18,205 research outputs found

    Web-based visualisation of head pose and facial expressions changes: monitoring human activity using depth data

    Full text link
    Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.Comment: 8th Computer Science and Electronic Engineering, (CEEC 2016), University of Essex, UK, 6 page

    Computer-based tracking, analysis, and visualization of linguistically significant nonmanual events in American Sign Language (ASL)

    Full text link
    Our linguistically annotated American Sign Language (ASL) corpora have formed a basis for research to automate detection by computer of essential linguistic information conveyed through facial expressions and head movements. We have tracked head position and facial deformations, and used computational learning to discern specific grammatical markings. Our ability to detect, identify, and temporally localize the occurrence of such markings in ASL videos has recently been improved by incorporation of (1) new techniques for deformable model-based 3D tracking of head position and facial expressions, which provide significantly better tracking accuracy and recover quickly from temporary loss of track due to occlusion; and (2) a computational learning approach incorporating 2-level Conditional Random Fields (CRFs), suited to the multi-scale spatio-temporal characteristics of the data, which analyses not only low-level appearance characteristics, but also the patterns that enable identification of significant gestural components, such as periodic head movements and raised or lowered eyebrows. Here we summarize our linguistically motivated computational approach and the results for detection and recognition of nonmanual grammatical markings; demonstrate our data visualizations, and discuss the relevance for linguistic research; and describe work underway to enable such visualizations to be produced over large corpora and shared publicly on the Web

    Markerless Motion Capture in the Crowd

    Full text link
    This work uses crowdsourcing to obtain motion capture data from video recordings. The data is obtained by information workers who click repeatedly to indicate body configurations in the frames of a video, resulting in a model of 2D structure over time. We discuss techniques to optimize the tracking task and strategies for maximizing accuracy and efficiency. We show visualizations of a variety of motions captured with our pipeline then apply reconstruction techniques to derive 3D structure.Comment: Presented at Collective Intelligence conference, 2012 (arXiv:1204.2991

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks

    A stabilized adaptive appearance changes model for 3D head tracking

    Get PDF
    A simple method is presented for 3D head pose estimation and tracking in monocular image sequences. A generic geometric model is used. The initialization consists of aligning the perspective projection of the geometric model with the subjects head in the initial image. After the initialization, the gray levels from the initial image are mapped onto the visible side of the head model to form a textured object. Only a limited number of points on the object is used allowing real-time performance even on low-end computers. The appearance changes caused by movement in the complex light conditions of a real scene present a big problem for fitting the textured model to the data from new images. Having in mind real human-computer interfaces we propose a simple adaptive appearance changes model that is updated by the measurements from the new images. To stabilize the model we constrain it to some neighborhood of the initial gray values. The neighborhood is defined using some simple heuristic
    • …
    corecore