc's are obtained by postfixing the term SI, also known as Smullyan's Owl. We prove that all these newly generated fpc's are indeed new, by considering their clocked BT's. Even so, not all pairs of new fpc's can be discriminated this way. For that purpose we increase the discrimination power by a precision of the clock notion that we call `atomic clock'.Comment: arXiv admin note: substantial text overlap with arXiv:1002.257

    New Equations for Neutral Terms: A Sound and Complete Decision Procedure, Formalized

    Get PDF
    The definitional equality of an intensional type theory is its test of type compatibility. Today's systems rely on ordinary evaluation semantics to compare expressions in types, frustrating users with type errors arising when evaluation fails to identify two `obviously' equal terms. If only the machine could decide a richer theory! We propose a way to decide theories which supplement evaluation with `ν\nu-rules', rearranging the neutral parts of normal forms, and report a successful initial experiment. We study a simple -calculus with primitive fold, map and append operations on lists and develop in Agda a sound and complete decision procedure for an equational theory enriched with monoid, functor and fusion laws
    • …
    corecore