
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— This paper focuses on motion estimation

engine design in future high-efficiency video coding

(HEVC) encoders. First, a methodology is explained to

analyze hardware implementation cost in terms of

hardware area, memory size and memory bandwidth for

various possible motion estimation engine designs. For 11

different configurations, hardware cost as well as the

coding efficiency are quantified and are compared

through a graphical analysis to make design decisions. It

has been shown that using smaller block sizes (e.g. 4×4)

imposes significantly larger hardware requirements at the

expense of modest improvements in coding

efficiency. Secondly, based on the analysis on various

configurations, one configuration is chosen and algorithm

improvements are presented to further reduce hardware

implementation cost of the selected configuration. Overall,

the proposed changes provide 56x on-chip bandwidth,

151x off-chip bandwidth, 4.3x core area and 4.5x on-chip

memory area savings when compared to the hardware

implementation of the HM-3.0 design.

Index Terms— Hardware implementation cost, HEVC, motion

estimation, search algorithm.

I. INTRODUCTION

URING the past decade, the amount of video content

available on the Internet has grown significantly. With the

introduction of 3G/4G mobile broadband technology,

consumers can access this content from their mobile devices.

Hence, by 2015, 70% of the mobile data traffic is expected to

be attributed to video content [1]. In this context, standards

with high coding efficiency are crucial for lowering

Copyright (c) 2013 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org

Funding is provided by Texas Instruments.

M. E. Sinangil is with Nvidia, Bedford, MA 01730 USA (e-mail:

msinangil@nvidia.com).

V. Sze and M. Zhou are with Texas Instruments, Dallas, TX 75243 USA

(e-mail: sze@ti.com and zhou@ti.com).

A. P. Chandrakasan is with the Electrical Engineering and Computer

Science Department, Massachusetts Institute of Technology, Cambridge, MA

02139 USA, (e-mail: anantha@mtl.mit.edu).

transmission and storage costs.

Recent video coding standards such as AVC/H.264

provided significant coding efficiency gain over their

predecessors. For example, AVC/H.264 provided 50% coding

efficiency gain over MPEG-2 [2]. However, this improvement

comes at the expense of higher hardware cost due to more

complex coding tools as AVC/H.264 has 4× more hardware

complexity with respect to MPEG-2 [2]. The trend for

increasing hardware complexity over the years can be seen in

Fig. 1 where relative complexity of the video core of a mobile

applications processor is plotted over the years from 2004 to

2020 [3]. This figure reflects the increased complexity due to

 more advanced video coding standards and

 the necessity to employ a more dedicated hardware

to meet performance requirements.

By the year 2020, the complexity of a video core is

expected to be 10× larger than today’s demands [3].

Consequently, it is very critical to consider the hardware

implementation cost in terms of hardware area, memory area

(based on the capacity and the type of the memory) and

memory bandwidth (rate at which data is accessed) of video

codecs especially for mobile devices.

A. High-Efficiency Video Coding (HEVC)

High-Efficiency Video Coding (HEVC) is a new video

compression standard being standardized by the JCT-VC (joint

collaborative team on video coding) established by ISO/IEO

MPEG and ITU-T [4]. HEVC achieves 50% coding gain over

AVC/H.264 High Profile [5]. For this purpose, several coding

efficiency enhancement tools have been adopted to this new

standard. Table I provides a comparison between some of the

tools used in AVC/H.264 and HEVC standards.

One of the main differences of HEVC from its predecessor

AVC/H.264 is the adoption of coding quad-tree structure to

provide a modular coding structure. In HEVC a frame is

divided into largest coding unit (LCU) and an LCU is further

divided into coding units (CU) in a quad-tree structure. LCU

size can be as large as 64×64 pixels and smallest coding unit

(SCU) size can be as small as 8×8. This allows the selection of

a different coding structure based on various factors such as

Cost and Coding Efficient Motion Estimation

Design Considerations for High Efficiency

Video Coding (HEVC) Standard

Mahmut E. Sinangil, Member, IEEE, Vivienne Sze, Member, IEEE, Minhua Zhou, Senior Member,

IEEE, Anantha P. Chandrakasan, Fellow, IEEE

D

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78061179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pubs-permissions@ieee.org

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

input video resolutions and other properties of a video

sequence.

Fig. 1. Relative complexity of video core over the years for a mobile

applications processor [3]. From 2012 to 2020, video core complexity is

expected to increase by 10×.

Tool AVC/H.264 HEVC

Coding Quad-Tree Structure No Yes

Largest Coding Unit Size 16×16 64×64

Asymmetric Motion Partitions No Yes

Inter-prediction Merge Mode No Yes

Transform Size 4×4 to 8×8 4×4 to 32×32

Intra-prediction Angular

Directions
8 directions 33 directions

Table I. Comparison of some tools in AVC/H.264 High Profile and next

generation video standard, HEVC. More complex HEVC tools require more

complex hardware.

If a CU is not divided into smaller CUs, it is predicted with

one of several prediction unit (PU) types. Either inter-

prediction or intra-prediction is used to represent a CU and PU

types determine which prediction type will be used to code a

particular CU. Fig. 2 shows the processing order of 8×8 CUs

in a 16×16 CU and the PU order within an 8×8 CU. For inter-

prediction, PU types can be 2N×2N, 2N×N, N×2N or N×N

where 2N×2N corresponds to the size of the CU. Motion

vectors for inter-prediction are determined through motion

estimation. If asymmetric motion partitions (AMP) are used,

non-square PUs for inter-prediction also include 2N×nU,

2N×nD, nL×2N and nR×2N. It should be noted here that AMP

partitions are not included in the hardware cost and coding

efficiency analysis in this work but this analysis can be

extended to cover these partition types as well. N×N is only

used at the SCU level to avoid redundant representation. This

is because N×N PU of a 16×16 CU can be represented with

the 2N×2N PU at 8×8 CU level. This is true except for the

SCU level so N×N is only used in an SCU.

Fig. 2. Processing order for 8×8 CUs in a 16×16 CU is from A to D. For each
8×8 CU, PU types are also processed sequentially from 2N×2N to N×N.

Finally inside a PU type, processing order is from 1 to 4.

B. Motion Estimation in HEVC

Motion estimation (ME) is one of the most critical blocks in

video encoding in terms of implementation cost. Table II

shows specifications of various recently published video

encoders. It can be seen from Table II that ME accounts for a

large fraction of total encoder area.

Motion estimation in HEVC is block-based where block

sizes can be as large as 64×64 (LCU size) and as small as 4×4

(N×N PU in an 8×8 CU). A 64×64 LCU can be represented by

various combinations of CUs and PUs. For example, 64×64

LCU can be represented by a single 2N×2N PU or it can be

divided into 8×8 CUs where each CU is represented with four

4×4 blocks (N ×N PU type). In the former case, an LCU is

represented with a single motion vector pair (one vector for

horizontal displacement and one for vertical displacement) and

in the latter case, with 256 pairs. For an LCU with many

details, using smaller block sizes with separate vectors can

provide better compression. In contrast, for large and smooth

areas, using larger block sizes and fewer motion vectors can be

more efficient. Hence, supporting all block sizes provides the

highest flexibility and best coding efficiency but this also

results in highest hardware implementation cost.

In hardware implementations, fast search algorithms [10-11]

are widely used. These algorithms are extremely critical for the

complexity as they determine the number of calculations and

memory accesses which impact the area of hardware, its power

consumption and lastly its memory bandwidth requirement.

Moreover, the search algorithm’s performance also affects the

coding efficiency depending on how accurately this algorithm

finds the motion.

Work Standard Resolution Rate Area ME Area Frequency Power Process

 fps mm2 % MHz mW m

[6] AVC/H.264 1280x720 30 31.7 80 108 785 0.18

[7] MPEG4 640x480 30 7.7 55 28.5 18 0.18

[8] AVC/H.264 1280x720 30 18.5 54 108 183 0.13

[9] AVC/H.264 1920x1080 30 10.0 70 145 242 0.13

Table II. Comparison of previously published encoder chips. ME area is a significant portion of total chip area making ME a critical part of the encoder design.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Motion estimation is on the encoder side but a video

compression standard only defines the decoder side. Hence,

encoder side decisions can be different from one design to the

other as long as the output of the encoder is compliant with the

standard. The decisions made on the encoder side, however,

affects coding efficiency.

In this paper, the encoder implementation given in the HM

3.0 software [12] using common conditions (single reference

frame in each direction, fast motion search, no AMP and no

merge mode) is used as the reference point. It should be noted

that some of these modes (e.g. 4×4) is no longer supported in

HEVC but this work uses HM-3.0 as a baseline

implementation and results for the unsupported modes are kept

in the analysis to provide a reference to the readers.

This paper presents motion estimation design considerations

for HEVC standard with a focus on hardware implementation

trade-offs. For hardware cost, we considered on-chip hardware

and memory area as well as on-chip and off-chip bandwidth.

The rest of the paper is structured as follows. Section II

presents a hardware cost analysis for HEVC motion estimation

and investigates the hardware cost vs. coding efficiency trade-

off. Based on the results from Section II, Section III focuses

on one of the possible motion estimation architecture

configurations and this section talks about hardware-aware fast

search algorithm development. Furthermore, hardware

implementation details are presented in Section III. Lastly,

Section IV concludes the paper.

II. HARDWARE COST ANALYSIS FOR HEVC MOTION

ESTIMATION

HEVC reference software implementation (HM) is

completely sequential on the processing of the CUs and PUs

and consequently achieves highest coding efficiency. This is

mainly due to the dependency of one block’s cost calculations

on neighboring blocks’ motion information. Specifically,

advanced motion vector prediction (AMVP) calculation

requires the spatial as well as temporal neighbor information to

create a list of motion vector predictors. This list is used to

predict the motion vectors during motion search and signal the

final motion vectors once the motion search is concluded [13].

Fig. 3. Architecture for an HEVC motion estimation engine supporting all

block sizes from 64×64 to 4×4 (except AMP partitions). “PU Dec.” refers to

PU decision. This architecture allows sequential processing of smaller blocks

and can use exact motion information from neighboring blocks.

Hence, it is important to consider an architecture which is

capable of implementing this sequential processing so we can

quantify the hardware cost of realizing a motion estimation

engine providing a coding efficiency that is equivalent to

reference software.

Previous work [14-17] has discussed various simplifications

to allow search range and cost calculations across various

blocks to be shared in hardware. However, these

simplifications cause motion vector predictions to be

inaccurate and hence a degradation in coding efficiency.

This section presents an architecture that is capable of

processing CUs and PUs sequentially and performing motion

searches independently. Then, the hardware cost of HM’s fast

search algorithm is quantified with a methodology to estimate

area and bandwidth. Finally, a trade-off analysis is done that

compares different motion estimation configurations

supporting only a subset of all CU sizes and PU types in terms

of area, bandwidth and coding efficiency.

A. HEVC Motion Estimation Architecture

In hardware, HM’s sequential processing of CUs and PUs

requires separate and independent engines performing motion

search for different block sizes. Block sizes are determined by

the corresponding CU sizes and PU types. Fig. 3 shows an

HEVC motion estimation engine architecture supporting all

block sizes from 64x64 down to 4x4 except AMP partitions.

This architecture can be generalized to cover AMP partitions

as well. This architecture is designed to support real-time

video encoding with the specifications shown in Table III.

There are a total of 13 engines in the architecture in Fig. 3:

Three engines for each PU size (e.g. 32×32, 32×16 and 16×32

for the 32×32 CU) except for the 8×8 CU where there is a

fourth engine to support N×N (4×4) partition. Each engine

consists of blocks to perform AMVP list, integer motion

estimation (IME), fractional motion estimation (FME) and a

reference pixel buffer.

Fig. 4. Processing order of CUs and PU types inside CUs for the architecture

in Fig. 3. For a 64×64 LCU, costs for smaller blocks are combined and then

compared to larger block sizes to find the best combination of blocks

providing the smallest cost for the entire 64×64 LCU.

The processing order for one 64×64 LCU is shown in Fig.

4. Motion searches are performed for four 4×4 blocks, two

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

8×4 and 4×8 blocks and one 8×8 block. Then a PU decision is

made to decide which PU type provides the smallest cost for

the first 8×8 CU. Similarly, three more 8×8 CUs are processed

sequentially and their costs are output to CU & Mode Decision

block. During this time, PU decision for the first 16×16 CU is

also finished and a decision can be done for the first 16×16

CU. This continues until an entire 64×64 LCU is processed by

all engines. It should be noted that intra/inter decision is done

at the CU level and hence costs associated with intra

prediction are being provided as external inputs to make an

intra/inter decision. It is also important to note that, for a fixed

throughput constraint, cycle budget to process a smaller block

size is tighter. Hence, data bandwidth requirements can be

significantly larger for smaller block sizes compared to larger

block sizes. Consequently, smaller block sizes impose a larger

hardware cost.

B. Overview of Hardware Cost Analysis

The following part of this paper will be talking about the

hardware cost analysis of HEVC motion estimation module.

The top level architecture given in the previous section will be

used for this analysis and the algorithms used in HM-3.0

implementation will be analyzed.

Specifications of an HEVC Encoder

Maximum Resolution 4K×2K i.e. 3840×2160

Maximum Frame Rate at 4K×2K 30

LCU Size 64×64

of Ref. Frames 1 in each direction

Search Range 64 in x- and y-dir.

Frequency of Operation 200MHz

Process Technology 65nm Low-Power CMOS

Table III. Specifications for an HEVC encoder considered in this work. The

design can support real-time encoding at 4K×2K at 30fps with a clock

frequency of 200MHz.

The specifications of a target encoder are given in Table III

but this analysis can be extended for other encoder

implementations. For hardware cost, we will consider logic

and on-chip memory area as well as on- and off-chip data

bandwidth requirements.

Logic Area Estimation Method and Results

 For logic area estimation, the methodology used is as

follows:

1. Implement basic building blocks in hardware and use

synthesis tools to get unit area and power numbers at

the target frequency of operation point.

2. Calculate the amount of parallelism required for

throughput constraint.

3. Estimate total area by using unit numbers and amount

of parallelism.

In the top level architecture given in Fig. 3, there are a total

of 13 parallel engines. Looking at the number of pixel

calculations/cycle, they are found to be constant across parallel

engines. Although the number of available cycles is getting

larger from smaller blocks to larger blocks, number of

computations/block is also getting larger with the same factor.

Hence, the hardware required for different engines to perform

search candidate evaluation is mostly constant.

Total area of one engine including IME, FME and AMVP

blocks is estimated to be 305k gates in a 65nm CMOS process.

It is important to note that the entire motion estimation module

in Fig. 3 consists of 13 engines, resulting in roughly 4M gates.

Moreover, to support forward and backward motion estimation

of the random-access configuration, this number needs to be

scaled up by roughly a factor of two.

On-Chip Memory Size Estimation Method and Results

As explained in Section 2, each motion estimation engine in

Fig. 3 is performing independent searches and for each engine,

a separate memory is necessary in each direction (forward and

backward) and for each reference frame. Table IV shows the

size of on-chip memory needed to support ±64 search range.

Extra pixels are necessary for pixel interpolation in fractional

motion estimation and they are included in calculations.

Block Size
On-Chip

Mem. Size
Block Size

On-Chip

Mem. Size

64×64 39kB 16×8 21kB

64×32 33kB 8×16 21kB

32×64 33kB 8×8 20kB

32×32 28kB 8×4 20kB

32×16 25kB 4×8 20kB

16×32 23kB 4×4 19kB

16×16 23kB

Table IV. On-chip reference buffer size needed for each engine to support ±64

search range for a single reference frame.

A total of 0.65MB of on-chip memories is necessary to

support a single reference frame in forward and backward

directions for the entire motion estimation module in Fig. 3.

This number heavily depends on the selected search range

size. The search range size can be reduced at the expense of

coding efficiency loss. The work in [18] quantifies this effect

and reports up to 3.5% loss in coding efficiency when search

range is reduced from ±64 to ±16. For frame resolutions up to

4K×2K, a larger search range is advantageous and this work

uses ±64 in both directions for this analysis.

It should be noted that on-chip memory size for small block

sizes is not significantly lower than the size for larger block

sizes (39kB for 64x64 and 19kB for 4x4). Consequently,

smaller block sizes do not provide a significant advantage in

terms of memory size.

Additional on-chip storage (e.g. line buffers for motion

information) can be necessary for AMVP but the size heavily

depends on the specific implementation and the target

resolution. Moreover, these buffers can be shared across

parallel engines. For this work, on-chip line buffers are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

considered for motion information of the top line in forward

and backward directions. For a 4K×2K video encoder, the

amount of storage is estimated to be around 30kB.

On-Chip and Off-Chip Bandwidth Estimation Method and

Results

On-chip and off-chip bandwidth are critical in hardware

implementations as these numbers affect system power

consumption and can be limiting factors.

 On-chip bandwidth is determined by the size of reference

buffer for each engine and how frequently it is accessed. For

the fast search algorithm in HM, during IME, entire search

range can be accessed. This occurs in the case of complex

motion. To capture the worst-case upper limit, it can be

assumed that the entire search range in the reference buffer is

accessed for every block. On-chip bandwidth for FME is

significantly smaller as only a refinement is done at this stage.

Lastly, bandwidth for motion information of neighboring

blocks that is necessary for AMVP candidate calculations is

small compared to the on-chip bandwidth of the integer and

fractional motion estimation.

The reference frames for high-definition sequences are often

too large to store on-chip thus they are stored on an off-chip

memory and the necessary parts of these reference frames are

transferred to on-chip buffers before processing. Off-chip

bandwidth considered here is the off-chip memory’s read

bandwidth to bring reference pixel data from off-chip to the

on-chip buffers for motion estimation. Similarly, off-chip

bandwidth is determined by the size of the reference buffer and

how frequently reference buffers for each engine need to be

updated. Because of the correlation of motion between

neighboring blocks, in the ideal case, data re-use between

consecutive blocks can be close to 100%. However, it should

be noted that the processing order of CUs and PUs in an LCU

(Fig. 4) does not allow 100% data re-use and hence causes the

same part of the reference window to be read multiple times.

Increasing size of the on-chip buffer can improve the data re-

use at the expense of larger on-chip memory area. In this

section, minimum buffer sizes given in the previous sub-

section (Table IV) are assumed in the bandwidth calculations.

Table V shows on- and off-chip bandwidth requirement for

each engine. It should be noted that small block sizes such as

4x4 require a very large on-chip and off-chip bandwidth

compared to larger block sizes and imposes a higher cost for

hardware implementation.

Block

Size

On-Chip

BW

Off-Chip

BW

Block

Size

On-Chip

BW

Off-Chip

BW

64×64 2.2 1.49 16×8 39.6 13.72

64×32 3.8 1.86 8×16 39.6 10.33

32×64 3.8 1.48 8×8 75.6 17.47

32×32 6.4 3.64 8×4 145.9 30.21

32×16 11.5 6.05 4×8 145.9 22.94

16×32 11.5 5.20 4×4 283.8 36.92

16×16 20.9 7.62

Table V. On- and off-chip bandwidth requirements for each engine in Fig. 3

with a search range of ±64. All numbers are in GB/s. On-chip bandwidth

numbers reflect the worst-case condition and off-chip bandwidth numbers

assume maximum data reuse between consecutive blocks.

Hardware Cost vs. Coding Efficiency Trade-Offs

In this section of the paper, we will analyze various motion

estimation configurations where some block sizes (i.e. CU

sizes and PU types) are not supported and consequently we

need less than 13 engines. However, the coding efficiency will

be worse because of the exclusion of some block sizes. It is

important to quantify the savings in hardware and loss in

coding efficiency to be able to make an optimum decision

between supported block sizes.

Fig. 5 shows hardware area and bandwidth as well as coding

efficiency results for 11 different motion estimation

configurations. Each column corresponds to a different

configuration supporting all or some of the available block

sizes.

Fig. 5. Hardware cost vs. coding efficiency comparison for 11 different

motion estimation configurations. “Y” and “N” represents if a block size is

supported or not respectively.

Configuration #1 supports all block sizes and is the anchor

configuration for this work. Simulations in HM-3.0 are

performed to quantify coding loss for each configuration

except for the configurations #8-11 where HM-3.2 is used

because of a bug in HM-3.0 which prevents LCU size to be

changed. The bit-rate increase in Fig. 5 is given as the average

of the numbers from all-intra, low-delay, low-delay P and

random-access common test conditions defined by JCT-VC

[4]. The common test conditions cover a wide range of

sequences with resolutions as small as 416×240 and as large as

2560×1600.

Fig.6-a and Fig. 6-b plot core area savings vs. bit-rate

increase and off- chip bandwidth savings vs. bit-rate increase

for 10 configurations in Fig. 5 with respect to the anchor,

configuration #1. Each configuration is denoted by a dot on

this figure except for the anchor configuration as the anchor

would be at the origin of the plot. The slope of the lines

connecting each configuration to the origin provides a visual

method to compare how efficient each configuration is. A

smaller slope means that more savings can be achieved with

smaller bit-rate increase (coding loss). Lines connecting

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

configurations #3, #5 and #7 and the origin are given on Fig.

6-a and Fig. 6-b as examples.

Observations and Conclusions

It can be observed from Fig. 5 and Fig. 6 that configurations

supporting smaller block sizes such as 4×4 require largest area

and bandwidth although the coding gain achieved through

supporting them is relatively smaller. In other words, not

supporting smaller partitions has a smaller effect on coding

efficiency although these engines contribute significantly to

bandwidth and area. For example, by removing 4x4, 4x8 and

8x4 block sizes in configuration #2, 17% memory area, 3.7×

on-chip bandwidth and 2.3× off-chip bandwidth can be saved

at the expense of only 2% coding loss with common conditions

using a single reference frame and fast search algorithm. This

result supports the decision about removing 4x4 PU and 4x8

and 8x4 bi-prediction from the final standard.

(a)

(b)

Fig. 6. (a) Core area savings vs. bit-rate increase and (b) off-chip bandwidth

savings vs. bit-rate increase scatter plots for all the configurations given in

Fig. 5.

Another observation from Fig. 5 and Fig. 6 is that not

supporting 2N×N and N×2N does not result into significant

coding efficiency loss. Fox example, from configuration #2 to

#3, coding efficiency degrades by 1% and the degradation

from configuration #4 to #5 and #6 to #7 are less than 1%.

On-chip reference buffer size mainly depends on the search

range and block size. However, from smaller to larger block

sizes, the increase in memory size is not very significant. In

terms of memory bandwidth, small block sizes, especially

smaller than 8x8, impose very high bandwidth requirements. If

savings are necessary due to system level restrictions for

bandwidth, small block sizes can be chosen not to be

supported.

Lastly, final decision on supported block sizes depends on

the area and bandwidth limitations as well as coding efficiency

specifications of the target encoder. Since larger area and

higher bandwidth often result in higher power consumption,

battery- powered mobile applications might trade-off some of

the coding efficiency for lower power consumption. If coding

efficiency has the highest priority, all block sizes can be

supported (configuration #1) although this might lead to a

significantly large area and power consumption. If area as well

as power are critical, configuration #5 and #7 are suitable

solutions.

III. COST AND CODING EFFICIENT (CCE) HEVC MOTION

ESTIMATION DESIGN

In this section we will talk about architecture and algorithm

development for reducing the hardware cost even further with

minimum impact on the coding efficiency. It should be noted

that although the following algorithm and architecture

developments are targeted for configuration #5, these

algorithms and architectures are suitable for all configurations

supporting square-shaped block sizes. Moreover, the hardware

implementation details and results are also provided based on

the proposed algorithms presented in this section and the target

specifications given in Table III.

A. CCE Motion Estimation Architecture

Top level architecture for CCE motion estimation module is

given in Fig. 7. CU sizes of 64×64, 32×32 and 16×16 are

supported. Since there is only a single PU type (2N×2N) in

each CU engine, an internal PU decision is not necessary. It

should be noted that this architecture is still capable of

processing blocks sequentially and consequently using exact

motion information of the neighboring blocks.

B. Search Algorithm Development for CCE Motion

Estimation

Fast search strategy used in HM-3.0 starts the search around

the best AMVP and consists of many inter-dependent stages.

For example, the result of the initial diamond search

determines if a sub-sampled raster search is performed or not.

In hardware implementation, this dependency increases

complexity and often results in extra cycles or extra hardware

to account for the worst-case conditions.

Recent work focused on search algorithms that can be

parallelized in hardware implementation [8, 16]. For CCE

implementation, we implemented a similar, two- stage search

strategy for IME where each stage can be independently

performed in parallel. Fig. 8 shows IME search patterns used

in each of the stages. First, search center is decided by

comparing AMVP list entries (up to three entries) and [0,0].

During this comparison, SAD (sum of absolute differences)

cost is used. After search center is determined, two stages of

the search is started in parallel.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 7. Top level architecture of the CCE motion estimation implementation.

Block sizes of 64×64, 32×32 and 16×16 are supported.

One of the parallel stages consists of a coarse search

covering ±64 by checking every 8
th

 candidate in each

direction. This stage can capture a change in motion or

irregular motion patterns that cannot be tracked by AMVP.

The second stage performs a more localized three step search

around the ±7 window of the search center. This stage can

capture regular motion. There are two additional advantages of

running both searches in parallel. First, the pixel data for the

coarse search can be used to perform the localized three step

search hence reducing memory bandwidth. Secondly, the

cycles necessary to access the pixels for both search stages can

be shared to reduce the total number of cycles.

Fig. 8. Two stage search approach used for CCE implementation. Stages are

independent of each other and can be performed in parallel in hardware.

It is important to note that the AMVP calculation for all

CUs uses exact motion vectors of the neighbors and AMVP is

accurate and hence can track motion well in most cases.

The proposed IME search strategy checks a total of 285

candidates for each CU as opposed to up to 848 candidates

that are checked in fast search strategy in HM-3.0. This results

in roughly 2× hardware area reduction in IME for the same

throughput constraint. Actual savings might be larger in

implementation because of the additional complexity due to

inter-dependent stages of HM-3.0 algorithm. Lastly, for FME,

search strategy of HM is used where sub-pixel positions are

evaluated around the best integer motion vector to find the best

sub-pixel accurate motion vector.

C. Sharing Reference Pixel Buffers for CCE Motion

Estimation

Sharing the on-chip reference buffer across parallel engines

can provide significant savings in terms of area and off-chip

bandwidth. However, restricting the search range of parallel

engines to a shared window will result in coding efficiency

loss. This loss can be minimized by determining the shared

search window carefully.

In the case of separate reference buffers with ±64 search

range for each engine, the implementation in Fig. 7 requires

three 1R1W (1 read, 1 write) port memories with 39kB,

27.5kB and 22.5kB sizes for 64×64, 32×32 and 16×16 engines

respectively as given in Table IV. Total area consumed by

these three memories can be estimated to be roughly 1.25mm
2

in a 65nm CMOS technology [19] as shown in Table VI. It

should be noted that this area is for storing the pixels on the

chip for a single direction and single reference frame.

In contrast to this, in the case of a shared reference buffer

with ±64 search range, the size is determined by the largest CU

size and a single 39kB memory is needed with 3R1W ports.

Although the bit-cell area and some peripheral components

need to be expanded to support multiple read ports, the overall

area can be smaller as shown in Table VI. Hence, shared

search range across parallel engines results in 16% area

savings for the implementation considered in Fig. 7.

Separate Buffer

(3 x 1R1W)

Shared Buffer

(1 x 3R1W)

Memory Size 89kB 39kB

Est. Cell Area 0.85m2 1.55m2

Est. Array Area 0.75mm2 0.61mm2

Est. Periphery Area 0.5mm2 0.44mm2

Est. Total Area 1.25mm2 1.05mm2

Table VI. Area comparison of shared and separate reference buffers.

Estimates are based on a 65nm CMOS technology.

With independent motion searches, each engine might have

different search centers and consequently access different parts

of the reference frame as the search window. Table VII shows

maximum and average off-chip bandwidth for 64×64, 32×32

and 16×16 engines. The upper limit on the bandwidth is

calculated by assuming that the entire on-chip reference buffer

needs to be updated between consecutive CUs and hence no

data re-use is possible. The total maximum off-chip bandwidth

is 29.5 GB/s for supporting 4K×2K resolution at 30fps

assuming a search range of ±64. Average bandwidth number

with close to 100% data re-use between consecutive LCUs is

12.7 GB/s. In the case of a shared reference window across

engines, the maximum bandwidth is equal to the maximum

bandwidth of the 64×64 LCU since the size of the shared

search window is determined by the largest CU size given that

the reference pixel data for smaller CUs are part of the data for

the LCU. Sharing the search window provides 13.4× and 8.3×

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

savings in terms of the maximum and average bandwidth

requirements.

CU Size Max. Off-Chip BW Avg. Off-Chip BW

64x64 2.2GB/s 1.5GB/s

32x32 6.4GB/s 3.6GB/s

16x16 20.9GB/s 7.6GB/s

Total 29.5GB/s 12.7GB/s

Table VII. Maximum and average off-chip bandwidth requirement for

different CU sizes (search range is ±64) for supporting 4K×2K at 30fps.

Average off-chip bandwidth is calculated by an experiment on Traffic

sequence under random access condition.

(a)

(b)

Fig. 9. (a) Density maps for the relative location of pixels from best-matching

blocks with respect to the AMVP of the LCU for (a) PeopleOnStreet and (b)

Traffic sequences. More than 99% of the pixels lie within ±64 (a 192x192

block of pixels surrounding a 64x64 CU) of the AMVP of the LCU

(2560x1600 sequences with QP=22 in random-access configuration).

In order to minimize the coding efficiency impact of sharing

search window across engines, a good representative should be

selected for the motion of all CUs within an LCU. AMVP of

the LCU is observed to provide a good center point for the

shared search window. Fig. 9 shows the density map for the

relative location of the pixels from best matching blocks with

respect to the AMVP of the LCU for two different sequences.

Best matching blocks are calculated with the original HM-3.0

fast search algorithm and the search range is ±64 pixels in each

direction. For both sequences, more than 99% of the best

matching pixels lie in the ±64 vicinity of the AMVP (192x192

block of pixels surrounding the 64x64 block that AMVP is

pointing to) of the LCU. This indicates that AMVP of the LCU

can be used as the search window center without introducing

significant coding efficiency loss.

For smaller CUs that have different AMVPs and

consequently different search centers, the search window is

modified to fit in the shared window such that the window is

shifted to make sure it lands inside the shared search window

in the on-chip buffer. It is important to note that although the

search window is modified, original AMVP of the CU is used

in cost calculations. Moreover, total number of candidates

stays the same for all CU sizes regardless of the search

window being modified or not. This provides simplicity in

hardware implementation.

D. Reference Pixel Data Pre-fetching Strategy

For a practical hardware implementation, off-chip memories

are used for large storage requirement of reference frames.

DRAMs are generally used to implement these off-chip

storage. Because of the internal mechanism of DRAMs, it is

necessary to request the data from off-chip memories in

advance since the latency of these memories can be on the

order of thousands of cycles. Stalling the encoding operation

while waiting for the pixel data from DRAM can cause a

reduction of the throughput of the system.

To address this, the pre-fetching strategy described in [20]

is implemented for CCE motion estimation. This strategy

involves calculating the center of the reference window by

only using the information from the top row such that the

requests for the pixels can be placed in advance.

E. Enlarging On-Chip Reference Buffers for Higher Data

Reuse Rate

In order to share the cycles between writing to and reading

from the reference buffer, larger on-chip storage is necessary.

This extra storage is used to start writing the data for the next

LCU while motion estimation for current LCU is continuing.

For this purpose, an extra storage that is 64 pixels wide (size

of an LCU) is necessary. Obviously, extra storage alone is not

adequate if the search center from current LCU to next LCU is

changing. This issue can be addressed by allowing a larger

storage for reference buffers and algorithm modifications.

In the ideal case where consecutive LCUs have the same

AMVP, a 100% data reuse rate can be achieved where search

window moves to the right by 64 pixels for every LCU. An

illustration of 100% data reuse case is shown in Fig. 10-a,

where five LCUs and their corresponding search window are

shown. However, this is highly unlikely and AMVP of

consecutive LCUs can be very different from each other

especially in frames with complex motion. Fig. 10-b shows a

case where data reuse between five LCUs is very poor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

In the discussion above, we always considered the case

where on-chip reference buffer size is equal to the search

window size and additional storage for the next LCU.

However, if the on-chip memory size is increased to hold a

larger window, data reuse rate can be improved as there is a

higher chance of the data on the chip matching next LCU’s

search window. Although larger on-chip memories result in

larger bandwidth per LCU, the improvement in data reuse rate

can over-power this increase and results in a reduction in

overall average bandwidth.

(a)

(b)

Fig. 10. Search ranges of five consecutive LCUs with (a) uniform motion

maximizing data reuse and (b) non-uniform motion causing lower data reuse

rate.

It should be noted that although on-chip memories hold a

larger window, search window is not increased and kept as

±64 in each direction and consequently the total number of

candidates in motion search is not affected from this

modification. Fig. 11 shows the reference window with N extra

pixels on each side and also the extra 64 pixels for the next

LCU.

Fig. 11. Extra storage is needed for on-chip buffers to share cycles for read

and write accesses to the memories and N extra pixels on each side of the

reference buffer is considered for improving data reuse rate.

{200+2N}×{200+2N} portion is used for current LCU and 64×{200+2N}

portion is used for next LCU. LCU size is 64×64 and search range is ±64.

The effect of increasing reference buffer size by N pixels on

all four sides is analyzed in terms of bandwidth. Fig. 12 plots

total off-chip bandwidth, maximum data reuse rate and on-chip

buffer size for two different sequences with changing N.

With increasing N, on-chip buffer size and the bandwidth

due to updating a larger buffer for every LCU increase.

However, also with increasing N, maximum data reuse rate

increases. Fig. 12 also shows the bandwidth with 0% data

reuse without any increase in on-chip buffer size (i.e. N=0)

and the bandwidth with 100% data reuse with N=32.

Because of the conflicting trends, write bandwidth makes a

minimum around N = 16 for both sequences. This provides

close to 1.8X savings in off-chip bandwidth at the expense of

35% area increase in reference pixel buffers.

Fig. 12. Total off-chip write bandwidth, maximum data reuse rate and on-chip

buffer size for Traffic (2560×1600) and BasketballDrive (1920x1080)

sequences. Simulations are performed in Random Access test condition with

QP = 22.

To further improve data reuse rate and reduce off-chip

bandwidth, pre-fetching algorithm is modified to limit the

difference between two AMVPs (centers of search windows)

to ±N. Intuitively, this translates to the search window being

able to track changes in motion by at most N pixel step sizes.

For this work, N is chosen to be 16 to minimize its effect on

the coding efficiency and to minimize total bandwidth.

F. Effect on Bit-Rate

The changes in various parts of the search strategy for CCE

motion estimation are implemented in the HM-3.0 software

and their effect on coding efficiency is quantified under

common conditions. Simulations are performed under the

conditions defined in [4].

Table VIII shows coding efficiency change with respect to

the HM-3.0 fast search algorithm in configuration #5 after

each modification. Columns LD, LDP and RA stands for low-

delay, low-delay with P and random-access test conditions as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

defined by JCT-VC [4]. Avg column is the average of LD,

LDP and RA. Lastly, Max and Min columns are the maximum

and minimum rate change for all tested sequences respectively.

The average cumulative rate increase due to the proposed

changes is 1.6%. Search algorithm changes constitute 1% of

this increase. Random-access test conditions result in the

largest coding efficiency degradation as the distance between

the reference frame and the coded frame is longer in this test

condition. In general, sequences with lower resolution face a

larger degradation of coding efficiency compared to the

sequences with higher resolution because of the architectural

decision to not support CU sizes smaller than 16x16.

G. Hardware Implementation of a CU Engine

Hardware implementation results presented in this section

are based on the CCE ME implementation discussed in Section

III.

Fig. 13 shows the architecture of one CU engine. Integer

and fractional motion estimation parts are implemented

together and they are not pipelined for maximum coding

efficiency as pipelining these processes would require integer

motion vectors to be used in the AMVP calculations.

Reference buffer and block buffer hold reference and

current CU’s data respectively. Reference buffer write control

exerts write operations on the reference buffer for the next

LCU whereas read control accesses the search range data.

AMVP part calculates the motion vector predictor list. Cost

tree and comparator array are capable of calculating the cost of

4 motion vector candidates/cycle for the 16×16 CU for which

the cycle budget is the shortest. For larger CU sizes, although

the number of cost calculations is the same, the throughput is

lower (e.g. 1 motion vector candidate/cycle for 32x32 CU).

Best position and cost is stored in sequential elements and

compared against costs for newer candidates. Finally, engine

control ensures the flow of data inside the engine as well as the

communication of higher level control units.

This design is targeted towards an encoder supporting real-

time processing of 4Kx2K frame resolution at 30fps with a

200MHz clock as given in Table III. These specs require the

processing of each 64x64 LCU to be completed in 3292 cycles

and the hardware design is parallelized to provide this

throughput.

Fig. 13. Architecture of one engine in CCE HEVC motion estimation

implementation.

To be able to support the 4 motion vector candidates/cycle

output requirement for the 16x16 CU engine, search range is

partitioned into 88 blocks of SRAMs, each block holding

roughly 200 words and four neighboring pixels on every word.

Fig. 14 shows the allocation of pixels on memory banks.

Going from one LCU to the next, since most of the data is

reused, only pointers to the memory locations are changed.

This is handled in the read control by holding the left-top

coordinate (Left-TopX, Left-TopY) of the search range as well

as an address bias (AB) which is incremented by 64 pixels for

every LCU. Engine control requests a stripe (8×44) of

reference pixels by providing the left-top coordinate (InX,InY)

to read control. After data is read from SRAM blocks, 8×44

pixel block is output in the next cycle. There is a multiplexer

of Search

Candidates

On-Chip Buffer

Size (mm2)

Off-Chip BW

(GB/s)
LD LDP RA Avg Max Min

HM-3.0 Anchor (Conf. #5) 466 1.25 12.7 0 0 0 0 0 0

Search Algorithm 285 1.25 12.7 0.6 0.8 1.6 1.0 3.1 0.1

Search Algorithm

&

Shared Search Range

285 1.05 1.5 0.6 1.0 2.9 1.5 7.4 0.2

Search Algorithm

&

Shared Search Range

&

Pre-fetch

285 1.05 1.5 0.9 1.0 2.9 1.6 7.3 0.2

Search Algorithm

&

Shared Search Range

&

Pre-fetch

&

Limited Search Range Movement

with N=16

285 1.38 1.25 0.9 1.0 2.9 1.6 7.4 0.2

Table VIII. Simulation results for the coding efficiency change after the search algorithm, shared search window, pre-fetching and limiting the movement of

search range center by N = 16 with respect to HM-3.0 (configuration #5). Number of search candidates, on-chip buffer size and off-chip bandwidth numbers are

also provided for comparison. All columns with coding efficiency change (i.e. LD, LDP, RA, Avg, Max and Min) are in percentage values.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

array at the output of the read control to select appropriate

outputs from SRAM blocks and put them in order.

New data overwrites the older data sequentially for every

LCU in the reference buffer. At the beginning of an LCU line

in the frame, all memory locations need to be updated. For all

other LCUs, a 64×232 block (as explained in Fig. 11 with

N=16) and possibly N=16 pixel wide edges are updated since,

at the algorithm level, the movement of the search center is

limited to be less than N=16 pixels between consecutive

LCUs. Lastly, the search range accessed by the read control

and the pixels that are overwritten by write control are not

overlapping so read and write operations can be done in the

same cycle.

Synthesis results for the reference buffer read and write

control show that a total of 52.6k gates are used. Read control

takes up a larger area due to the multiplexers to select the

outputs from 88 SRAM blocks.

Fig. 14. Search range partitioning and physical location of pixels in memory

banks for the search range shown in Fig. 11 with N=16.

Fig. 15 Cost tree implementation using 1-bit absolute difference (AD) and

motion vector cost calculation.

As shown in Fig. 15, cost tree calculates costs and adds the

motion vector cost to create total motion cost. 1-bit partial

absolute-differences (AD) are calculated and 1-bit ‘msb’

information is propagated to the output to make the critical

path shorter. ADs and msb bits from multiple pixels are

summed in parallel. MV cost calculation is implemented with

a priority encoder as shown in Fig. 15. The input to the priority

encoder is the absolute difference of the candidate and the

motion vector predictor. Then, comparator array compares

costs of candidates with the smallest cost and decides if the

smallest cost needs to be updated or not. At the end of the

search, smallest cost and its corresponding candidates are

signaled as motion vectors. Lastly, cost tree and comparator

array implementation results in 131k gates.

Fig. 16 shows the implementation of the AMVP block. A0-1

and B0-2 are spatial neighbors and C and H are temporal

neighbors to the current block [13]. A scaling operation is used

if the motion information from the neighbors cannot be used

directly. The scaling operation involves two multiplication

operations and constitutes a large fraction of the overall area

of the AMVP block. Micro architecture of the scaling block is

shown in Fig. 17. Picture order count (POC) values of the

current and reference frame as well as the POC values of the

neighboring blocks are used to calculate the scaling factor.

Two multiplication operations are pipelined to meet the

frequency requirements. Once the motion vector predictor

candidates are calculated, they undergo a “uniquify” operation

to ensure that the final AMVP list is composed of distinct

members. AMVP block results in 26k gates.

Fig. 16. Block diagram of the AMVP block.

IV. CONCLUSION

Motion estimation is one of the most critical blocks in

HEVC encoder designs, and is analyzed for its hardware

implementation cost in this work. This study presents the

trade-offs between coding efficiency and hardware cost in

order to make critical design decisions. Specifically, a motion

estimation implementation providing coding efficiency

equivalent to the reference software is considered and its

hardware cost is quantified. This design is found to be very

costly in hardware.

Fig. 17. Implementation of the scaling unit in AMVP.

To reduce hardware cost, first, a reduction in the number of

coding engines is considered and quantitative analysis has

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

been performed to find the configuration providing the best

trade-off. Secondly, to further reduce hardware cost, hardware-

oriented algorithms are developed that are suitable for the

selected architecture. Overall, 56x on-chip bandwidth, 151x

off-chip bandwidth, 4.3x core area and 4.5x on-chip memory

area savings are achieved when compared to the hardware

implementation of the HM reference software design. These

savings are achieved at the expense of <4% coding efficiency

degradation with respect to the HM-3.0 supporting all CU

sizes and PU types and with fast search. Finally, the

methodology used in this work can be generalized to other

parts of a video codec design for understanding hardware cost

and coding efficiency trade-offs and eventually to make

critical design decisions.

REFERENCES

[1] “Cisco Virtual Networking Index: Global Mobile DataTraffic Forecast

Update, 2011-2016” [Online]. Available: http://www.cisco.com/en/US/

solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-520862

.html.

[2] J. Ostermann, P. Bormans, P. List, D. Marpe, M. Narroschke, F.

Pereira, T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC:

Tools, Performance and Complexity,” IEEE Circuits and Systems Magazine,

vol. 4, pp. 7–28, 2004.

[3] G. Delagi, “Harnessing technology to advance the next-generation

mobile user-experience,” IEEE International Solid-State Circuits Conference

(ISSCC), pp. 18 –24, Feb. 2010.

[4] “Joint Call for Proposals on Video Compression Technology,” ITU-

TSG16/Q6, 39th VCEG Meeting: Kyoto, 17-22 Jan. 2010, Doc. VCEGAM91.

[5] J. Ohm, G.J. Sullivan, H. Schwarz, Tan Thiow Keng, T. Wiegand,

"Comparison of the Coding Efficiency of Video Coding Standards—

Including High Efficiency Video Coding (HEVC),"Circuits and Systems for

Video Technology, IEEE Transactions on , vol.22, no.12, pp.1669,1684, Dec.

2012.

[6] Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, C.-S.

Chen, C.- F. Shen, S.-Y. Ma, T.-C. Wang, B.-Y. Hsieh, H.-C. Fang, and L.-G.

Chen, “A1.3TOPS H.264/AVC single-chip encoder for HDTV applications,”

IEEE International Solid-State Circuits Conference (ISSCC), pp. 128–129,

Feb. 2005.

[7] C.-P. Lin, P.-C. Tseng, Y.-T. Chiu, S.-S. Lin, C.-C. Cheng, H.-C. Fang,

W.-M. Chao, and L.-G. Chen, “A 5mW MPEG4 SP encoder with 2D

bandwidth-sharing motion estimation for mobile applications,” IEEE

International Solid-State Circuits Conference (ISSCC), pp. 1626–1627, Feb.

2006.

[8] H.-C. Chang, J.-W. Chen, C.-L. Su, Y.-C. Yang, Y. Li, C.-H. Chang,

Z.-M. Chen, W.-S. Yang, C.-C. Lin, C.-W. Chen, J.-S. Wang, and J.-I. Quo,

“A 7mW-to-183mW Dynamic Quality-Scalable H.264 Video Encoder Chip,”

IEEE International Solid-State Circuits Conference (ISSCC), pp. 280–281,

Feb. 2007.

[9] Y.-K. Lin, D.-W. Li, C.-C. Lin, T.-Y. Kuo, S.-J. Wu, W.-C. Tai, W.-C.

Chang, and T.-S. Chang, “A 242mW 10mm2 1080p H.264/AVC High-Profile

Encoder Chip,” IEEE International Solid-State Circuits Conference (ISSCC),

pp. 314–315, Feb. 2008.

[10] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast

block matching motion estimation,” International Conference on

Information, Communications and Signal Processing (ICICS), pp. 292 –296,

Sep. 1997.

[11] T.-H. Tsai and Y.-N. Pan, “A novel predict hexagon search algorithm

for fast block motion estimation on H.264 video coding,” The 2004 IEEE

Asia-Pacific Conference on Circuits and Systems, pp. 609 – 612, Dec. 2004.

[12] “JCT-VC Reference Software HM-3.0,” ISO/IEO MPEG and ITU-T.

[13] G.J. Sullivan, J. Ohm, Woo-Jin Han; T. Wiegand, T. Wiegand,

"Overview of the High Efficiency Video Coding (HEVC) Standard," Circuits

and Systems for Video Technology, IEEE Transactions on , vol.22, no.12,

pp.1649,1668, Dec. 2012.

[14] Yu-Wen Huang et al., “Hardware Architecture Design for Variable

Block Size Motion Estimation in MPEG-4 AVC/JVT/ITU-T H.264,” IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 796–799,

May 2003.

[15] Swee Yeow Yap et al., “A VLSI Architecture for Variable Block Size

Video Motion Estimation,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 51, no. 7, pp. 384 – 389, July 2004.

[16] M. Haller et al., “Robust global motion estimation using motion vectors

of variable size blocks and automatic motion model selection,” in IEEE

International Conference on Image Processing (ICIP), pp. 737 –740, Sept.

2010.

[17] Chia-Chun Lin et al., “PMRME: A Parallel Multi-Resolution Motion

Estimation Algorithm and Architecture for HDTV Sized H.264 Video

Coding,” in IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 385–388, April 2007.

[18] M. E. Sinangil, V. Sze, M. Zhou, A. P. Chandrakasan, “Memory Cost

vs. Coding Efficiency Trade-Offs for HEVC Motion Estimation Engine,”

IEEE International Conference on Image Processing (ICIP), pp. 1533-1536 ,

Sep. 2012.

[19] “Taiwan Semiconductor Manufacturing Company Limited.” [Online].

Available: http://www.tsmc.com/english/dedicatedfoundry/technology/65nm.

htm.

[20] M. E. Sinangil, V. Sze, M. Zhou, A. P. Chandrakasan, "Hardware-

Aware Motion Estimation Search Algorithm Development for High-

Efficiency Video Coding (HEVC) Standard," IEEE International Conference

on Image Processing (ICIP), pp. 1529-1532, Sep. 2012.

Mahmut E. Sinangil (S’06–M’12) received the

B.Sc. degree in electrical and electronics engineering

from Bogazici University, Istanbul, Turkey, in 2006,

and the S.M. and Ph.D. degrees in electrical

engineering and computer science from the

Massachusetts Institute of Technology (MIT),

Cambridge, MA, in 2008 and 2012 respectively.

 Since July 2012, he has been a Research Scientist

in the Circuits Research Group at NVIDIA. His

research interests include low-power and application

specific on-chip memories targeted towards graphics applications.

 Dr. Sinangil was the recipient of the Ernst A. Guillemin Thesis Award at

MIT for his Master’s thesis in 2008, co-recipient of 2008 A-SSCC

Outstanding Design Award and recipient of the 2006 Bogazici University

Faculty of Engineering Special Student Award.

Vivienne Sze (S’06–M’12) received the B.A.Sc.

(Hons) degree in electrical engineering from the

University of Toronto, Toronto, ON, Canada, in

2004, and the S.M. and Ph.D. degree in electrical

engineering from the Massachusetts Institute of

Technology (MIT), Cambridge, MA, in 2006 and

2010 respectively. She received the Jin-Au Kong

Outstanding Doctoral Thesis Prize, awarded for the

best Ph.D. thesis in electrical engineering at MIT in

2011.

Since August 2013, she has been with MIT as an

Assistant Professor in the Electrical Engineering and Computer Science

Department. Her research interests include energy efficient algorithms and

architectures for portable multimedia applications. From September 2010 to

July 2013, she was a Member of Technical Staff in the Systems and

Applications R&D Center at Texas Instruments (TI), Dallas, TX, where she

designed low-power algorithms and architectures for video coding. She also

represented TI at the international JCT-VC standardization body developing

HEVC, the next generation video coding standard. Within the committee, she

was the primary coordinator of the core experiment on coefficient scanning

and coding.

Dr. Sze was a recipient of the 2007 DAC/ISSCC Student Design Contest

Award and a co-recipient of the 2008 A-SSCC Outstanding Design Award.

She received the Natural Sciences and Engineering Research Council of

Canada (NSERC) Julie Payette fellowship in 2004, the NSERC Postgraduate

Scholarships in 2005 and 2007, and the Texas Instruments Graduate Woman's

Fellowship for Leadership in Microelectronics in 2008. In 2012, she was

selected by IEEE-USA as one of the “New Faces of Engineering”.

Minhua Zhou (S’06–M’12) received his B.E. degree in Electronic

Engineering and M.E. degree in Communication & Electronic Systems from

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Shanghai Jiao Tong University, Shanghai, P.R. China, in 1987 and 1990,

respectively. He received his Ph.D. degree in Electronic Engineering from

Technical University Braunschweig, Germany, in 1997. He received Rudolf-

Urtel Prize 1997 from German Society for Film and Television Technologies

in recognition of Ph.D. thesis work on “Optimization of MPEG-2 Video

Encoding”.

From 1993 to 1998, he was a Researcher at Heinrich-Hertz-Institute (HHI)

Berlin, Germany. Since 1998, he is with Texas Instruments Inc, where he is

currently a research manager of video coding technology. His research

interests include video compression, video pre- and post-processing, end-to-

end video quality, joint algorithm and architecture optimization, and 3D

video.

Anantha P. Chandrakasan (M’95–SM’01–

F’04) received the B.S, M.S. and Ph.D. degrees

in Electrical Engineering and Computer

Sciences from the University of California,

Berkeley, in 1989, 1990, and 1994 respectively.

Since September 1994, he has been with the

Massachusetts Institute of Technology,

Cambridge, where he is currently the Joseph F.

and Nancy P. Keithley Professor of Electrical

Engineering.

He was a co-recipient of several awards including the 1993 IEEE

Communications Society's Best Tutorial Paper Award, the IEEE Electron

Devices Society's 1997 Paul Rappaport Award for the Best Paper in an EDS

publication during 1997, the 1999 DAC Design Contest Award, the 2004

DAC/ISSCC Student Design Contest Award, the 2007 ISSCC Beatrice

Winner Award for Editorial Excellence and the ISSCC Jack Kilby Award for

Outstanding Student Paper (2007, 2008, 2009). He received the 2009

Semiconductor Industry Association (SIA) University Researcher Award. He

is the recipient of the 2013 IEEE Donald O. Pederson Award in Solid-State

Circuits.

His research interests include micro-power digital and mixed-signal

integrated circuit design, wireless microsensor system design, portable

multimedia devices, energy efficient radios and emerging technologies. He is

a co-author of Low Power Digital CMOS Design (Kluwer Academic

Publishers, 1995), Digital Integrated Circuits (Pearson Prentice-Hall, 2003,

2nd edition), and Sub-threshold Design for Ultra-Low Power Systems

(Springer 2006). He is also a co-editor of Low Power CMOS Design (IEEE

Press, 1998), Design of High-Performance Microprocessor Circuits (IEEE

Press, 2000), and Leakage in Nanometer CMOS Technologies (Springer,

2005).

 He has served as a technical program co-chair for the 1997 International

Symposium on Low Power Electronics and Design (ISLPED), VLSI Design

'98, and the 1998 IEEE Workshop on Signal Processing Systems. He was the

Signal Processing Sub-committee Chair for ISSCC 1999-2001, the Program

Vice-Chair for ISSCC 2002, the Program Chair for ISSCC 2003, the

Technology Directions Sub-committee Chair for ISSCC 2004-2009, and the

Conference Chair for ISSCC 2010-2012. He is the Conference Chair for

ISSCC 2013. He was an Associate Editor for the IEEE Journal of Solid-State

Circuits from 1998 to 2001. He served on SSCS AdCom from 2000 to 2007

and he was the meetings committee chair from 2004 to 2007. He was the

Director of the MIT Microsystems Technology Laboratories from 2006 to

2011. Since July 2011, he is the Head of the MIT EECS Department..

