360 research outputs found

    A multivariate Gnedenko law of large numbers

    Full text link
    We show that the convex hull of a large i.i.d. sample from an absolutely continuous log-concave distribution approximates a predetermined convex body in the logarithmic Hausdorff distance and in the Banach-Mazur distance. For log-concave distributions that decay super-exponentially, we also have approximation in the Hausdorff distance. These results are multivariate versions of the Gnedenko law of large numbers, which guarantees concentration of the maximum and minimum in the one-dimensional case. We provide quantitative bounds in terms of the number of points and the dimension of the ambient space.Comment: Published in at http://dx.doi.org/10.1214/12-AOP804 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

    Full text link
    Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixed-integer program with few (even constantly many) integer variables. This is in stark contrast to linear formulations, where recent breakthroughs in the field of extended formulations have shown that many polytopes associated to classical combinatorial optimization problems do not even admit approximate extended formulations of sub-exponential size. We provide a general framework for lifting inapproximability results of extended formulations to the setting of mixed-integer extended formulations, and obtain almost tight lower bounds on the number of integer variables needed to describe a variety of classical combinatorial optimization problems. Among the implications we obtain, we show that any mixed-integer extended formulation of sub-exponential size for the matching polytope, cut polytope, traveling salesman polytope or dominant of the odd-cut polytope, needs Ω(n/logn) \Omega(n/\log n) many integer variables, where n n is the number of vertices of the underlying graph. Conversely, the above-mentioned polyhedra admit polynomial-size mixed-integer formulations with only O(n) O(n) or O(nlogn) O(n \log n) (for the traveling salesman polytope) many integer variables. Our results build upon a new decomposition technique that, for any convex set C C , allows for approximating any mixed-integer description of C C by the intersection of C C with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    On the Combinatorial Complexity of Approximating Polytopes

    Get PDF
    Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete geometry. A convex body KK of diameter diam(K)\mathrm{diam}(K) is given in Euclidean dd-dimensional space, where dd is a constant. Given an error parameter ε>0\varepsilon > 0, the objective is to determine a polytope of minimum combinatorial complexity whose Hausdorff distance from KK is at most εdiam(K)\varepsilon \cdot \mathrm{diam}(K). By combinatorial complexity we mean the total number of faces of all dimensions of the polytope. A well-known result by Dudley implies that O(1/ε(d1)/2)O(1/\varepsilon^{(d-1)/2}) facets suffice, and a dual result by Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the total combinatorial complexity. We show that there exists an approximating polytope whose total combinatorial complexity is O~(1/ε(d1)/2)\tilde{O}(1/\varepsilon^{(d-1)/2}), where O~\tilde{O} conceals a polylogarithmic factor in 1/ε1/\varepsilon. This is a significant improvement upon the best known bound, which is roughly O(1/εd2)O(1/\varepsilon^{d-2}). Our result is based on a novel combination of both old and new ideas. First, we employ Macbeath regions, a classical structure from the theory of convexity. The construction of our approximating polytope employs a new stratified placement of these regions. Second, in order to analyze the combinatorial complexity of the approximating polytope, we present a tight analysis of a width-based variant of B\'{a}r\'{a}ny and Larman's economical cap covering. Finally, we use a deterministic adaptation of the witness-collector technique (developed recently by Devillers et al.) in the context of our stratified construction.Comment: In Proceedings of the 32nd International Symposium Computational Geometry (SoCG 2016) and accepted to SoCG 2016 special issue of Discrete and Computational Geometr
    corecore