437 research outputs found

    Information Exchange Limits in Cooperative MIMO Networks

    Full text link
    Concurrent presence of inter-cell and intra-cell interferences constitutes a major impediment to reliable downlink transmission in multi-cell multiuser networks. Harnessing such interferences largely hinges on two levels of information exchange in the network: one from the users to the base-stations (feedback) and the other one among the base-stations (cooperation). We demonstrate that exchanging a finite number of bits across the network, in the form of feedback and cooperation, is adequate for achieving the optimal capacity scaling. We also show that the average level of information exchange is independent of the number of users in the network. This level of information exchange is considerably less than that required by the existing coordination strategies which necessitate exchanging infinite bits across the network for achieving the optimal sum-rate capacity scaling. The results provided rely on a constructive proof.Comment: 35 pages, 5 figur

    Robust Successive Compute-and-Forward over Multi-User Multi-Relay Networks

    Full text link
    This paper develops efficient Compute-and-forward (CMF) schemes in multi-user multi-relay networks. To solve the rank failure problem in CMF setups and to achieve full diversity of the network, we introduce two novel CMF methods, namely, extended CMF and successive CMF. The former, having low complexity, is based on recovering multiple equations at relays. The latter utilizes successive interference cancellation (SIC) to enhance the system performance compared to the state-of-the-art schemes. Both methods can be utilized in a network with different number of users, relays, and relay antennas, with negligible feedback channels or signaling overhead. We derive new concise formulations and explicit framework for the successive CMF method as well as an approach to reduce its computational complexity. Our theoretical analysis and computer simulations demonstrate the superior performance of our proposed CMF methods over the conventional schemes. Furthermore, based on our simulation results, the successive CMF method yields additional signal-to-noise ratio gains and shows considerable robustness against channel estimation error, compared to the extended CMF method.Comment: 44 pages, 10 figures, 1 table, accepted to be published in IEEE Trans. on Vehicular Tec

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio
    • …
    corecore