410 research outputs found

    Hashing Garbled Circuits for Free

    Get PDF
    We introduce {\em Free Hash}, a new approach to generating Garbled Circuit (GC) hash at no extra cost during GC generation. This is in contrast with state-of-the-art approaches, which hash GCs at computational cost of up to 6×6\times of GC generation. GC hashing is at the core of the cut-and-choose technique of GC-based secure function evaluation (SFE). Our main idea is to intertwine hash generation/verification with GC generation and evaluation. While we {\em allow} an adversary to generate a GC \widehat{\GC} whose hash collides with an honestly generated \GC, such a \widehat{\GC} w.h.p. will fail evaluation and cheating will be discovered. Our GC hash is simply a (slightly modified) XOR of all the gate table rows of GC. It is compatible with Free XOR and half-gates garbling, and can be made to work with many cut-and-choose SFE protocols. With today\u27s network speeds being not far behind hardware-assisted fixed-key garbling throughput, eliminating the GC hashing cost will significantly improve SFE performance. Our estimates show substantial cost reduction in typical settings, and up to factor 66 in specialized applications relying on GC hashes. We implemented GC hashing algorithm and report on its performance

    SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search

    Get PDF
    The kk-Nearest Neighbor Search (kk-NNS) is the backbone of several cloud-based services such as recommender systems, face recognition, and database search on text and images. In these services, the client sends the query to the cloud server and receives the response in which case the query and response are revealed to the service provider. Such data disclosures are unacceptable in several scenarios due to the sensitivity of data and/or privacy laws. In this paper, we introduce SANNS, a system for secure kk-NNS that keeps client's query and the search result confidential. SANNS comprises two protocols: an optimized linear scan and a protocol based on a novel sublinear time clustering-based algorithm. We prove the security of both protocols in the standard semi-honest model. The protocols are built upon several state-of-the-art cryptographic primitives such as lattice-based additively homomorphic encryption, distributed oblivious RAM, and garbled circuits. We provide several contributions to each of these primitives which are applicable to other secure computation tasks. Both of our protocols rely on a new circuit for the approximate top-kk selection from nn numbers that is built from O(n+k2)O(n + k^2) comparators. We have implemented our proposed system and performed extensive experimental results on four datasets in two different computation environments, demonstrating more than 1831×18-31\times faster response time compared to optimally implemented protocols from the prior work. Moreover, SANNS is the first work that scales to the database of 10 million entries, pushing the limit by more than two orders of magnitude.Comment: 18 pages, to appear at USENIX Security Symposium 202

    When private set intersection meets big data : an efficient and scalable protocol

    Get PDF
    Large scale data processing brings new challenges to the design of privacy-preserving protocols: how to meet the increasing requirements of speed and throughput of modern applications, and how to scale up smoothly when data being protected is big. Efficiency and scalability become critical criteria for privacy preserving protocols in the age of Big Data. In this paper, we present a new Private Set Intersection (PSI) protocol that is extremely efficient and highly scalable compared with existing protocols. The protocol is based on a novel approach that we call oblivious Bloom intersection. It has linear complexity and relies mostly on efficient symmetric key operations. It has high scalability due to the fact that most operations can be parallelized easily. The protocol has two versions: a basic protocol and an enhanced protocol, the security of the two variants is analyzed and proved in the semi-honest model and the malicious model respectively. A prototype of the basic protocol has been built. We report the result of performance evaluation and compare it against the two previously fastest PSI protocols. Our protocol is orders of magnitude faster than these two protocols. To compute the intersection of two million-element sets, our protocol needs only 41 seconds (80-bit security) and 339 seconds (256-bit security) on moderate hardware in parallel mode

    Secure approximation of edit distance on genomic data

    Get PDF
    © 2017 The Author(s). Background: Edit distance is a well established metric to quantify how dissimilar two strings are by counting the minimum number of operations required to transform one string into the other. It is utilized in the domain of human genomic sequence similarity as it captures the requirements and leads to a better diagnosis of diseases. However, in addition to the computational complexity due to the large genomic sequence length, the privacy of these sequences are highly important. As these genomic sequences are unique and can identify an individual, these cannot be shared in a plaintext. Methods: In this paper, we propose two different approximation methods to securely compute the edit distance among genomic sequences. We use shingling, private set intersection methods, the banded alignment algorithm, and garbled circuits to implement these methods. We experimentally evaluate these methods and discuss both advantages and limitations. Results: Experimental results show that our first approximation method is fast and achieves similar accuracy compared to existing techniques. However, for longer genomic sequences, both the existing techniques and our proposed first method are unable to achieve a good accuracy. On the other hand, our second approximation method is able to achieve higher accuracy on such datasets. However, the second method is relatively slower than the first proposed method. Conclusion: The proposed algorithms are generally accurate, time-efficient and can be applied individually and jointly as they have complimentary properties (runtime vs. accuracy) on different types of datasets

    Secure and Scalable Circuit-based Protocol for Multi-Party Private Set Intersection

    Full text link
    We propose a novel protocol for computing a circuit which implements the multi-party private set intersection functionality (PSI). Circuit-based approach has advantages over using custom protocols to achieve this task, since many applications of PSI do not require the computation of the intersection itself, but rather specific functional computations over the items in the intersection. Our protocol represents the pioneering circuit-based multi-party PSI protocol, which builds upon and optimizes the two-party SCS \cite{huang2012private} protocol. By using secure computation between two parties, our protocol sidesteps the complexities associated with multi-party interactions and demonstrates good scalability. In order to mitigate the high overhead associated with circuit-based constructions, we have further enhanced our protocol by utilizing simple hashing scheme and permutation-based hash functions. These tricks have enabled us to minimize circuit size by employing bucketing techniques while simultaneously attaining noteworthy reductions in both computation and communication expenses

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Secure Computation Protocols for Privacy-Preserving Machine Learning

    Get PDF
    Machine Learning (ML) profitiert erheblich von der Verfügbarkeit großer Mengen an Trainingsdaten, sowohl im Bezug auf die Anzahl an Datenpunkten, als auch auf die Anzahl an Features pro Datenpunkt. Es ist allerdings oft weder möglich, noch gewollt, mehr Daten unter zentraler Kontrolle zu aggregieren. Multi-Party-Computation (MPC)-Protokolle stellen eine Lösung dieses Dilemmas in Aussicht, indem sie es mehreren Parteien erlauben, ML-Modelle auf der Gesamtheit ihrer Daten zu trainieren, ohne die Eingabedaten preiszugeben. Generische MPC-Ansätze bringen allerdings erheblichen Mehraufwand in der Kommunikations- und Laufzeitkomplexität mit sich, wodurch sie sich nur beschränkt für den Einsatz in der Praxis eignen. Das Ziel dieser Arbeit ist es, Privatsphäreerhaltendes Machine Learning mittels MPC praxistauglich zu machen. Zuerst fokussieren wir uns auf zwei Anwendungen, lineare Regression und Klassifikation von Dokumenten. Hier zeigen wir, dass sich der Kommunikations- und Rechenaufwand erheblich reduzieren lässt, indem die aufwändigsten Teile der Berechnung durch Sub-Protokolle ersetzt werden, welche auf die Zusammensetzung der Parteien, die Verteilung der Daten, und die Zahlendarstellung zugeschnitten sind. Insbesondere das Ausnutzen dünnbesetzter Datenrepräsentationen kann die Effizienz der Protokolle deutlich verbessern. Diese Beobachtung verallgemeinern wir anschließend durch die Entwicklung einer Datenstruktur für solch dünnbesetzte Daten, sowie dazugehöriger Zugriffsprotokolle. Aufbauend auf dieser Datenstruktur implementieren wir verschiedene Operationen der Linearen Algebra, welche in einer Vielzahl von Anwendungen genutzt werden. Insgesamt zeigt die vorliegende Arbeit, dass MPC ein vielversprechendes Werkzeug auf dem Weg zu Privatsphäre-erhaltendem Machine Learning ist, und die von uns entwickelten Protokolle stellen einen wesentlichen Schritt in diese Richtung dar.Machine learning (ML) greatly benefits from the availability of large amounts of training data, both in terms of the number of samples, and the number of features per sample. However, aggregating more data under centralized control is not always possible, nor desirable, due to security and privacy concerns, regulation, or competition. Secure multi-party computation (MPC) protocols promise a solution to this dilemma, allowing multiple parties to train ML models on their joint datasets while provably preserving the confidentiality of the inputs. However, generic approaches to MPC result in large computation and communication overheads, which limits the applicability in practice. The goal of this thesis is to make privacy-preserving machine learning with secure computation practical. First, we focus on two high-level applications, linear regression and document classification. We show that communication and computation overhead can be greatly reduced by identifying the costliest parts of the computation, and replacing them with sub-protocols that are tailored to the number and arrangement of parties, the data distribution, and the number representation used. One of our main findings is that exploiting sparsity in the data representation enables considerable efficiency improvements. We go on to generalize this observation, and implement a low-level data structure for sparse data, with corresponding secure access protocols. On top of this data structure, we develop several linear algebra algorithms that can be used in a wide range of applications. Finally, we turn to improving a cryptographic primitive named vector-OLE, for which we propose a novel protocol that helps speed up a wide range of secure computation tasks, within private machine learning and beyond. Overall, our work shows that MPC indeed offers a promising avenue towards practical privacy-preserving machine learning, and the protocols we developed constitute a substantial step in that direction
    corecore