9 research outputs found

    Minimal Information Exchange for Image Registration

    Get PDF
    In this paper we consider the problem of estimating the relative shift, scale and rotation between two images X and Y that are available to two users, respectively A and B, connected through a channel. User A is asked to send B some specifically selected minimal description of image X that will allow B to recover the relative shift, rotation and scale between X and Y. The approach is based on a distributed encoding technique applied to the Discrete Fourier Transform phase and to the Fourier-Mellin transform of the images

    Flexible distribution of complexity by hybrid predictive-distributed video coding

    Get PDF
    There is currently limited flexibility for distributing complexity in a video coding system. While rate-distortion-complexity (RDC) optimization techniques have been proposed for conventional predictive video coding with encoder-side motion estimation, they fail to offer true flexible distribution of complexity between encoder and decoder since the encoder is assumed to have always more computational resources available than the decoder. On the other hand, distributed video coding solutions with decoder-side motion estimation have been proposed, but hardly any RDC optimized systems have been developed. To offer more flexibility for video applications involving multi-tasking or battery-constrained devices, in this paper, we propose a codec combining predictive video coding concepts and techniques from distributed video coding and show the flexibility of this method in distributing complexity. We propose several modes to code frames, and provide complexity analysis illustrating encoder and decoder computational complexity for each mode. Rate distortion results for each mode indicate that the coding efficiency is similar. We describe a method to choose which mode to use for coding each inter frame, taking into account encoder and decoder complexity constraints, and illustrate how complexity is distributed more flexibly

    Hash-based motion modeling in Wyner-Ziv video coding

    No full text

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii
    corecore