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Abstract
Recently, a standardization theorem has been proven for a variant of Plotkin’s call-by-value
lambda-calculus extended by means of two commutation rules (sigma-reductions): this result was
based on a partitioning between head and internal reductions. We study the head normalization
for this call-by-value calculus with sigma-reductions and we relate it to the weak evaluation of
original Plotkin’s call-by-value lambda-calculus. We give also a (non-deterministic) normalization
strategy for the call-by-value lambda-calculus with sigma-reductions.
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1 Introduction

The call-by-value λ-calculus (λv-calculus or λv for short) and the operational machine for its
evaluation has been introduced by Plotkin [15] inspired by Landin’s seminal work [9] on the
programming language ISWIM and the SECD machine. The λv-calculus is a paradigmatic
language able to capture two features of many functional programming languages: call-by-
value parameter passing policy (parameters are evaluated before being passed) and weak
evaluation (the body of a function is evaluated only when parameters are supplied).

The syntax of λv is the same as that of the ordinary (i.e. call-by-name) λ-calculus (λ for
short), but the reduction rule for λv, called βv, is a restriction of the β-rule for λ: βv allows the
contraction of a redex (λx.M)N only in case the argument N is a value, i.e. a variable or an
abstraction. Unfortunately, the semantic analysis of the λv-calculus has turned out to be more
elaborate than that of ordinary λ-calculus. This is due essentially to the “weakness” of (full)
βv-reduction, a fact widely recognized: indeed, there are many proposals of alternative call-by-
value λ-calculi extending Plotkin’s one [11, 10, 8, 2, 1]. To have an example of the “weakness”
of the rewriting rules of λv, it is sufficient to consider that it is impossible to have an internal
operational characterization (i.e. one that uses the βv-reduction) of the semantically mean-
ingful notions of call-by-value solvability and potential valuability, as shown in [13, 14, 2].

In this paper we will study the λσv -calculus (λσv for short), a call-by-value extension of λv
recently proposed in [4]: it keeps the λv (and λ) syntax and it adds to the βv-reduction two
commutation rules, called σ1 and σ3, which unblock “hidden” βv-redexes that are concealed
by the “hyper-sequential structure” of terms. The λσv -calculus enjoy some basic properties we
expect from a calculus, namely confluence (see [4]) and standardization (see [7]). Moreover, λσv
provides elegant characterizations of many semantic properties, e.g. solvability and potential
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4 Head reduction and normalization in a call-by-value lambda-calculus

valuability (see [4]), and it is conservative with respect to Plotkin’s λv: in particular, [7] shows
that the notions of solvability and potential valuability for λσv coincide with those for λv.

The v-reduction (i.e. the reduction for λσv ) can be partitioned into head v-reduction and
internal v-reduction; the head v-reduction is in turn decomposed into head βv- and head
σ-reduction. The head βv-reduction is just the deterministic weak evaluation strategy for
Plotkin’s λv-calculus. According to a sequentialization theorem proven in [7, Theorem 22], any
v-reduction sequence can be sequentialized in an initial head βv-reduction sequence followed by
a head σ-reduction sequence followed by an internal v-reduction sequence. Similar well-known
results hold for λ and λv, and starting from them one can define a normalization strategy for
λ and λv, i.e. a deterministic reduction strategy that reaches a normal form if and only if one
exists: for example the leftmost reduction, see [19, Theorem 2.8] and [3, Theorem 13.2.2].

Is there a normalization strategy for λσv? Theorem 24, one of the main results of this paper,
proves that, starting from the sequentialization theorem mentioned above, a normalization
strategy can be defined for λσv , based on the notions of head βv- and head σ-reductions.

A first difference appears here between λσv and λv (or λ): the normalization strategy
for λσv is not deterministic. Indeed, while the head βv-reduction (or the call-by-name head
reduction) is deterministic (i.e. a partial function), the head v-reduction is non-deterministic
and, still worse, non-confluent and there are terms having several head v-normal forms: this
might appear disappointing. So, three natural questions arise:

With respect to head v-reduction, do normalization and strong normalization coincide?1

Can we relate the termination of head βv-reduction and head v-reduction?
Can we characterize the terms having a unique head v-normal form?

Our Theorem 21 gives a positive answer to the first two questions. Observe that the lack
of any form of confluence for head v-reduction requires a more complex reasoning, passing
through a syntactic characterization of head βv- and head v-normal forms. Theorem 21 not
only shows that the head v-reduction and the head βv-reduction are deeply related (and
hence, again, λσv is conservative with respect to λv) but also that both enjoy good properties
analogous to the ones of the (call-by-name) head reduction for ordinary λ-calculus.

Our Proposition 27 gives a partial answer to the third question above: it shows that in
some cases (of interest) a head v-normalizable term has a unique head v-normal form; in
particular, every closed head v-normalizable term has a unique head v-normal form.

So, λσv appears as an extension of Plotkin’s λv-calculus that enjoys many meaningful
conservation properties with respect to λv and therefore it is a useful tool for theoretical and
semantic investigations about λv and call-by-value setting. See also conclusions in Section 6
for further and more precise motivations for this paper and future work.

Related work. The λσv -calculus has been recently introduced in [4] and further investigated
in [7]. It is an extension of Plotkin’s λv-calculus inspired by the call-by-value translation
of λ-terms into linear logic proof-nets [6]. Other variants of λv have been introduced in
the literature for modeling the call-by-value computation. We would like to cite here at
least the contributions of Moggi [11], Felleisen and Sabry [18], Maraist et al. [10], Herbelin
and Zimmerman [8], Accattoli and Paolini [2] (the latter is inspired by the call-by-value
translation of λ-terms into linear logic proof-nets, see [1]). All these proposals are based on
the introduction of new constructs to the syntax of λv, so the comparison between them is

1 The answer is trivially positive in the case of call-by-name head normalization (for λ) and head
βv-normalization, since these reductions are deterministic.



G. Guerrieri 5

not easy with respect to syntactical properties (some detailed comparison is given in [2]).
We point out that the calculi introduced in [11, 18, 10, 8] present some variants of our σ1
and/or σ3 rules, often in a setting with explicit substitutions. Regnier [16, 17] used the rule
σ1 (but not σ3) in ordinary (i.e. call-by-name) λ-calculus.

The head v-reduction investigated here has been introduced in [7]. Some results of
this paper are inspired by the Takahashi’s results [19] on the ordinary (i.e. call-by-name)
λ-calculus, partially adapted by Crary [5] for λv.

Outline. In Section 2 we introduce the syntax and the reduction rules of the λσv -calculus.
In Section 3 we define the head v-reduction and the internal v-reduction, and we recall some
results already proven in [7] concerning them. Section 4 is devoted to proving the first main
result of our paper: Theorem 21, which studies the normalization for the head v-reduction
and relates it to the weak evaluation strategy for Plotkin’s λv-calculus. In Section 5 we show
that the head v-reduction can be used to define a normalization strategy for the λσv -calculus
(Theorem 24), and moreover in some cases the head v-normal form (if any) of a term is
unique (Proposition 27). In Section 6 we summarize the findings and suggest future work.

2 The call-by-value lambda calculus with sigma-rules

In this section we present λσv , a call-by-value λ-calculus introduced in [4] that adds two σ-reduc-
tion rules to pure (i.e. without constants) call-by-value λ-calculus defined by Plotkin in [15].

The syntax of terms of λσv [4] is the same as the one of ordinary λ-calculus and Plotkin’s
call-by-value λ-calculus λv [15] (without constants). Given a countable set V of variables
(denoted by x, y, z, . . . ), the sets Λ of terms and Λv of values are defined by mutual induction:

(Λv) V,U ::= x | λx.M values
(Λ) M,N,L ::= V | MN terms

Clearly, Λv ( Λ. All terms are considered up to α-conversion. The set of free variables of a
termM is denoted by fv(M). Given V1, . . . , Vn ∈ Λv and pairwise distinct variables x1, . . . , xn,
M{V1/x1, . . . , Vn/xn} denotes the term obtained by the capture-avoiding simultaneous sub-
stitution of Vi for each free occurrence of xi in the term M (for all 1 ≤ i ≤ n). Note that, for
all V, V1, . . . , Vn ∈ Λv and pairwise distinct variables x1, . . . , xn, V {V1/x1, . . . , Vn/xn} ∈ Λv.

Contexts (with exactly one hole L·M), denoted by C, are defined as usual via the grammar:

C ::= L·M | λx.C | CM | MC .

We use CLMM for the term obtained by the capture-allowing substitution of the term M for
the hole L·M in the context C.

I Notation. From now on, we set I = λx.x and ∆ = λx.xx.

The reduction rules of λσv consist of Plotkin’s βv-reduction rule, introduced in [15], and
two simple commutation rules called σ1 and σ3, studied in [4, 7].

I Definition 1 (Reduction rules). We define the following binary relations on Λ (for any
M,N,L ∈ Λ and any V ∈ Λv):

(λx.M)V 7→βv M{V/x}
(λx.M)NL 7→σ1 (λx.ML)N with x /∈ fv(L)
V ((λx.L)N) 7→σ3 (λx.V L)N with x /∈ fv(V ).

WPTE’15



6 Head reduction and normalization in a call-by-value lambda-calculus

We set 7→σ = 7→σ1 ∪ 7→σ3 and 7→v = 7→βv
∪ 7→σ.

For any r ∈ {βv, σ1, σ3, σ, v}, if M 7→r M
′ then M is a r-redex and M ′ is its r-contractum.

In this sense, a term of the shape (λx.M)N (for any M,N ∈ Λ) is a β-redex.

The side conditions on 7→σ1 and 7→σ3 in Definition 1 can be always fulfilled by α-renaming.
Obviously, any βv-redex is a β-redex but the converse does not hold: (λx.z)(yI) is a

β-redex but not a βv-redex.

I Example 2. Redexes of different kind may overlap: for example, the term ∆I∆ is a
σ1-redex and it contains the βv-redex ∆I; the term ∆(I∆)(xI) is a σ1-redex and it contains
the σ3-redex ∆(I∆), which contains in turn the βv-redex I∆.

I Notation. Let R be a binary relation on Λ. We denote by R∗ (resp. R+; R=) the
reflexive-transitive (resp. transitive; reflexive) closure of R.

I Definition 3 (Reductions). Let r ∈ {βv, σ1, σ3, σ, v}.
The r-reduction →r is the contextual closure of 7→r, i.e. M →r M

′ iff there is a context C
and N,N ′ ∈ Λ such that M = CLNM, M ′ = CLN ′M and N 7→r N

′.
The r-equivalence 'r is the reflexive-transitive and symmetric closure of →r.
Let M be a term: M is r-normal if there is no term N such that M →r N ; M is r-

normalizable if there is a r-normal term N such that M →∗r N ; M is strongly r-normalizable
if there is no sequence (Ni)i∈N of terms such that M = N0 and Ni →r Ni+1 for any i ∈ N.

Obviously, →σ =→σ1 ∪ →σ3 (→v and →βv
(→v and →v =→βv

∪ →σ.

I Remark 4. For any r ∈ {βv, σ1, σ3, σ, v} (resp. r ∈ {σ1, σ3, σ}), values are closed under r-
reduction (resp. r-expansion): for any V ∈ Λv, if V →r M (resp.M →r V ) thenM ∈ Λv; more
precisely, V = λx.N and M = λx.N ′ for some N,N ′ ∈ Λ with N →r N

′ (resp. N ′ →r N).

For any r ∈ {βv, v}, values are not closed under r-expansion: I∆→βv
∆ ∈ Λv but I∆ /∈ Λv.

I Proposition 5 (See [4]). The σ-reduction is confluent and strongly normalizing. The
v-reduction is confluent.

The λσv -calculus, λσv for short, is the set Λ of terms endowed with the v-reduction →v.
The set Λ endowed with the βv-reduction →βv is the λv-calculus (λv for short), i.e. the
Plotkin’s call-by-value λ-calculus [15] (without constants), which is thus a sub-calculus of λσv .

I Example 6. M = (λy.∆)(xI)∆→σ1 (λy.∆∆)(xI)→βv
(λy.∆∆)(xI)→βv

. . . and N =
∆((λy.∆)(xI))→σ3 (λy.∆∆)(xI)→βv (λy.∆∆)(xI)→βv . . . are the only possible v-reduction
paths fromM andN respectively: M andN are not v-normalizable, andM 'v N . Meanwhile,
M and N are βv-normal and different, hence M 6'βv

N (by confluence of →βv
, see [15]).

Informally, σ-rules unblock βv-redexes which are hidden by the “hyper-sequential structure”
of terms. This approach is alternative to the one in [2, 1] where hidden βv-redexes are reduced
using rules acting at a distance (through explicit substitutions). It can be shown that the
call-by-value λ-calculus with explicit substitution introduced in [2] can be embedded in λσv .

It is well-known that the βv-reduction can be simulated by linear logic cut-elimination via
the call-by-value translation (·)v of λ-terms into proof-nets, called by Girard [6, pp. 81-82]
“boring” and defined by (A⇒ B)v = !Av ( !Bv (see also [1]). The images under (·)v of a
σ-redex and its σ-contractum are equal modulo some non-structural cut-elimination steps.
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3 Head and internal reductions

In this section we introduce the definitions of head v-reduction (which is decomposed in head
βv- and head σ-reductions) and internal v-reduction, then we recall some results proven in [7].

I Notation. From now on, we always assume that V, V ′ ∈ Λv.

Note that the generic form of a term is VM1 . . .Mm for some m ∈ N (in particular, values are
obtained when m = 0). The sequentialization result is based on a partitioning of v-reduction
between head v-reduction and internal v-reduction.

I Definition 7 (Head βv-reduction). The head βv-reduction
h→βv

is the binary relation on Λ
defined inductively by the following rules (m ∈ N in both rules):

βv

(λx.M)VM1 . . .Mm
h→βv M{V/x}M1 . . .Mm

N
h→βv N

′
right

V NM1 . . .Mm
h→βv V N

′M1 . . .Mm

The head βv-reduction
h→βv

is exactly the (pure) “left reduction” defined in [15, p. 136]
for λv and called “(weak) evaluation” in [18, 5]. If N h→βv N

′ then N ′ is obtained from N by
reducing the leftmost-outermost βv-redex, not in the scope of a λ: thus, the head βv-reduction
is deterministic (i.e. it is a partial function from Λ to Λ) and does not reduce values.

I Definition 8 (Head σ- and head v-reductions). The head σ-reduction h→σ is the binary
relation on Λ defined inductively by the following rules (m ∈ N in all the rules, x /∈ fv(L) in
the rule σ1, x /∈ fv(V ) in the rule σ3):

σ1

(λx.M)NLM1 . . .Mm
h→σ (λx.ML)NM1 . . .Mm

N
h→σ N

′
right

V NM1 . . .Mm
h→σ V N

′M1 . . .Mm

σ3

V ((λx.L)N)M1 . . .Mm
h→σ (λx.V L)NM1 . . .Mm

The head v-reduction is h→v = h→βv ∪
h→σ.

Let r∈{βv, σ, v} and N ∈Λ: N is head r-normal if there is no N ′∈Λ such that N h→r N
′;

N is head r-normalizable if there is a r-normal term N ′ such that N h−→∗r N ′; N is strongly
head r-normalizable if there is no (Ni)i∈N such that N = N0 and Ni

h→r Ni+1 for any i ∈ N.

Notice that 7→βv
( h→βv

(→βv
and 7→σ (

h→σ (→σ and 7→v (
h→v (→v.

Informally, if N h→σ N ′ then N ′ is obtained from N by reducing “one of the left-
most” σ1- or σ3-redexes, not in the scope of a λ: in general, a term may contain sev-
eral head σ1- and σ3-redexes. Indeed, differently from h→βv , the head σ-reduction h→σ

is not deterministic, for example the leftmost-outermost σ1- and σ3-redexes may overlap:
if M = (λy.y′)(∆(xI))I then M

h→σ (λy.y′I)(∆(xI)) = N1 by applying the rule σ1 and
M

h→σ (λz.(λy.y′)(zz))(xI)I=N2 by applying the rule σ3. Note that N1 contains only a
head σ3-redex and N1

h→σ (λz.(λy.y′I)(zz))(xI) = N which is head v-normal; meanwhile N2
contains only a head σ1-redex and N2

h→σ (λz.(λy.y′)(zz)I)(xI) = N ′ which is head v-normal:
N 6= N ′, so the head σ- and head v-reductions are not (locally) confluent and a term may have
several head v-normal forms (this example does not contradict the confluence of σ-reduction
because N ′ →σ N but by performing an internal v-reduction step, see next Definition 9).

The head v-reduction h→v is non-deterministic not only because the head σ-reduction h→σ

is non-deterministic, but also because the leftmost-outermost βv-redex of a term may overlap
with “one of its leftmost” σ1- or σ3-redexes, as seen in Example 2.

WPTE’15



8 Head reduction and normalization in a call-by-value lambda-calculus

I Definition 9 (Internal v-reduction). The internal v-reduction int→v is the binary relation on
Λ defined inductively by the following rules:

(m ∈ N) N →v N
′

λ

(λx.N)M1 . . .Mm
int→v (λx.N ′)M1 . . .Mm

(m ∈ N) N
int→v N

′
right

V NM1 . . .Mm
int→v V N

′M1 . . .Mm

(m ∈ N+) Mi →v M
′
i for some 1 ≤ i ≤ m

@
V NM1 . . .Mi . . .Mm

int→v V NM1 . . .M
′
i . . .Mm

.

The following fact collects many minor properties which can be easily proved by inspection
of the rules of Definitions 7-9.

I Fact 10.
1. The head βv-reduction

h→βv does not reduce a value (in particular, does not reduce under
λ’s), i.e., for any M ∈ Λ and any V ∈ Λv, one has V 6 h→βv

M .
2. The head σ-reduction h→σ does neither reduce a value nor reduce to a value, i.e., for any

M ∈ Λ and any V ∈ Λv, one has V 6 h→σ M and M 6 h→σ V .
3. Values are closed under int→v-expansion, i.e., for all M ∈ Λ and V ∈ Λv, if M

int→v V then
M ∈ Λv; more precisely, M = λx.N and V = λx.N ′ for some N,N ′∈ Λ where N →v N

′.
4. If R ∈ { h→βv ,

h→σ,
h→v,

int→v} and M R M ′, then MN R M ′N for any N ∈ Λ.

Clearly, int→v (→v. Next Proposition 11 (whose proof uses Fact 10.4) relates int→v and h→v.

I Proposition 11. One has int→v =→v r h→v.

Proof.
⊆: The proof that int→v⊆→v is trivial. The proof that M int→v M

′ implies M 6 h→v M
′ is by

induction on the derivation of M int→v M
′. Let us consider its last rule r. If r ∈ {λ,@},

then it is evident that there is no last rule to derive M h→v M ′. If r = right then
M = V NM1 . . .Mm and M ′ = V N ′M1 . . .Mm with m ∈ N and N int→v N

′; by induction
hypothesis, N 6 h→v N

′ and hence there is no last rule to derive M h→v M
′.

⊇: We show that M →v M
′ and M 6 h→v M

′ implies M int→v M
′, for all M,M ′ ∈ Λ. Since

M →v M
′, there exist a context C and terms N and N ′ such thatM = CLNM, M ′ = CLN ′M

and N 7→βv N
′. We proceed by induction on C.

If C = L·M then M = N 7→βv
N ′ = M ′ and thus M h→v M

′ since 7→βv
⊆ h→v, which

contradicts the hypothesis.
If C = λx.C′ for some context C′, then M int→v M

′ by applying the rule λ for int→v, since
C′LNM→v C′LN ′M.
If C = C′L for some context C′ and term L, then C′LNM→v C′LN ′M and C′LN ′M 6 h→v C′LN ′M
(by Fact 10.4, since C′LNML 6 h→v C′LN ′ML). By induction hypothesis, C′LNM int→v C′LN ′M,
then M = C′LNML int→v C′LN ′ML = M ′ by Fact 10.4.
If C = V C′ for some context C′ and value V , then C′LNM→v C′LN ′M. There are two cases:

either C′LN ′M h→v C′LN ′M, hence M = V C′LNM h→v V C′LN ′M = M ′ by the rule right for
h→βv or h→σ, which contradicts the hypothesis;
or C′LN ′M 6 h→v C′LN ′M, hence C′LN ′M int→v C′LN ′M by induction hypothesis, thus M =
V C′LNM int→v V C′LN ′M = M ′ by applying the rule right for int→v.

Finally, if C = LC′ for some context C′ and term L /∈ Λv, then L = V N0 . . . Nn for some
n ∈ N, thus M = V N0 . . . NnC′LNM int→v V N0 . . . NnC′LN ′M = M ′ by the rule @ for int→v.

J
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We end this section by recalling three results proven in [7] concerning head v-reduction
and internal v-reduction: they will be used to prove the main results in Sections 4-5.

The following lemma (proven in [7, Lemma 14]) shows that a head σ-reduction step can
be postponed after a head βv-reduction step, and hence every head v-reduction sequence can
be rearranged into a head βv-reduction sequence followed by a head σ-reduction sequence.

I Lemma 12 (Commutation of head βv- and head σ-reductions, see [7]).
1. If M h→σ L

h→βv
N then there exists L′ ∈ Λ such that M h→βv

L′
h−→=
σ N .

2. If M h−→∗v M ′ then there exists N ∈ Λ such that M h−→∗βv
N

h−→∗σ M ′.

Next Lemma 13 (proven in [7, Corollary 21]) says that internal v-reduction can be shifted
after head v-reductions.2

I Lemma 13 (Postponement, see [7]). If M int→v L and L h→βv
N (resp. L h→σ N), then there

exist L′, L′′ ∈ Λ such that M h−→+

βv
L′

h−→∗σ L′′
int−→∗v N (resp. M h−→∗βv

L′
h−→∗σ L′′

int−→∗v N).

Next Theorem 14 is one of the main result proven in [7, Theorem 22] by adapting
Takahashi’s method [19, 5]: any v-reduction sequence can be sequentialized into a head
βv-reduction sequence followed by a head σ-reduction sequence, followed by an internal
v-reduction sequence. In ordinary λ-calculus, the well-known result corresponding to our
Theorem 14 states that a β-reduction sequence can be factorized in a head reduction sequence
followed by an internal reduction sequence (see for example [19, Corollary 2.6]).

I Theorem 14 (Sequentialization, see [7]). If M →∗v M ′ then there exist L,N ∈ Λ such that
M

h−→∗βv
L

h−→∗σ N
int−→∗v M ′.

The sequentialization of Theorem 14 imposes no order between head σ-reductions. Indeed,
the example in [7, p. 10] shows that it is impossible to sequentialize them by giving way to head
σ1- or head σ3-redexes: a head σ1-reduction step can create a head σ3-redex, and vice versa.

In [7, Definition 27 and Corollary 29] it has also been proven that the v-equivalence (and
in particular the σ-equivalence) is contained in the call-by-value observational equivalence.

4 Head normalization

In this section we prove the first main result of our paper: Theorem 21, which studies the
normalization for head v-reduction and relates it to the head βv-reduction (i.e. the weak
evaluation strategy for Plotkin’s λv-calculus). Let us start with a preliminary remark.

I Remark 15. According to Facts 10.1-2, every V ∈ Λv is head βv- and head σ-normal, and
hence is head v-normal. The converse does not hold: xI is head v-normal but xI /∈ Λv.

First, we give a syntactic characterization of head v- and head βv-normal forms.

I Definition 16. We define the subsets Λa, Λb and Λc (whose elements are denoted by A, B
and C respectively) of Λ as follows (for any variable x, any V ∈ Λv and any N ∈ Λ):

(Λa) A ::= xV | xA | AN (Λb) B ::= (λx.N)A (Λc) C ::= xV | V C | CN

2 In [7, Corollary 21] there is a more informative statement of our Lemma 13, involving a notion of internal
parallel reduction int⇒. Our Lemma 13 follows immediately from [7, Corollary 21] since int→v⊆

int⇒⊆ int−→∗v .
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10 Head reduction and normalization in a call-by-value lambda-calculus

Notice that Λa ∪ Λb ( Λc and M,N ∈ Λc r (Λa ∪ Λb) where M = (λy.∆)(xI)∆ and
N = ∆((λy.∆)(xI)) (as in Example 6). Moreover, Λv∩Λa = Λv∩Λb = Λv∩Λc = Λa∩Λb = ∅
and all terms in Λa ∪ Λb ∪ Λc are not closed. All terms in Λb are β-redexes that are not
βv-redexes; all terms in Λa have a free “head variable” and are neither a value nor a β-redex.

I Proposition 17 (Characterization of head βv-normal forms). Let M be a term.
1. M is head βv-normal and is not a λ-value if and only if M ∈ Λc.
2. M is head βv-normal if and only if M ∈ Λv ∪ Λc.

Proof. Statement (2) is an immediate consequence of statement (1) and Remark 15.
⇒: We prove the left-to-right direction of statement (1), by induction on M ∈ Λ.

The case where M ∈ Λv is impossible by hypothesis.
If M = M1M2 (for some M1,M2 ∈ Λ) is head βv-normal then M is not a λ-value and M1
and M2 are head βv-normal, moreover either M1 6= λx.N (for any N ∈ Λ) or M2 /∈ Λv
(otherwise M would be a head βv-redex). Therefore, there are only three cases:

either M1 /∈ Λv, thus M1 ∈ Λc by induction hypothesis, and hence M ∈ Λc;
or M1 ∈ Λv and M2 /∈ Λv, so M2 ∈ Λc by induction hypothesis, and thus M ∈ Λc;
or M1 is a variable and M2 ∈ Λv, hence M ∈ Λc (this is the base case).

⇐: The right-to-left direction of statement (1) can easily be proved by induction on M ∈Λc.J

A consequence of Proposition 17 is that all closed head βv-normal forms are abstractions.

I Proposition 18 (Characterization of head v-normal forms). Let M ∈ Λ.
1. M is head v-normal and is neither a λ-value nor a β-redex if and only if M ∈ Λa.
2. M is head v-normal and is a β-redex if and only if M ∈ Λb.
3. M is head v-normal if and only if M ∈ Λv ∪ Λa ∪ Λb.

Proof. Statement (3) is an immediate consequence of statements (1)-(2) and Remark 15.
⇒: We prove simultaneously the left-to-right direction of statements (1) and (2), by induction

on M ∈ Λ. The case where M ∈ Λv is impossible by hypothesis.
If M = M1M2 (for some M1,M2 ∈ Λ) is head v-normal then M is not a λ-value and M1
and M2 are head v-normal, moreover M1 is not a β-redex (otherwise M would be a head
σ1-redex), and either M1 6= λx.N (for any N ∈ Λ) or M2 /∈ Λv (otherwise M would be a
head βv-redex), and either M1 /∈ Λv or M2 is not a β-redex (otherwise M would be a
head σ3-redex). There are only three cases:

eitherM1 is a variable andM2 is not a β-redex, soM is not a β-redex; ifM2 ∈ Λv then
M ∈Λa (this is the base case); otherwise M2∈Λa by induction hypothesis, so M ∈Λa;
orM1 /∈Λv, thusM is not a β-redex andM1 ∈ Λa by induction hypothesis, so M ∈ Λa;
or M1 = λx.N for some N ∈ Λ and M2 is neither a λ-value nor a β-redex, so M is a
β-redex, furthermore M2 ∈ Λa by induction hypothesis, and thus M ∈ Λb.

⇐: The right-to-left direction of statement (1) can easily be proved by induction on M ∈ Λa.
Let us prove the right-to-left direction of statement (2): if M ∈ Λb then M = (λx.N)A
for some N ∈ Λ and A ∈ Λa, thus M is a β-redex. For any M ′ ∈ Λ, the last rule of
the derivation of M h→v M

′ might be neither σ1 nor σ3 (because A is not a β-redex by
statement 1) nor βv (because A /∈ Λv by statement 1 again) nor right (because A is head
v-normal, by statement 1 again). Therefore, M is head v-normal. J

As a consequence of Proposition 18, all closed head v-normal forms are abstractions.
The sets of terms Λa, Λb and Λc of Definition 16 enjoy the closure properties summarized

in Lemma 19 below. Together with the syntactic characterizations of head βv-normal forms
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(Proposition 17) and head v-normal forms (Proposition 18), these closure properties allow
one to reason about head v-reduction in spite of its non-confluence: they will be used to
prove our main results, Theorems 21 and 24 and Proposition 27.

I Lemma 19 (Closure properties).
1. The set Λa is closed under v-internal reduction and expansion, i.e., for any N ′∈ Λ and

N ∈ Λa, if N ′
int→v N or N int→v N

′ then N ′∈ Λa.
2. The set Λb is closed under v-internal reduction and expansion, i.e., for any N ′∈ Λ and

N ∈ Λb, if N ′
int→v N or N int→v N

′ then N ′∈ Λb.
3. Head v-normal forms are closed under v-internal reduction and expansion, i.e., for any

N,N ′∈Λ where N is head v-normal, if N ′ int→vN or N int→vN
′ then N ′ is head v-normal.

4. Head βv-normal forms are closed under head σ-reduction and expansion, i.e., for any
N,N ′∈Λ where N is head βv-normal, if N ′ h→σN or N h→σN

′ then N ′is head βv-normal.

Proof.
1. We show that if N ∈ Λa and N ′ int→v N (resp. N int→v N

′) then N ′ ∈ Λa, by induction on
the derivation of N ′ int→v N (resp. N int→v N

′). Let us consider its last rule r.
Since N ∈ Λa (see Definition 16), N = xLN1 . . . Nn for some n ∈ N, some variable x, some
L ∈ Λv ∪ Λa and some N1, . . . , Nn ∈ Λ, thus r 6= λ and hence either r = right or r = @.
If r = right then N ′ = xL′N1 . . . Nn where L′ int→v L (resp. L int→v L

′). Since L ∈ Λv ∪ Λa,
there are two cases:

either L ∈ Λa and then L′ ∈ Λa by induction hypothesis, so N ′ = xL′N1 . . . Nn ∈ Λa;
or L ∈ Λv and then L′ ∈ Λv by Fact 10.3 (resp. Remark 4, since int→v⊆→v), therefore
N ′ = xL′N ′1 . . . N

′
n ∈ Λa.

Finally, if r = @ then n ∈ N+ and N ′ = xLN1 . . . N
′
i . . . Nn for some 1 ≤ i ≤ n with

N ′i →v Ni (resp. Ni →v N
′
i), hence N ′ ∈ Λa because xL ∈ Λa.

2. We show that if N ∈ Λb and N ′
int→v N (resp. N int→v N

′) then N ′ ∈ Λb, by induction on
the derivation of N ′ int→v N (resp. N int→v N

′). Let us consider its last rule r. Since N ∈ Λb,
then N = (λx.M)A for some M ∈ Λ and A ∈ Λa, hence r 6= @ because N has not the
shape V LM1 . . .Mm for any m ∈ N+; therefore either r = λ or r = right:

if r = λ, then N ′ = (λx.M ′)A where M ′ →v M (resp. M →v M
′), hence N ′ ∈ Λb;

if r = right, then N ′ = (λx.M)A′ where A′ int→v A (resp. A int→v A
′), thus A′ ∈ Λa by

Lemma 19.1, hence N ′ ∈ Λb;
3. Thanks to Proposition 18.3, it is sufficient to show that if N ∈ Λv ∪Λa∪Λb and N ′

int→v N

(resp. N int→v N ′) then N ′ ∈ Λv ∪ Λa ∪ Λb. If N ∈ Λv then N ′ ∈ Λv by Fact 10.3
(resp. Remark 4, since int→v⊆→v). If N ∈ Λa then N ′ ∈ Λa by Lemma 19.1. Finally, if
N ∈ Λb then N ′ ∈ Λb by Lemma 19.2.

4. By Proposition 17.2, N ∈ Λv ∪ Λc. Since M
h→σ N or N h→σ M , N /∈ Λv by Fact 10.2.

We prove by induction on N ∈Λc thatM ∈Λc. By Definition 16, there are only two cases:
either N = xV N1 . . . Nn for some n ∈ N, variable x, V ∈ Λv and N1, . . . , Nn ∈ Λ, but
this is impossible since the last rule of the derivation of M h→σ N or N h→σ M can be
neither σ1 nor σ3 (because of the subterm xV ) nor right (because of Fact 10.2);
or N = V LN1 . . . Nn for some n ∈ N, V ∈ Λv, L ∈ Λc and N1, . . . , Nn ∈ Λ, and then
there are three sub-cases, depending on the last rule r of the derivation of M h→σ N

(resp. N h→σ M):
if r = σ1 then V = λx.N ′N0 (resp. λx.N ′) and M = (λx.N ′)LN0 . . . Nn (resp. M =
(λx.N ′N1)LN2 . . . Nn with n > 0) for some N ′, N0 ∈ Λ, hence M ∈ Λc;
if r = σ3 then V = λx.V ′N ′ (resp. L = (λx.N ′)L′) andM = V ′((λx.N ′)L)N1 . . . Nn
(resp. M = (λx.V N ′)L′N1 . . . Nn) for some V ′ ∈ Λv (resp. L′ ∈ Λc) and N ′ ∈ Λ,
thus (λx.N ′)L ∈ Λc (resp. (λx.V N ′)L′ ∈ Λc) and hence M ∈ Λc;

WPTE’15



12 Head reduction and normalization in a call-by-value lambda-calculus

if r = right then M = V L′N1 . . . Nn for some L′ ∈ Λ such that L′ h→σ L (resp.
L

h→σ L
′), so L′ ∈ Λc by induction hypothesis, and hence M ∈ Λc.

J

Lemma 19.4 is a formalization of the two following facts: (a) a head σ-reduction step
may create a new βv-redex but in this case it is not a head βv-redex; (b) when M

h→σ N ,
the head βv-redex of M (if any) has a residual in N which is the head βv-redex of N .

I Lemma 20. There exists no infinite head v-reduction sequence with finitely many head
βv-reduction steps.

Proof. Suppose the opposite holds: then there would exist m ∈ N and an infinite sequence of
terms (Mi)i∈N such that Mi

h→v Mi+1 for any 1 ≤ i ≤ m, Mm
h→βv

Mm+1 and Mi
h→σ Mi+1

for any i > m (since h→v = h→βv ∪
h→σ). But this is impossible because h→σ is strongly

normalizing (by Proposition 5 and since h→σ ⊆→σ). Contradiction. J

Now we can state and prove our main result about head βv- and head v-normalization.

I Theorem 21 (Head normalization). Let M ∈ Λ. The following are equivalent:
1. there exists a head βv-normal form N such that M 'βv N ;
2. there exists a head v-normal form N such that M 'v N ;
3. M is head v-normalizable;
4. M is head βv-normalizable;
5. there is no v-reduction sequence from M with infinitely many head βv-reduction steps;
6. M is strongly head v-normalizable.

Proof.
(1)⇒(2) By hypothesis, there exists a head βv-normal N ∈ Λ such that M 'βv N , thus

M 'v N . Since h→σ is strongly normalizing (by Proposition 5 and because h→σ ⊆→σ),
there exists a head σ-normal N ′ ∈ Λ such that N h−→∗σ N ′, therefore M 'v N

′ since
h→σ ⊆→v. By Lemma 19.4, N ′ is also head βv-normal and hence head v-normal.

(2)⇒(3) SinceM 'v N , there is L ∈ Λ such thatM →∗v L and N →∗v L, by confluence of→v
(Proposition 5). By Theorem 14, there are M1,M2, N1, N2 ∈ Λ such that M h−→∗βv

M1
h−→∗σ

M2
int−→∗v L and N h−→∗βv

N1
h−→∗σ N2

int−→∗v L. As N is head v-normal, N = N1 = N2
int−→∗v L.

By Lemma 19.3, L and M2 are v-head normal. So, M h−→∗v M2 with M2 head v-normal.
(3)⇒(4) By hypothesis, there is N ∈ Λ head v-normal such that M h−→∗v N . By Lemma 12.2,

there is L ∈ Λ such thatM h−→∗βv
L

h−→∗σ N . SinceN is head v-normal and in particular head
βv-normal, L is head βv-normal according to Lemma 19.4. So M is head βv-normalizable.

(4)⇒(5) Lemma 12.1 says that if N h→σ L
h→βv N ′ then there exists L′ ∈ Λ such that

N
h→βv

L′
h−→=
σ N ′; Lemma 13 and Fact 10.3 show that if N int→v L

h→βv
N ′ then there

exist L′, L′′ ∈ Λ such that N h−→+

βv
L′

h−→∗σ L′′
int−→∗v N ′. Since →v = h→βv

∪ h→σ ∪
int→v, this

means that if there is an infinite v-reduction sequence from M with infinitely many head
βv-reduction steps, then for any n ∈ N there is a head βv-reduction sequence from M

whose length is at least n. Therefore, M is not head βv-normalizable, since the head
βv-reduction is deterministic.

(5)⇒(6) If M is not strongly head v-normalizable then there exists an infinite head v-
reduction sequence. By Lemma 20, this head v-reduction (and hence v-reduction, since

h→v⊆→v) sequence has infinitely many head βv-reduction steps.



G. Guerrieri 13

(6)⇒(1) As M is strongly head v-normalizable, in particular is head v-normalizable, hence
there exists N ∈ Λ head v-normal and in particular head βv-normal such that M h−→∗v N .
By Lemma 12.2, there exists L ∈ Λ such that M h−→∗βv

L
h−→∗σ N . Therefore M 'βv

L

since h→βv
⊆→βv

. According to Lemma 19.4, L is head βv-normal.
J

In Theorem 21, the equivalence (3)⇔(6) means that (weak) normalization and strong
normalization are equivalent for head v-reduction (for head βv-reduction they are trivially
equivalent since the head βv-reduction is deterministic), therefore if one is interested in
studying the termination of head v-reduction, no difficulty arises from its non-determinism.
The equivalence (4)⇔(3) or (4)⇔(6) says that the weak evaluation process defined for
Plotkin’s λv-calculus (the head βv-reduction) terminates if and only if the weak evaluation
process defined for λσv (the head v-reduction) terminates: σ-rules play no role in deciding the
termination of a head v-reduction sequence. The equivalence (3)⇔(2) (resp. (4)⇔(1)) is the
version for λσv (resp. λv) of a well-known theorem for ordinary λ-calculus (see for example [3,
Theorem 8.3.11]): in some sense, it claims that the head v-reduction (resp. head βv-reduction)
is complete with respect to the v-equivalence (resp. βv-equivalence). The equivalence (5)⇔(2)
(resp. (5)⇔(1)) can be seen as the version for λσv (resp. λv) of the Quasi-Head Reduction
Theorem [19, Theorem 2.10] stated by Takahashi for ordinary λ-calculus.

5 Normalization strategy and other results

Theorems 14 and 21 strengthen the idea that, in spite of non-determinism and non-confluence
of head v-reduction and non-sequentiability of head σ-reduction steps, the head v-reduction
can be used to define a normalization strategy for the λσv -calculus, as proven in next
Theorem 24, the second main result of our paper: given a term M , one starts the (unique)
head βv-head reduction sequence from M as long as a head βv-normal form N is reached
(recall that, according to Theorem 21, a term is (strongly) head v-normalizable if and only if
it is head βv-normalizable); then, one starts a head σ-reduction sequence from N (where
head σ1- and head σ3-reduction steps can be performed in whatever order) as long as a head
σ-normal form N ′ is reached (such a N ′ always exists because h→σ is strongly normalizing,
and it is head v-normal by Lemma 19.4); finally, one performs the internal v-reduction steps
starting from N ′ by iterating the head βv-reduction sequences and then the head σ-reduction
sequences as above on the subterms of N ′, from the left to the right. More precisely:

I Definition 22 (Successors path). Let M ∈ Λ.
A successor of M is a M ′ ∈ Λ defined by induction on M ∈ Λ as follows:
if M is not head βv-normal, then M ′ is such that M h→βv M

′;
if M is head βv-normal but not head σ-normal, then M ′ is such that M h→σ M

′;
if M is head v-normal then:

if M is a variable then M ′ = M ,
if M = λx.N for some N ∈ Λ, then M ′ = λx.N ′ for some successor N ′ of N ,
if M = NL for some N,L ∈ Λ, then either N is not v-normal and M ′ = N ′L where
N ′ is a successor of N , or N is v-normal and M ′ = NL′ where L′ is a successor of L.

A successors path of M is an infinite sequence (Mi)i∈N of terms such that M0 = M and
Mi+1 is a successor of Mi, for any i ∈ N.

Clearly, for every termM there is at least one successorM ′ ofM ; moreover, this successor
M ′ is unique when M is not head βv-normal, since the head βv-reduction is deterministic,
and M = M ′ when M is v-normal.
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14 Head reduction and normalization in a call-by-value lambda-calculus

I Remark 23. Let M ∈ Λ and let (Mi)i∈N be a successors path of M .
1. For every i ∈ N, there exist 0 ≤ j ≤ k ≤ i such that M h−→∗βv

Mj
h−→∗σ Mk

int−→∗v Mi.
2. For every i ∈ N, if Mi is v-normal then Mj is v-normal for any j ≥ i.

A successors path of a termM is a call-by-value left-to-right v-evaluation strategy starting
from M that can reduce under a λ only when a head v-normal from is reached. Due to
the non-determinism of the head σ-reduction, a term M may have several successors paths.
We cannot get rid of the non-determinism of the successors path of M because of the
non-sequentiability of head σ-reductions, see p. 9 and [7, p. 10].

I Theorem 24 (Normalization strategy). Let M ∈ Λ. Every successors path (Mi)i∈N of M is
a normalization strategy for M , i.e. if M is v-normalizable then there exists j, k, ` ∈ N such
that j ≤ k ≤ `, Mj is head βv-normal, Mk is head v-normal and M` is v-normal.

Proof. Let (Mi)i∈N be a successors path of M and N ∈ Λ be such that N is v-normal and
M →∗v N : we prove by induction on N ∈ Λ that there exist j, k, ` ∈ N such that Mj is head
βv-normal, Mk is head v-normal and M` is v-normal.

Since M is v-normalizable, then it is head βv-normalizable (because h→βv ⊆→v), thus
there exists j ∈ N such that Mj is head βv-normal because h→βv

is deterministic. As h→σ

is strongly normalizing (by Proposition 5, since h→σ ⊆→σ), there exists k ∈ N with j ≤ k

such that Mk is head σ-normal. According to Lemma 19.4, Mk is also head βv-normal,
hence Mk is head v-normal. Certainly, Mk = V N1 . . . Nn for some n ∈ N, V ∈ Λv and
N1, . . . , Nn ∈ Λ. By confluence of →v (Proposition 5) and since N is v-normal and Mk is
head v-normal, one has Mk

int−→∗v N and hence N = V ′N ′1 . . . N
′
n for some v-normal V ′ ∈ Λv

and some v-normal N ′1, . . . , N ′n ∈ Λ such that V →∗v V ′ and Nr →∗v N ′r for any 1 ≤ r ≤ n.
By induction hypothesis, for every successors path (Vi)i∈N of V and, for any 1 ≤ r ≤ n, for
every successors path (Lri )i∈N of Nr there exist p, p1, . . . , pn ∈ N such that Vp, L1

p1
, . . . , Lnpn

are v-normal: by confluence of →v (Proposition 5), Vp = V ′ and N ′r = Lrpr
for any 1 ≤ r ≤ n.

Let us consider the infinite sequence of terms s = (M=M0, . . . . . . ,Mk=V N1 . . . Nn =
V0N1 . . . Nn, . . . . . . , VpN1 . . . Nn=V ′L1

0N2 . . . Nn, . . . . . . , V
′L1
p1
N2 . . . Nn=V ′N ′1L2

0 . . . Nn,

. . . . . . , V ′N ′1N
′
2 . . . N

′
n=N,N, . . . . . . ): this is a successors path of M and, for an opportune

choice of the successors paths (Vi)i∈N, (L1
i )i∈N, . . . , (Lni )i∈N, one has that s = (Mi)i∈N, in

particular there exists ` ∈ N such that j ≤ k ≤ ` and M` = N . J

In ordinary λ-calculus, the well-known theorem corresponding to our Theorem 24 is the
Leftmost Reduction Theorem, see [19, Theorem 2.8] or [3, Theorem 13.2.2]. Differently from
the leftmost reduction of ordinary λ-calculus, our normalization strategy is not deterministic,
i.e., our Theorem 24 provides a family of normalization strategies.

Finally, we have shown at p. 7 that the head σ- and head v-reductions are not (locally)
confluent and a term may have several head v-normal forms. Nevertheless, the character-
ization of head v-normal forms given by Proposition 18 allows us to claim that (see next
Proposition 27) in some cases (of interest), more precisely when a term has a head v-normal
form which is a value or an element of Λa, the head v-normal form is unique (Proposition 27.1):
all terms having several head v-normal forms are such that all their head v-normal forms
are in Λb. In particular, every head v-normalizable closed term has a unique head v-normal
form, which is an abstraction and coincides with its head βv-normal form (Proposition 27.2).

I Remark 25. By inspection on the rules of Definition 8, it easy to check that the head σ-
reduction does not reduce to a term in Λa, i.e., for anyM ∈ Λ and N ∈ Λa, one has M 6 h→σ N .

Remark 25 does not hold if we replace h→σ with h→βv
: for instance, x(II) h→βv

xI ∈ Λa.
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I Fact 26. For every N ∈ Λv ∪ Λa, one has M h−→∗βv
N if and only if M h−→∗v N .

Proof. The left-to-right direction follows from h→βv ⊆
h→v. The right-to-left direction is a

consequence of Lemma 12.2 and either Fact 10.2 (if N ∈ Λv) or Remark 25 (if N ∈ Λa). J

Fact 26 means that, given a head v-reduction sequence, the head σ-reduction plays no
role not only in deciding its termination (as stated in Theorem 21), but also in reaching a
particular value or term in Λa. Fact 26 will be used in the proof of Proposition 27.

I Proposition 27 (Uniqueness of “some” head v-normal forms). Let M ∈ Λ and M h−→∗v N .
1. If N ∈ Λv ∪ Λa then, for every head v-normal L ∈ Λ, M h−→∗v L implies N = L.
2. If M is closed and N is head v-normal, then M h−→∗βv

N and N = λx.N ′ for some N ′ ∈ Λ
such that fv(N ′) ⊆ {x}; moreover, for any head v-normal L ∈ Λ, M h−→∗v L implies N = L.

Proof.
1. Since N ∈ Λv∪Λa,M

h−→∗v N impliesM h−→∗βv
N by Fact 26. According to Proposition 18.3,

N is head v-normal.
Let L ∈ Λ be head v-normal and such thatM h−→∗v L: by Proposition 18.3, L ∈ Λv∪Λa∪Λb.
We claim that L /∈ Λb. Otherwise, L ∈ Λb and then, by confluence of →v there would
exist M ′ ∈ Λ such that N →∗v M ′ and L→∗v M ′. According to Proposition 11 and since
N and L are head v-normal, N int−→∗v M ′ and L

int−→∗v M ′. By Remark 4 (since int→v⊆→v)
and Lemma 19.1, M ′ ∈ Λv ∪ Λa. By Lemma 19.2, M ′ ∈ Λb. But Λv ∩ Λb = ∅ = Λa ∩ Λb:
contradiction, therefore L /∈ Λb.
So, L ∈ Λv ∪ Λa and thus M h−→∗βv

L by Fact 26, hence N = L since h→βv
is deterministic.

2. Since M is closed, N is closed too. Hence, by Proposition 18.3, N ∈ Λv (since the terms
in Λa ∪ Λb are not closed) and N is not a variable, therefore N = λx.N ′ for some N ′ ∈ Λ
such that fv(N ′) ⊆ {x}. By Fact 26, M h−→∗βv

N . According to Proposition 27.1, for every
head v-normal L ∈ Λ, M h−→∗v L implies N = L.

J

Recall that all head v-normal terms are head βv-normal, since h→βv
⊆ h→v.

6 Conclusions and future work

In this paper, we have investigated the λσv -calculus introduced in [4], an extension of Plotkin’s
call-by-value λ-calculus λv [15] with the same syntax as λv (without constants) and ordinary
(i.e. call-by-name) λ-calculus. The peculiarity of λσv is in its reduction rules: the v-reduction
adds to Plotkin’s βv-reduction two commutation rules called σ1 and σ3 which unblock “hidden”
βv-redexes. We have studied the head v-reduction, a non-confluent sub-reduction of the
v-reduction already introduced in [7]. We now summarize our main contributions:
1. Theorem 21 is about head v-normalization, it shows that:

for the head v-reduction, normalization coincides with strong normalization;
the head v-reduction is deeply related to Plotkin’s deterministic weak evaluation
strategy for λv (the former terminates if and only if the latter terminates);
both head v-reduction and weak evaluation strategy for λv enjoy good properties
analogous to the ones of the (call-by-name) head reduction for ordinary λ-calculus.

2. Theorem 24 is about v-normalization: it proves that a top-down extension of the head
v-normalization provides a family of normalization strategies for the (full) v-reduction.

3. Proposition 27 is about the uniqueness of the head v-normal form: it shows that, even if
there are terms having several head v-normal forms, in some case of interest (for instance,
closed terms) the head v-normal form, if any, is unique.
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16 Head reduction and normalization in a call-by-value lambda-calculus

These results, together with the results proven in [4, 7], shows that λσv is a useful tool
to study some theoretical and semantic properties of Plotkin’s λv-calculus, for instance the
notions of call-by-value solvability and potential valuability. This is hard (or impossible) to
obtain directly in λv because of the “weakness” of Plotkin’s βv-reduction. In the case of
ordinary (i.e. call-by-name) λ-calculus, head reduction and solvability are the starting point
to investigate separability, semi-separability and Böhm’s trees. Hence, it may reasonably
be supposed that we have all the ingredients for tackling the question of separability, semi-
separability and Böhm’s trees in a call-by-value setting. In particular, one may reasonably
hope to improve in λσv the separability theorem already proven by Paolini [12] for λv.
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