12 research outputs found

    Registration of prone and supine CT colonography images and its clinical application

    Get PDF
    Computed tomographic (CT) colonography is a technique for detecting bowel cancer and potentially precancerous polyps. CT imaging is performed on the cleansed and insufflated bowel in order to produce a virtual endoluminal representation similar to optical colonoscopy. Because fluids and stool can mimic pathology, images are acquired with the patient in both prone and supine positions. Radiologists then match endoluminal locations visually between the two acquisitions in order to determine whether pathology is real or not. This process is hindered by the fact that the colon can undergo considerable deformation between acquisitions. Robust and accurate automated registration between prone and supine data acquisitions is therefore pivotal for medical interpretation, but a challenging problem. The method proposed in this thesis reduces the complexity of the registration task of aligning the prone and supine CT colonography acquisitions. This is done by utilising cylindrical representations of the colonic surface which reflect the colon's specific anatomy. Automated alignment in the cylindrical domain is achieved by non-rigid image registration using surface curvatures, applicable even when cases exhibit local luminal collapses. It is furthermore shown that landmark matches for initialisation improve the registration's accuracy and robustness. Additional performance improvements are achieved by symmetric and inverse-consistent registration and iteratively deforming the surface in order to compensate for differences in distension and bowel preparation. Manually identified reference points in human data and fiducial markers in a porcine phantom are used to validate the registration accuracy. The potential clinical impact of the method has been evaluated using data that reflects clinical practise. Furthermore, correspondence between follow-up CT colonography acquisitions is established in order to facilitate the clinical need to investigate polyp growth over time. Accurate registration has the potential to both improve the diagnostic process and decrease the radiologist's interpretation time. Furthermore, its result could be integrated into algorithms for improved computer-aided detection of colonic polyps

    Feature extraction to aid disease detection and assessment of disease progression in CT and MR colonography

    Get PDF
    Computed tomographic colonography (CTC) is a technique employed to examine the whole colon for cancers and premalignant adenomas (polyps). Oral preparation is taken to fully cleanse the colon, and gas insufflation maximises the attenuation contrast between the enoluminal colon surface and the lumen. The procedure is performed routinely with the patient both prone and supine to redistribute gas and residue. This helps to differentiate fixed colonic pathology from mobile faecal residue and also helps discover pathology occluded by retained fluid or luminal collapse. Matching corresponding endoluminal surface locations with the patient in the prone and supine positions is therefore an essential aspect of interpretation by radiologists; however, interpretation can be difficult and time consuming due to the considerable colonic deformations that occur during repositioning. Hence, a method for automated registration has the potential to improve efficiency and diagnostic accuracy. I propose a novel method to establish correspondence between prone and supine CT colonography acquisitions automatically. The problem is first simplified by detecting haustral folds which are elongated ridgelike endoluminal structures and can be identified by curvature based measurements. These are subsequently matched using appearance based features, and their relative geometric relationships. It is shown that these matches can be used to find correspondence along the full length of the colon, but may also be used in conjunction with other registration methods to achieve a more robust and accurate result, explicitly addressing the problem of colonic collapse. The potential clinical value of this method has been assessed in an external clinical validation, and the application to follow-up CTC surveillance has been investigated. MRI has recently been applied as a tool to quantitatively evaluate the therapeutic response to therapy in patients with Crohn's disease, and is the preferred choice for repeated imaging. A primary biomarker for this evaluation is the measurement of variations of bowel wall thickness on changing from the active phase of the disease to remission; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. I propose a novel method which will automatically track sections of colon, by estimating the positions of elliptical cross sections. Subsequently, estimation of the positions of the inner and outer bowel walls are made based on image gradient information and therefore a thickness measurement value can be extracted

    External Clinical Validation of Prone and Supine CT Colonography Registration

    Get PDF
    This paper provides an external validation of a prone-supine registration algorithm for CT colonography (CTC). A validation sample of 49 patient cases with 66 polyps (6 to 30 mm) was selected from a publicly available, anonymized CTC archive. To enhance generalizability, no case was excluded due to poor preparation or inadequate distension. Corresponding prone and supine polyp coordinates were recorded and the endoluminal surfaces registered: a Markov Random Field technique was used to find feature matches between prone/supine acquisitions and following mapping of the endoluminal surface to a cylinder, dense surface correspondence was achieved via cylindrical non-rigid registration. The polyp registration error was determined and a subjective assessment of registration made for 2D slice-based and 3D endoluminal data display using a pre-specified scoring system. Results were compared to using “normalized distance along the colon centerline” (NDACC) which approximates to the method currently employed to match colonic positions using proprietary CT colonography interpretation software. Registration was possible in all 49 cases. Overall mean 3D polyp registration error was significantly smaller with 19.9 mm in comparison to 27.7 mm using NDACC (p=0.001). 82.7% of polyp matches were defined as “successful” in comparison to 37.1% using NDACC according to the pre-specified criteria. Similarly, using 2D visualization, 62.1% registrations were “successful” and only 22.7% using NDACC. Full surface-based prone-to-supine registration can successfully map the location of a polyp identified on one acquisition to the corresponding endoluminal surface in the opposing acquisition, greatly facilitating polyp matching and aiding interpretation. Our method compares favorably to using NDACC

    Facilitating Colorectal Cancer Diagnosis with Computed Tomographic Colonography

    Get PDF
    Computed tomographic colonography (CTC) is a diagnostic technique involving helical volume acquisition of the cleansed, distended colorectum to detect colorectal cancer or potentially premalignant polyps. This Thesis summarises the evidence base, identifies areas in need of further research, quantifies sources of bias and presents novel techniques to facilitate colorectal cancer diagnosis using CTC. CTC literature is reviewed to justify the rationale for current implementation and to identify fruitful areas for research. This confirms excellent diagnostic performance can be attained providing CTC is interpreted by trained, experienced observers employing state-of-the-art implementation. The technique is superior to barium enema and consequently, it has been embraced by radiologists, clinicians and health policy-makers. Factors influencing generalisability of CTC research are investigated, firstly with a survey of European educational workshop participants which revealed limited CTC experience and training, followed by a systematic review exploring bias in research studies of diagnostic test accuracy which established that studies focussing on these aspects were lacking. Experiments to address these sources of bias are presented, using novel methodology: Conjoint analysis is used to ascertain patients‘ and clinicians’ attitudes to false-positive screening diagnoses, showing that both groups overwhelmingly value sensitivity over specificity. The results inform a weighted statistical analysis for CAD which is applied to the results of two previous studies showing the incremental benefit is significantly higher for novices than experienced readers. We have employed eye-tracking technology to establish the visual search patterns of observers reading CTC, demonstrated feasibility and developed metrics for analysis. We also describe development and validation of computer software to register prone and supine endoluminal surface locations demonstrating accurate matching of corresponding points when applied to a phantom and a generalisable, publically available, CTC database. Finally, areas in need of future development are suggested

    Learning-based depth and pose prediction for 3D scene reconstruction in endoscopy

    Get PDF
    Colorectal cancer is the third most common cancer worldwide. Early detection and treatment of pre-cancerous tissue during colonoscopy is critical to improving prognosis. However, navigating within the colon and inspecting the endoluminal tissue comprehensively are challenging, and success in both varies based on the endoscopist's skill and experience. Computer-assisted interventions in colonoscopy show much promise in improving navigation and inspection. For instance, 3D reconstruction of the colon during colonoscopy could promote more thorough examinations and increase adenoma detection rates which are associated with improved survival rates. Given the stakes, this thesis seeks to advance the state of research from feature-based traditional methods closer to a data-driven 3D reconstruction pipeline for colonoscopy. More specifically, this thesis explores different methods that improve subtasks of learning-based 3D reconstruction. The main tasks are depth prediction and camera pose estimation. As training data is unavailable, the author, together with her co-authors, proposes and publishes several synthetic datasets and promotes domain adaptation models to improve applicability to real data. We show, through extensive experiments, that our depth prediction methods produce more robust results than previous work. Our pose estimation network trained on our new synthetic data outperforms self-supervised methods on real sequences. Our box embeddings allow us to interpret the geometric relationship and scale difference between two images of the same surface without the need for feature matches that are often unobtainable in surgical scenes. Together, the methods introduced in this thesis help work towards a complete, data-driven 3D reconstruction pipeline for endoscopy

    Efficiency in colonoscopy

    Get PDF
    Global trends, including demographic changes, are significantly increasing the demand and cost of healthcare. Endoscopy services are no exception and, even before the Covid-19 pandemic, significant pressure resulted in many units failing to meet cancer wait targets. The need to improve efficiency has never been greater and particularly so for colonoscopy which significantly reduces morbidity and mortality from colorectal cancer. Today, advances in colonoscope technologies and emergence of artificial intelligence offer the potential for improved colonoscopy practice. The aim of this thesis is to explore how efficiency in colonoscopy can be enhanced throughout the patient pathway. Five major studies were performed evaluating bowel preparation (CLEANSE), polyp detection (AI-DETECT), optical diagnosis (DISCARD3), insertion technique (WAVE) and post-colonoscopy colorectal cancer (AI-DETECT). CLEANSE is an evaluation of a novel low-volume same-day bowel preparation regime (Plenvu) and showed this offers a more efficient bowel cleansing option than standard regimens. AI-DETECT is a randomised study evaluating a computer-aided detection (CADe) system (GI Genius) and showed a borderline significant improvement in polyp detection is achieved amongst high performing endoscopists. DISCARD3 is a major evaluation of optical diagnosis with a “resect and discard” strategy exploring the learning curve, quality assurance process, causes of error and economic impact. This study shows such a strategy is feasible and safe and could potentially be implemented with a quality assurance process in place within the English Bowel Cancer Screening Progamme (BCSP). WAVE is a randomised study evaluating colonoscopy insertion technique. This showed a ‘hybrid’ insertion technique is more efficient than a water-exchange colonoscopy technique. REFLECT is a retrospective evaluation of post-colonoscopy colorectal cancer cases identified at national level and showed after local root cause analysis a significant proportion were in fact detected cancers. These studies provide valuable insights that we hope will ultimately lead to more efficient colonoscopy whilst maintaining quality and enhancing patient care.Open Acces
    corecore