180 research outputs found

    Algorithms and Hardware Co-Design of HEVC Intra Encoders

    Get PDF
    Digital video is becoming extremely important nowadays and its importance has greatly increased in the last two decades. Due to the rapid development of information and communication technologies, the demand for Ultra-High Definition (UHD) video applications is becoming stronger. However, the most prevalent video compression standard H.264/AVC released in 2003 is inefficient when it comes to UHD videos. The increasing desire for superior compression efficiency to H.264/AVC leads to the standardization of High Efficiency Video Coding (HEVC). Compared with the H.264/AVC standard, HEVC offers a double compression ratio at the same level of video quality or substantial improvement of video quality at the same video bitrate. Yet, HE-VC/H.265 possesses superior compression efficiency, its complexity is several times more than H.264/AVC, impeding its high throughput implementation. Currently, most of the researchers have focused merely on algorithm level adaptations of HEVC/H.265 standard to reduce computational intensity without considering the hardware feasibility. What’s more, the exploration of efficient hardware architecture design is not exhaustive. Only a few research works have been conducted to explore efficient hardware architectures of HEVC/H.265 standard. In this dissertation, we investigate efficient algorithm adaptations and hardware architecture design of HEVC intra encoders. We also explore the deep learning approach in mode prediction. From the algorithm point of view, we propose three efficient hardware-oriented algorithm adaptations, including mode reduction, fast coding unit (CU) cost estimation, and group-based CABAC (context-adaptive binary arithmetic coding) rate estimation. Mode reduction aims to reduce mode candidates of each prediction unit (PU) in the rate-distortion optimization (RDO) process, which is both computation-intensive and time-consuming. Fast CU cost estimation is applied to reduce the complexity in rate-distortion (RD) calculation of each CU. Group-based CABAC rate estimation is proposed to parallelize syntax elements processing to greatly improve rate estimation throughput. From the hardware design perspective, a fully parallel hardware architecture of HEVC intra encoder is developed to sustain UHD video compression at 4K@30fps. The fully parallel architecture introduces four prediction engines (PE) and each PE performs the full cycle of mode prediction, transform, quantization, inverse quantization, inverse transform, reconstruction, rate-distortion estimation independently. PU blocks with different PU sizes will be processed by the different prediction engines (PE) simultaneously. Also, an efficient hardware implementation of a group-based CABAC rate estimator is incorporated into the proposed HEVC intra encoder for accurate and high-throughput rate estimation. To take advantage of the deep learning approach, we also propose a fully connected layer based neural network (FCLNN) mode preselection scheme to reduce the number of RDO modes of luma prediction blocks. All angular prediction modes are classified into 7 prediction groups. Each group contains 3-5 prediction modes that exhibit a similar prediction angle. A rough angle detection algorithm is designed to determine the prediction direction of the current block, then a small scale FCLNN is exploited to refine the mode prediction

    Low-Complexity and Hardware-Friendly H.265/HEVC Encoder for Vehicular Ad-Hoc Networks

    Get PDF
    Real-time video streaming over vehicular ad-hoc networks (VANETs) has been considered as a critical challenge for road safety applications. The purpose of this paper is to reduce the computation complexity of high efficiency video coding (HEVC) encoder for VANETs. Based on a novel spatiotemporal neighborhood set, firstly the coding tree unit depth decision algorithm is presented by controlling the depth search range. Secondly, a Bayesian classifier is used for the prediction unit decision for inter-prediction, and prior probability value is calculated by Gibbs Random Field model. Simulation results show that the overall algorithm can significantly reduce encoding time with a reasonably low loss in encoding efficiency. Compared to HEVC reference software HM16.0, the encoding time is reduced by up to 63.96%, while the Bjontegaard delta bit-rate is increased by only 0.76–0.80% on average. Moreover, the proposed HEVC encoder is low-complexity and hardware-friendly for video codecs that reside on mobile vehicles for VANETs

    A Motion Estimation based Algorithm for Encoding Time Reduction in HEVC

    Get PDF
    High Efficiency Video Coding (HEVC) is a video compression standard that offers 50% more efficiency at the expense of high encoding time contrasted with the H.264 Advanced Video Coding (AVC) standard. The encoding time must be reduced to satisfy the needs of real-time applications. This paper has proposed the Multi- Level Resolution Vertical Subsampling (MLRVS) algorithm to reduce the encoding time. The vertical subsampling minimizes the number of Sum of Absolute Difference (SAD) computations during the motion estimation process. The complexity reduction algorithm is also used for fast coding the coefficients of the quantised block using a flag decision. Two distinct search patterns are suggested: New Cross Diamond Diamond (NCDD) and New Cross Diamond Hexagonal (NCDH) search patterns, which reduce the time needed to locate the motion vectors. In this paper, the MLRVS algorithm with NCDD and MLRVS algorithm with NCDH search patterns are simulated separately and analyzed. The results show that the encoding time of the encoder is decreased by 55% with MLRVS algorithm using NCDD search pattern and 56% with MLRVS using NCDH search pattern compared to HM16.5 with Test Zone (TZ) search algorithm. These results are achieved with a slight increase in bit rate and negligible deterioration in output video quality

    Cost and Coding Efficient Motion Estimation Design Considerations for High Efficiency Video Coding (HEVC) Standard

    Get PDF
    This paper focuses on motion estimation engine design in future high-efficiency video coding (HEVC) encoders. First, a methodology is explained to analyze hardware implementation cost in terms of hardware area, memory size and memory bandwidth for various possible motion estimation engine designs. For 11 different configurations, hardware cost as well as the coding efficiency are quantified and are compared through a graphical analysis to make design decisions. It has been shown that using smaller block sizes (e.g. 4 × 4) imposes significantly larger hardware requirements at the expense of modest improvements in coding efficiency. Secondly, based on the analysis on various configurations, one configuration is chosen and algorithm improvements are presented to further reduce hardware implementation cost of the selected configuration. Overall, the proposed changes provide 56 × on-chip bandwidth, 151 × off-chip bandwidth, 4.3 × core area and 4.5 × on-chip memory area savings when compared to the hardware implementation of the HM-3.0 design.Texas Instruments Incorporate

    Reducing Complexity on Coding Unit Partitioning in Video Coding: A Review

    Get PDF
    In this article, we present a survey on the low complexity video coding on a coding unit (CU) partitioning with the aim for researchers to understand the foundation of video coding and fast CU partition algorithms. Firstly, we introduce video coding technologies by explaining the trending standards and reference models. They are High Efficiency Video Coding (HEVC), Joint Exploration Test Model (JEM), and VVC, which introduce novel quadtree (QT), quadtree plus binary tree (QTBT), quadtree plus multi-type tree (QTMT) block partitioning with expensive computation complexity, respectively. Secondly, we present a comprehensive explanation of the time-consuming CU partitioning, especially for researchers who are not familiar with CU partitioning. The newer the video coding standard, the more flexible partition structures and the higher the computational complexity. Then, we provide a deep and comprehensive survey of recent and state-of-the-art researches. Finally, we include a discussion section about the advantages and disadvantage of heuristic based and learning based approaches for the readers to explore quickly the performance of the existing algorithms and their limitations. To our knowledge, it is the first comprehensive survey to provide sufficient information about fast CU partitioning on HEVC, JEM, and VVC
    corecore