372 research outputs found

    Who Will Get the Grant ? A Multimodal Corpus for the Analysis of Conversational Behaviours in Group

    Get PDF
    In the last couple of years more and more multimodal corpora have been created. Recently many of these corpora have also included RGB-D sensors' data. However, there is to our knowledge no publicly available corpus, which combines accurate gaze-tracking, and high- quality audio recording for group discussions of varying dynamics. With a corpus that would fulfill these needs, it would be possible to investigate higher level constructs such as group involvement, individual engagement or rapport, which all require multi-modal feature extraction. In the following paper we describe the design and recording of such a corpus and we provide some illustrative examples of how such a corpus might be exploited in the study of group dynamics

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF

    Integrating Flow Theory and Adaptive Robot Roles: A Conceptual Model of Dynamic Robot Role Adaptation for the Enhanced Flow Experience in Long-term Multi-person Human-Robot Interactions

    Full text link
    In this paper, we introduce a novel conceptual model for a robot's behavioral adaptation in its long-term interaction with humans, integrating dynamic robot role adaptation with principles of flow experience from psychology. This conceptualization introduces a hierarchical interaction objective grounded in the flow experience, serving as the overarching adaptation goal for the robot. This objective intertwines both cognitive and affective sub-objectives and incorporates individual and group-level human factors. The dynamic role adaptation approach is a cornerstone of our model, highlighting the robot's ability to fluidly adapt its support roles - from leader to follower - with the aim of maintaining equilibrium between activity challenge and user skill, thereby fostering the user's optimal flow experiences. Moreover, this work delves into a comprehensive exploration of the limitations and potential applications of our proposed conceptualization. Our model places a particular emphasis on the multi-person HRI paradigm, a dimension of HRI that is both under-explored and challenging. In doing so, we aspire to extend the applicability and relevance of our conceptualization within the HRI field, contributing to the future development of adaptive social robots capable of sustaining long-term interactions with humans

    Automatic Context-Driven Inference of Engagement in HMI: A Survey

    Full text link
    An integral part of seamless human-human communication is engagement, the process by which two or more participants establish, maintain, and end their perceived connection. Therefore, to develop successful human-centered human-machine interaction applications, automatic engagement inference is one of the tasks required to achieve engaging interactions between humans and machines, and to make machines attuned to their users, hence enhancing user satisfaction and technology acceptance. Several factors contribute to engagement state inference, which include the interaction context and interactants' behaviours and identity. Indeed, engagement is a multi-faceted and multi-modal construct that requires high accuracy in the analysis and interpretation of contextual, verbal and non-verbal cues. Thus, the development of an automated and intelligent system that accomplishes this task has been proven to be challenging so far. This paper presents a comprehensive survey on previous work in engagement inference for human-machine interaction, entailing interdisciplinary definition, engagement components and factors, publicly available datasets, ground truth assessment, and most commonly used features and methods, serving as a guide for the development of future human-machine interaction interfaces with reliable context-aware engagement inference capability. An in-depth review across embodied and disembodied interaction modes, and an emphasis on the interaction context of which engagement perception modules are integrated sets apart the presented survey from existing surveys

    Sensing, interpreting, and anticipating human social behaviour in the real world

    Get PDF
    Low-level nonverbal social signals like glances, utterances, facial expressions and body language are central to human communicative situations and have been shown to be connected to important high-level constructs, such as emotions, turn-taking, rapport, or leadership. A prerequisite for the creation of social machines that are able to support humans in e.g. education, psychotherapy, or human resources is the ability to automatically sense, interpret, and anticipate human nonverbal behaviour. While promising results have been shown in controlled settings, automatically analysing unconstrained situations, e.g. in daily-life settings, remains challenging. Furthermore, anticipation of nonverbal behaviour in social situations is still largely unexplored. The goal of this thesis is to move closer to the vision of social machines in the real world. It makes fundamental contributions along the three dimensions of sensing, interpreting and anticipating nonverbal behaviour in social interactions. First, robust recognition of low-level nonverbal behaviour lays the groundwork for all further analysis steps. Advancing human visual behaviour sensing is especially relevant as the current state of the art is still not satisfactory in many daily-life situations. While many social interactions take place in groups, current methods for unsupervised eye contact detection can only handle dyadic interactions. We propose a novel unsupervised method for multi-person eye contact detection by exploiting the connection between gaze and speaking turns. Furthermore, we make use of mobile device engagement to address the problem of calibration drift that occurs in daily-life usage of mobile eye trackers. Second, we improve the interpretation of social signals in terms of higher level social behaviours. In particular, we propose the first dataset and method for emotion recognition from bodily expressions of freely moving, unaugmented dyads. Furthermore, we are the first to study low rapport detection in group interactions, as well as investigating a cross-dataset evaluation setting for the emergent leadership detection task. Third, human visual behaviour is special because it functions as a social signal and also determines what a person is seeing at a given moment in time. Being able to anticipate human gaze opens up the possibility for machines to more seamlessly share attention with humans, or to intervene in a timely manner if humans are about to overlook important aspects of the environment. We are the first to propose methods for the anticipation of eye contact in dyadic conversations, as well as in the context of mobile device interactions during daily life, thereby paving the way for interfaces that are able to proactively intervene and support interacting humans.Blick, Gesichtsausdrücke, Körpersprache, oder Prosodie spielen als nonverbale Signale eine zentrale Rolle in menschlicher Kommunikation. Sie wurden durch vielzählige Studien mit wichtigen Konzepten wie Emotionen, Sprecherwechsel, Führung, oder der Qualität des Verhältnisses zwischen zwei Personen in Verbindung gebracht. Damit Menschen effektiv während ihres täglichen sozialen Lebens von Maschinen unterstützt werden können, sind automatische Methoden zur Erkennung, Interpretation, und Antizipation von nonverbalem Verhalten notwendig. Obwohl die bisherige Forschung in kontrollierten Studien zu ermutigenden Ergebnissen gekommen ist, bleibt die automatische Analyse nonverbalen Verhaltens in weniger kontrollierten Situationen eine Herausforderung. Darüber hinaus existieren kaum Untersuchungen zur Antizipation von nonverbalem Verhalten in sozialen Situationen. Das Ziel dieser Arbeit ist, die Vision vom automatischen Verstehen sozialer Situationen ein Stück weit mehr Realität werden zu lassen. Diese Arbeit liefert wichtige Beiträge zur autmatischen Erkennung menschlichen Blickverhaltens in alltäglichen Situationen. Obwohl viele soziale Interaktionen in Gruppen stattfinden, existieren unüberwachte Methoden zur Augenkontakterkennung bisher lediglich für dyadische Interaktionen. Wir stellen einen neuen Ansatz zur Augenkontakterkennung in Gruppen vor, welcher ohne manuelle Annotationen auskommt, indem er sich den statistischen Zusammenhang zwischen Blick- und Sprechverhalten zu Nutze macht. Tägliche Aktivitäten sind eine Herausforderung für Geräte zur mobile Augenbewegungsmessung, da Verschiebungen dieser Geräte zur Verschlechterung ihrer Kalibrierung führen können. In dieser Arbeit verwenden wir Nutzerverhalten an mobilen Endgeräten, um den Effekt solcher Verschiebungen zu korrigieren. Neben der Erkennung verbessert diese Arbeit auch die Interpretation sozialer Signale. Wir veröffentlichen den ersten Datensatz sowie die erste Methode zur Emotionserkennung in dyadischen Interaktionen ohne den Einsatz spezialisierter Ausrüstung. Außerdem stellen wir die erste Studie zur automatischen Erkennung mangelnder Verbundenheit in Gruppeninteraktionen vor, und führen die erste datensatzübergreifende Evaluierung zur Detektion von sich entwickelndem Führungsverhalten durch. Zum Abschluss der Arbeit präsentieren wir die ersten Ansätze zur Antizipation von Blickverhalten in sozialen Interaktionen. Blickverhalten hat die besondere Eigenschaft, dass es sowohl als soziales Signal als auch der Ausrichtung der visuellen Wahrnehmung dient. Somit eröffnet die Fähigkeit zur Antizipation von Blickverhalten Maschinen die Möglichkeit, sich sowohl nahtloser in soziale Interaktionen einzufügen, als auch Menschen zu warnen, wenn diese Gefahr laufen wichtige Aspekte der Umgebung zu übersehen. Wir präsentieren Methoden zur Antizipation von Blickverhalten im Kontext der Interaktion mit mobilen Endgeräten während täglicher Aktivitäten, als auch während dyadischer Interaktionen mittels Videotelefonie

    A Survey of Multi-Agent Human-Robot Interaction Systems

    Full text link
    This article presents a survey of literature in the area of Human-Robot Interaction (HRI), specifically on systems containing more than two agents (i.e., having multiple humans and/or multiple robots). We identify three core aspects of ``Multi-agent" HRI systems that are useful for understanding how these systems differ from dyadic systems and from one another. These are the Team structure, Interaction style among agents, and the system's Computational characteristics. Under these core aspects, we present five attributes of HRI systems, namely Team size, Team composition, Interaction model, Communication modalities, and Robot control. These attributes are used to characterize and distinguish one system from another. We populate resulting categories with examples from recent literature along with a brief discussion of their applications and analyze how these attributes differ from the case of dyadic human-robot systems. We summarize key observations from the current literature, and identify challenges and promising areas for future research in this domain. In order to realize the vision of robots being part of the society and interacting seamlessly with humans, there is a need to expand research on multi-human -- multi-robot systems. Not only do these systems require coordination among several agents, they also involve multi-agent and indirect interactions which are absent from dyadic HRI systems. Adding multiple agents in HRI systems requires advanced interaction schemes, behavior understanding and control methods to allow natural interactions among humans and robots. In addition, research on human behavioral understanding in mixed human-robot teams also requires more attention. This will help formulate and implement effective robot control policies in HRI systems with large numbers of heterogeneous robots and humans; a team composition reflecting many real-world scenarios.Comment: 23 pages, 7 figure

    The Effects of Engaging and Affective Behaviors of Virtual Agents in Group Decision-Making

    Full text link
    Virtual agents (VAs) need to exhibit engaged and affective behavior in order to become more effective social actors in our daily lives. However, such behaviors need to conform to social norms, especially in organizational settings. This study examines how different VA behaviors influence subjects' perceptions and actions in group decision-making processes. Participants exposed to VAs demonstrated varying levels of engagement and affective behavior during the group discussions. Engagement refers to the VA's focus on the group task, while affective behavior represents the VA's emotional state. The findings indicate that VA engagement positively influences user behavior, particularly in attention allocation. However, it has minimal impact on subjective perception. Conversely, affective expressions of VAs have a negative impact on subjective perceptions, such as social presence, social influence, and trustworthiness. Interestingly, in 64 discussions for tasks, only seven showed a decline in group scores compared to individual scores, and in six of these cases, the VA exhibited a non-engaged and affective state. We discuss the results and the potential implications for future research on using VAs in group meetings. It provides valuable insights for improving VA behavior as a team member in group decision-making scenarios and guides VA design in organizational contexts.Comment: Under Review. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore