497 research outputs found

    Flexible Spatio-Temporal Hawkes Process Models for Earthquake Occurrences

    Full text link
    Hawkes process is one of the most commonly used models for investigating the self-exciting nature of earthquake occurrences. However, seismicity patterns have complicated characteristics due to heterogeneous geology and stresses, for which existing methods with Hawkes process cannot fully capture. This study introduces novel nonparametric Hawkes process models that are flexible in three distinct ways. First, we incorporate the spatial inhomogeneity of the self-excitation earthquake productivity. Second, we consider the anisotropy in aftershock occurrences. Third, we reflect the space-time interactions between aftershocks with a non-separable spatio-temporal triggering structure. For model estimation, we extend the model-independent stochastic declustering (MISD) algorithm and suggest substituting its histogram-based estimators with kernel methods. We demonstrate the utility of the proposed methods by applying them to the seismicity data in regions with active seismic activities.Comment: 53 page

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks

    Nonparametric Markovian Learning of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate Hawkes Processes

    Full text link
    In this paper, we address the problem of fitting multivariate Hawkes processes to potentially large-scale data in a setting where series of events are not only mutually-exciting but can also exhibit inhibitive patterns. We focus on nonparametric learning and propose a novel algorithm called MEMIP (Markovian Estimation of Mutually Interacting Processes) that makes use of polynomial approximation theory and self-concordant analysis in order to learn both triggering kernels and base intensities of events. Moreover, considering that N historical observations are available, the algorithm performs log-likelihood maximization in O(N)O(N) operations, while the complexity of non-Markovian methods is in O(N2)O(N^{2}). Numerical experiments on simulated data, as well as real-world data, show that our method enjoys improved prediction performance when compared to state-of-the art methods like MMEL and exponential kernels

    Efficient Non-parametric Bayesian Hawkes Processes

    Full text link
    In this paper, we develop an efficient nonparametric Bayesian estimation of the kernel function of Hawkes processes. The non-parametric Bayesian approach is important because it provides flexible Hawkes kernels and quantifies their uncertainty. Our method is based on the cluster representation of Hawkes processes. Utilizing the stationarity of the Hawkes process, we efficiently sample random branching structures and thus, we split the Hawkes process into clusters of Poisson processes. We derive two algorithms -- a block Gibbs sampler and a maximum a posteriori estimator based on expectation maximization -- and we show that our methods have a linear time complexity, both theoretically and empirically. On synthetic data, we show our methods to be able to infer flexible Hawkes triggering kernels. On two large-scale Twitter diffusion datasets, we show that our methods outperform the current state-of-the-art in goodness-of-fit and that the time complexity is linear in the size of the dataset. We also observe that on diffusions related to online videos, the learned kernels reflect the perceived longevity for different content types such as music or pets videos

    Multivariate Hawkes Processes for Large-scale Inference

    Full text link
    In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems both in the number of events in the observed history nn and the number of event types dd (i.e. dimensions). The proposed Low-Rank Hawkes Process (LRHP) framework introduces a low-rank approximation of the kernel matrix that allows to perform the nonparametric learning of the d2d^2 triggering kernels using at most O(ndr2)O(ndr^2) operations, where rr is the rank of the approximation (r≪d,nr \ll d,n). This comes as a major improvement to the existing state-of-the-art inference algorithms that are in O(nd2)O(nd^2). Furthermore, the low-rank approximation allows LRHP to learn representative patterns of interaction between event types, which may be valuable for the analysis of such complex processes in real world datasets. The efficiency and scalability of our approach is illustrated with numerical experiments on simulated as well as real datasets.Comment: 16 pages, 5 figure
    • …
    corecore