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Abstract— This paper focuses on motion estimation 

engine design in future high-efficiency video coding 

(HEVC) encoders. First, a methodology is explained to 

analyze hardware implementation cost in terms of 

hardware area, memory size and memory bandwidth for 

various possible motion estimation engine designs. For 11 

different configurations, hardware cost as well as the 

coding efficiency are quantified and are compared 

through a graphical analysis to make design decisions. It 

has been shown that using smaller block sizes (e.g. 4×4) 

imposes significantly larger hardware requirements at the 

expense of modest improvements in coding 

efficiency. Secondly, based on the analysis on various 

configurations, one configuration is chosen and algorithm 

improvements are presented to further reduce hardware 

implementation cost of the selected configuration. Overall, 

the proposed changes provide 56x on-chip bandwidth, 

151x off-chip bandwidth, 4.3x core area and 4.5x on-chip 

memory area savings when compared to the hardware 

implementation of the HM-3.0 design.  

 
Index Terms— Hardware implementation cost, HEVC, motion 

estimation, search algorithm.  

 

I. INTRODUCTION 

URING the past decade, the amount of video content 

available on the Internet has grown significantly. With the 

introduction of 3G/4G mobile broadband technology, 

consumers can access this content from their mobile devices. 

Hence, by 2015, 70% of the mobile data traffic is expected to 

be attributed to video content [1].  In this context, standards 

with high coding efficiency are crucial for lowering 
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transmission and storage costs. 

Recent video coding standards such as AVC/H.264 

provided significant coding efficiency gain over their 

predecessors. For example, AVC/H.264 provided 50% coding 

efficiency gain over MPEG-2 [2]. However, this improvement 

comes at the expense of higher hardware cost due to more 

complex coding tools as AVC/H.264 has 4× more hardware 

complexity with respect to MPEG-2 [2].  The trend for 

increasing hardware complexity over the years can be seen in 

Fig. 1 where relative complexity of the video core of a mobile 

applications processor is plotted over the years from 2004 to 

2020 [3]. This figure reflects the increased complexity due to  

 more advanced video coding standards and 

 the necessity to employ a more dedicated hardware  

to meet performance requirements. 

By the year 2020, the complexity of a video core is 

expected to be 10× larger than today’s demands [3]. 

Consequently, it is very critical to consider the hardware 

implementation cost in terms of hardware area, memory area 

(based on the capacity and the type of the memory) and 

memory bandwidth (rate at which data is accessed) of video 

codecs especially for mobile devices. 

 

A. High-Efficiency Video Coding (HEVC) 

 

High-Efficiency Video Coding (HEVC) is a new video 

compression standard being standardized by the JCT-VC (joint 

collaborative team on video coding) established by ISO/IEO 

MPEG and ITU-T [4]. HEVC achieves 50% coding gain over 

AVC/H.264 High Profile [5]. For this purpose, several coding 

efficiency enhancement tools have been adopted to this new 

standard. Table I provides a comparison between some of the 

tools used in AVC/H.264 and HEVC standards.  

One of the main differences of HEVC from its predecessor 

AVC/H.264 is the adoption of coding quad-tree structure to 

provide a modular coding structure. In HEVC a frame is 

divided into largest coding unit (LCU) and an LCU is further 

divided into coding units (CU) in a quad-tree structure. LCU 

size can be as large as 64×64 pixels and smallest coding unit 

(SCU) size can be as small as 8×8. This allows the selection of 

a different coding structure based on various factors such as 
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input video resolutions and other properties of a video 

sequence. 

 

 
 

Fig. 1.  Relative complexity of video core over the years for a mobile 

applications processor [3].  From 2012 to 2020, video core complexity is 

expected to increase by 10×. 

 

 

Tool AVC/H.264 HEVC 

Coding Quad-Tree Structure No Yes 

Largest Coding Unit Size 16×16 64×64 

Asymmetric Motion Partitions No Yes 

Inter-prediction Merge Mode No Yes 

Transform Size 4×4 to 8×8 4×4 to 32×32 

Intra-prediction Angular 

Directions 
8 directions 33 directions 

 
Table I. Comparison of some tools in AVC/H.264 High Profile and next 

generation video standard, HEVC. More complex HEVC tools require more 

complex hardware. 

 

If a CU is not divided into smaller CUs, it is predicted with 

one of several prediction unit (PU) types. Either inter-

prediction or intra-prediction is used to represent a CU and PU 

types determine which prediction type will be used to code a 

particular CU. Fig. 2 shows the processing order of 8×8 CUs 

in a 16×16 CU and the PU order within an 8×8 CU. For inter-

prediction,  PU types can be 2N×2N, 2N×N, N×2N or N×N 

where 2N×2N corresponds to the size of the CU. Motion 

vectors for inter-prediction are determined through motion 

estimation. If asymmetric motion partitions (AMP) are used, 

non-square PUs for inter-prediction also include 2N×nU, 

2N×nD, nL×2N and nR×2N. It should be noted here that AMP 

partitions are not included in the hardware cost and coding 

efficiency analysis in this work but this analysis can be 

extended to cover these partition types as well. N×N is only 

used at the SCU level to avoid redundant representation. This 

is because N×N PU of a 16×16 CU can be represented with 

the 2N×2N PU at 8×8 CU level. This is true except for the 

SCU level so N×N is only used in an SCU. 

 

 

 
 

Fig. 2. Processing order for 8×8 CUs in a 16×16 CU is from A to D. For each 
8×8 CU, PU types are also processed sequentially from 2N×2N to N×N. 

Finally inside a PU type, processing order is from 1 to 4. 

B. Motion Estimation in HEVC 

 

Motion estimation (ME) is one of the most critical blocks in 

video encoding in terms of implementation cost. Table II 

shows specifications of various recently published video 

encoders. It can be seen from Table II that ME accounts for a 

large fraction of total encoder area.  

Motion estimation in HEVC is block-based where block 

sizes can be as large as 64×64 (LCU size) and as small as 4×4 

(N×N PU in an 8×8 CU). A 64×64 LCU can be represented by 

various combinations of CUs and PUs. For example, 64×64 

LCU can be represented by a single 2N×2N PU or it can be 

divided into 8×8 CUs where each CU is represented with four 

4×4 blocks (N ×N PU type). In the former case, an LCU is 

represented with a single motion vector pair (one vector for 

horizontal displacement and one for vertical displacement) and 

in the latter case, with 256 pairs. For an LCU with many 

details, using smaller block sizes with separate vectors can 

provide better compression. In contrast, for large and smooth 

areas, using larger block sizes and fewer motion vectors can be 

more efficient. Hence, supporting all block sizes provides the 

highest flexibility and best coding efficiency but this also 

results in highest hardware implementation cost. 

In hardware implementations, fast search algorithms [10-11] 

are widely used. These algorithms are extremely critical for the 

complexity as they determine the number of calculations and 

memory accesses which impact the area of hardware, its power 

consumption and lastly its memory bandwidth requirement. 

Moreover, the search algorithm’s performance also affects the 

coding efficiency depending on how accurately this algorithm 

finds the motion. 

Work Standard Resolution Rate Area ME Area Frequency Power Process 

   fps mm2 % MHz mW m 

[6] AVC/H.264 1280x720 30 31.7 80 108 785 0.18 

[7] MPEG4 640x480 30 7.7 55 28.5 18 0.18 

[8] AVC/H.264 1280x720 30 18.5 54 108 183 0.13 

[9] AVC/H.264 1920x1080 30 10.0 70 145 242 0.13 

Table II. Comparison of previously published encoder chips. ME area is a significant portion of total chip area making ME a critical part of the encoder design. 
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Motion estimation is on the encoder side but a video 

compression standard only defines the decoder side. Hence, 

encoder side decisions can be different from one design to the 

other as long as the output of the encoder is compliant with the 

standard. The decisions made on the encoder side, however, 

affects coding efficiency.  

In this paper, the encoder implementation given in the HM 

3.0 software [12] using common conditions (single reference 

frame in each direction, fast motion search, no AMP and no 

merge mode) is used as the reference point. It should be noted 

that some of these modes (e.g. 4×4) is no longer supported in 

HEVC but this work uses HM-3.0 as a baseline 

implementation and results for the unsupported modes are kept 

in the analysis to provide a reference to the readers. 

This paper presents motion estimation design considerations 

for HEVC standard with a focus on hardware implementation 

trade-offs. For hardware cost, we considered on-chip hardware 

and memory area as well as on-chip and off-chip bandwidth. 

The rest of the paper is structured as follows. Section II 

presents a hardware cost analysis for HEVC motion estimation 

and investigates the hardware cost vs. coding efficiency trade-

off. Based on the results from Section II, Section III focuses 

on one of the possible motion estimation architecture 

configurations and this section talks about hardware-aware fast 

search algorithm development. Furthermore, hardware 

implementation details are presented in Section III. Lastly, 

Section IV concludes the paper. 

II. HARDWARE COST ANALYSIS FOR HEVC MOTION 

ESTIMATION 

 

HEVC reference software implementation (HM) is 

completely sequential on the processing of the CUs and PUs 

and consequently achieves highest coding efficiency. This is 

mainly due to the dependency of one block’s cost calculations 

on neighboring blocks’ motion information. Specifically, 

advanced motion vector prediction (AMVP) calculation 

requires the spatial as well as temporal neighbor information to 

create a list of motion vector predictors. This list is used to 

predict the motion vectors during motion search and signal the 

final motion vectors once the motion search is concluded [13].  

  

 
 

Fig. 3. Architecture for an HEVC motion estimation engine supporting all 

block sizes from 64×64 to 4×4 (except AMP partitions). “PU Dec.” refers to 

PU decision. This architecture allows sequential processing of smaller blocks 

and can use exact motion information from neighboring blocks.  

Hence, it is important to consider an architecture which is 

capable of implementing this sequential processing so we can 

quantify the hardware cost of realizing a motion estimation 

engine providing a coding efficiency that is equivalent to 

reference software. 

Previous work [14-17] has discussed various simplifications 

to allow search range and cost calculations across various 

blocks to be shared in hardware. However, these 

simplifications cause motion vector predictions to be 

inaccurate and hence a degradation in coding efficiency.  

This section presents an architecture that is capable of 

processing CUs and PUs sequentially and performing motion 

searches independently. Then, the hardware cost of HM’s fast 

search algorithm is quantified with a methodology to estimate 

area and bandwidth. Finally, a trade-off analysis is done that 

compares different motion estimation configurations 

supporting only a subset of all CU sizes and PU types in terms 

of area, bandwidth and coding efficiency. 

 

A. HEVC Motion Estimation Architecture 

 

In hardware, HM’s sequential processing of CUs and PUs 

requires separate and independent engines performing motion 

search for different block sizes. Block sizes are determined by 

the corresponding CU sizes and PU types. Fig. 3 shows an 

HEVC motion estimation engine architecture supporting all 

block sizes from 64x64 down to 4x4 except AMP partitions. 

This architecture can be generalized to cover AMP partitions 

as well. This architecture is designed to support real-time 

video encoding with the specifications shown in Table III. 

There are a total of 13 engines in the architecture in Fig. 3: 

Three engines for each PU size (e.g. 32×32, 32×16 and 16×32 

for the 32×32 CU) except for the 8×8 CU where there is a 

fourth engine to support N×N (4×4) partition. Each engine 

consists of blocks to perform AMVP list, integer motion 

estimation (IME), fractional motion estimation (FME) and a 

reference pixel buffer.  

 
 

Fig. 4. Processing order of CUs and PU types inside CUs for the architecture 

in Fig. 3. For a 64×64 LCU, costs for smaller blocks are combined and then 

compared to larger block sizes to find the best combination of blocks 

providing the smallest cost for the entire 64×64 LCU. 

 

The processing order for one 64×64 LCU is shown in Fig. 

4. Motion searches are performed for four 4×4 blocks, two 
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8×4 and 4×8 blocks and one 8×8 block. Then a PU decision is 

made to decide which PU type provides the smallest cost for 

the first 8×8 CU. Similarly, three more 8×8 CUs are processed 

sequentially and their costs are output to CU & Mode Decision 

block. During this time, PU decision for the first 16×16 CU is 

also finished and a decision can be done for the first 16×16 

CU. This continues until an entire 64×64 LCU is processed by 

all engines. It should be noted that intra/inter decision is done 

at the CU level and hence costs associated with intra 

prediction are being provided as external inputs to make an 

intra/inter decision. It is also important to note that, for a fixed 

throughput constraint, cycle budget to process a smaller block 

size is tighter. Hence, data bandwidth requirements can be 

significantly larger for smaller block sizes compared to larger 

block sizes. Consequently, smaller block sizes impose a larger 

hardware cost.  

 

B. Overview of Hardware Cost Analysis 

 

The following part of this paper will be talking about the 

hardware cost analysis of HEVC motion estimation module. 

The top level architecture given in the previous section will be 

used for this analysis and the algorithms used in HM-3.0 

implementation will be analyzed.  

 
Specifications of an HEVC Encoder 

Maximum Resolution 4K×2K i.e. 3840×2160 

Maximum Frame Rate at 4K×2K 30 

LCU Size 64×64 

# of Ref. Frames 1 in each direction 

Search Range 64 in x- and y-dir. 

Frequency of Operation 200MHz 

Process Technology 65nm Low-Power CMOS 

 

Table III. Specifications for an HEVC encoder considered in this work. The 

design can support real-time encoding at 4K×2K at 30fps with a clock 

frequency of 200MHz. 

 

The specifications of a target encoder are given in Table III 

but this analysis can be extended for other encoder 

implementations. For hardware cost, we will consider logic 

and on-chip memory area as well as on- and off-chip data 

bandwidth requirements. 

 

Logic Area Estimation Method and Results 

 

 For logic area estimation, the methodology used is as 

follows: 

1. Implement basic building blocks in hardware and use 

synthesis tools to get unit area and power numbers at 

the target frequency of operation point. 

2. Calculate the amount of parallelism required for 

throughput constraint. 

3. Estimate total area by using unit numbers and amount 

of parallelism. 

 

In the top level architecture given in Fig. 3, there are a total 

of 13 parallel engines. Looking at the number of pixel 

calculations/cycle, they are found to be constant across parallel 

engines. Although the number of available cycles is getting 

larger from smaller blocks to larger blocks, number of 

computations/block is also getting larger with the same factor. 

Hence, the hardware required for different engines to perform 

search candidate evaluation is mostly constant. 

Total area of one engine including IME, FME and AMVP 

blocks is estimated to be 305k gates in a 65nm CMOS process. 

It is important to note that the entire motion estimation module 

in Fig. 3 consists of 13 engines, resulting in roughly 4M gates. 

Moreover, to support forward and backward motion estimation 

of the random-access configuration, this number needs to be 

scaled up by roughly a factor of two. 

 

On-Chip Memory Size Estimation Method and Results 

 

As explained in Section 2, each motion estimation engine in 

Fig. 3 is performing independent searches and for each engine, 

a separate memory is necessary in each direction (forward and 

backward) and for each reference frame. Table IV shows the 

size of on-chip memory needed to support ±64 search range. 

Extra pixels are necessary for pixel interpolation in fractional 

motion estimation and they are included in calculations. 

 

Block Size 
On-Chip 

Mem. Size 
Block Size 

On-Chip 

Mem. Size 

64×64 39kB 16×8 21kB 

64×32 33kB 8×16 21kB 

32×64 33kB 8×8 20kB 

32×32 28kB 8×4 20kB 

32×16 25kB 4×8 20kB 

16×32 23kB 4×4 19kB 

16×16 23kB   

 

Table IV. On-chip reference buffer size needed for each engine to support ±64 

search range for a single reference frame. 

 

A total of 0.65MB of on-chip memories is necessary to 

support a single reference frame in forward and backward 

directions for the entire motion estimation module in Fig. 3. 

This number heavily depends on the selected search range 

size. The search range size can be reduced at the expense of 

coding efficiency loss. The work in [18] quantifies this effect 

and reports up to 3.5% loss in coding efficiency when search 

range is reduced from ±64 to ±16. For frame resolutions up to 

4K×2K, a larger search range is advantageous and this work 

uses ±64 in both directions for this analysis. 

It should be noted that on-chip memory size for small block 

sizes is not significantly lower than the size for larger block 

sizes (39kB for 64x64 and 19kB for 4x4). Consequently, 

smaller block sizes do not provide a significant advantage in 

terms of memory size. 

Additional on-chip storage (e.g. line buffers for motion 

information) can be necessary for AMVP but the size heavily 

depends on the specific implementation and the target 

resolution. Moreover, these buffers can be shared across 

parallel engines. For this work, on-chip line buffers are 
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considered for motion information of the top line in forward 

and backward directions. For a 4K×2K video encoder, the 

amount of storage is estimated to be around 30kB. 

 

On-Chip and Off-Chip Bandwidth Estimation Method and 

Results 

 

On-chip and off-chip bandwidth are critical in hardware 

implementations as these numbers affect system power 

consumption and can be limiting factors. 

 On-chip bandwidth is determined by the size of reference 

buffer for each engine and how frequently it is accessed. For 

the fast search algorithm in HM, during IME, entire search 

range can be accessed. This occurs in the case of complex 

motion. To capture the worst-case upper limit, it can be 

assumed that the entire search range in the reference buffer is 

accessed for every block. On-chip bandwidth for FME is 

significantly smaller as only a refinement is done at this stage. 

Lastly, bandwidth for motion information of neighboring 

blocks that is necessary for AMVP candidate calculations is 

small compared to the on-chip bandwidth of the integer and 

fractional motion estimation. 

The reference frames for high-definition sequences are often 

too large to store on-chip thus they are stored on an off-chip 

memory and the necessary parts of these reference frames are 

transferred to on-chip buffers before processing. Off-chip 

bandwidth considered here is the off-chip memory’s read 

bandwidth to bring reference pixel data from off-chip to the 

on-chip buffers for motion estimation. Similarly, off-chip 

bandwidth is determined by the size of the reference buffer and 

how frequently reference buffers for each engine need to be 

updated. Because of the correlation of motion between 

neighboring blocks, in the ideal case, data re-use between 

consecutive blocks can be close to 100%. However, it should 

be noted that the processing order of CUs and PUs in an LCU 

(Fig. 4) does not allow 100% data re-use and hence causes the 

same part of the reference window to be read multiple times. 

Increasing size of the on-chip buffer can improve the data re-

use at the expense of larger on-chip memory area. In this 

section, minimum buffer sizes given in the previous sub-

section (Table IV) are assumed in the bandwidth calculations.  

Table V shows on- and off-chip bandwidth requirement for 

each engine. It should be noted that small block sizes such as 

4x4 require a very large on-chip and off-chip bandwidth 

compared to larger block sizes and imposes a higher cost for 

hardware implementation. 

Block 

Size 

On-Chip 

BW 

Off-Chip 

BW 

Block 

Size 

On-Chip 

BW 

Off-Chip 

BW 

64×64 2.2 1.49 16×8 39.6 13.72 

64×32 3.8 1.86 8×16 39.6 10.33 

32×64 3.8 1.48 8×8 75.6 17.47 

32×32 6.4 3.64 8×4 145.9 30.21 

32×16 11.5 6.05 4×8 145.9 22.94 

16×32 11.5 5.20 4×4 283.8 36.92 

16×16 20.9 7.62    

 

Table V. On- and off-chip bandwidth requirements for each engine in Fig. 3 

with a search range of ±64. All numbers are in GB/s. On-chip bandwidth 

numbers reflect the worst-case condition and off-chip bandwidth numbers 

assume maximum data reuse between consecutive blocks. 

Hardware Cost vs. Coding Efficiency Trade-Offs 

 

In this section of the paper, we will analyze various motion 

estimation configurations where some block sizes (i.e. CU 

sizes and PU types) are not supported and consequently we 

need less than 13 engines. However, the coding efficiency will 

be worse because of the exclusion of some block sizes. It is 

important to quantify the savings in hardware and loss in 

coding efficiency to be able to make an optimum decision 

between supported block sizes.  

Fig. 5 shows hardware area and bandwidth as well as coding 

efficiency results for 11 different motion estimation 

configurations. Each column corresponds to a different 

configuration supporting all or some of the available block 

sizes.  

 

 
 

Fig. 5. Hardware cost vs. coding efficiency comparison for 11 different 

motion estimation configurations. “Y” and “N” represents if a block size is 

supported or not respectively. 

 

Configuration #1 supports all block sizes and is the anchor 

configuration for this work. Simulations in HM-3.0 are 

performed to quantify coding loss for each configuration 

except for the configurations #8-11 where HM-3.2 is used 

because of a bug in HM-3.0 which prevents LCU size to be 

changed. The bit-rate increase in Fig. 5 is given as the average 

of the numbers from all-intra, low-delay, low-delay P and 

random-access common test conditions defined by JCT-VC 

[4]. The common test conditions cover a wide range of 

sequences with resolutions as small as 416×240 and as large as 

2560×1600. 

Fig.6-a and Fig. 6-b plot core area savings vs. bit-rate 

increase and off- chip bandwidth savings vs. bit-rate increase 

for 10 configurations in Fig. 5 with respect to the anchor, 

configuration #1. Each configuration is denoted by a dot on 

this figure except for the anchor configuration as the anchor 

would be at the origin of the plot. The slope of the lines 

connecting each configuration to the origin provides a visual 

method to compare how efficient each configuration is. A 

smaller slope means that more savings can be achieved with 

smaller bit-rate increase (coding loss). Lines connecting 
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configurations #3, #5 and #7 and the origin are given on Fig. 

6-a and Fig. 6-b as examples. 

 

Observations and Conclusions 

 

It can be observed from Fig. 5 and Fig. 6 that configurations 

supporting smaller block sizes such as 4×4 require largest area 

and bandwidth although the coding gain achieved through 

supporting them is relatively smaller. In other words, not 

supporting smaller partitions has a smaller effect on coding 

efficiency although these engines contribute significantly to 

bandwidth and area. For example, by removing 4x4, 4x8 and 

8x4 block sizes in configuration #2, 17% memory area, 3.7× 

on-chip bandwidth and 2.3× off-chip bandwidth can be saved 

at the expense of only 2% coding loss with common conditions 

using a single reference frame and fast search algorithm. This 

result supports the decision about removing 4x4 PU and 4x8 

and 8x4 bi-prediction from the final standard. 

 

 
(a) 

 
(b) 

 

Fig. 6. (a) Core area savings vs. bit-rate increase and (b) off-chip bandwidth 

savings vs. bit-rate increase scatter plots for all the configurations given in 

Fig. 5. 

 

Another observation from Fig. 5 and Fig. 6 is that not 

supporting 2N×N and N×2N does not result into significant 

coding efficiency loss. Fox example, from configuration #2 to 

#3, coding efficiency degrades by 1% and the degradation 

from configuration #4 to #5 and #6 to #7 are less than 1%. 

On-chip reference buffer size mainly depends on the search 

range and block size. However, from smaller to larger block 

sizes, the increase in memory size is not very significant. In 

terms of memory bandwidth, small block sizes, especially 

smaller than 8x8, impose very high bandwidth requirements. If 

savings are necessary due to system level restrictions for 

bandwidth, small block sizes can be chosen not to be 

supported. 

Lastly, final decision on supported block sizes depends on 

the area and bandwidth limitations as well as coding efficiency 

specifications of the target encoder. Since larger area and 

higher bandwidth often result in higher power consumption, 

battery- powered mobile applications might trade-off some of 

the coding efficiency for lower power consumption. If coding 

efficiency has the highest priority, all block sizes can be 

supported (configuration #1) although this might lead to a 

significantly large area and power consumption. If area as well 

as power are critical, configuration #5 and #7 are suitable 

solutions. 

III. COST AND CODING EFFICIENT (CCE) HEVC MOTION 

ESTIMATION DESIGN 

In this section we will talk about architecture and algorithm 

development for reducing the hardware cost even further with 

minimum impact on the coding efficiency. It should be noted 

that although the following algorithm and architecture 

developments are targeted for configuration #5, these 

algorithms and architectures are suitable for all configurations 

supporting square-shaped block sizes. Moreover, the hardware 

implementation details and results are also provided based on 

the proposed algorithms presented in this section and the target 

specifications given in Table III. 

 

A. CCE Motion Estimation Architecture 

 

Top level architecture for CCE motion estimation module is 

given in Fig. 7. CU sizes of 64×64, 32×32 and 16×16 are 

supported. Since there is only a single PU type (2N×2N) in 

each CU engine, an internal PU decision is not necessary. It 

should be noted that this architecture is still capable of 

processing blocks sequentially and consequently using exact 

motion information of the neighboring blocks.  

B. Search Algorithm Development for CCE Motion 

Estimation 

 

Fast search strategy used in HM-3.0 starts the search around 

the best AMVP and consists of many inter-dependent stages. 

For example, the result of the initial diamond search 

determines if a sub-sampled raster search is performed or not. 

In hardware implementation, this dependency increases 

complexity and often results in extra cycles or extra hardware 

to account for the worst-case conditions. 

Recent work focused on search algorithms that can be 

parallelized in hardware implementation [8, 16]. For CCE 

implementation, we implemented a similar, two- stage search 

strategy for IME where each stage can be independently 

performed in parallel. Fig. 8 shows IME search patterns used 

in each of the stages. First, search center is decided by 

comparing AMVP list entries (up to three entries) and [0,0]. 

During this comparison, SAD (sum of absolute differences) 

cost is used. After search center is determined, two stages of 

the search is started in parallel. 
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Fig. 7. Top level architecture of the CCE motion estimation implementation. 

Block sizes of 64×64, 32×32 and 16×16 are supported. 

 

One of the parallel stages consists of a coarse search 

covering ±64 by checking every 8
th

 candidate in each 

direction. This stage can capture a change in motion or 

irregular motion patterns that cannot be tracked by AMVP. 

The second stage performs a more localized three step search 

around the ±7 window of the search center. This stage can 

capture regular motion. There are two additional advantages of 

running both searches in parallel. First, the pixel data for the 

coarse search can be used to perform the localized three step 

search hence reducing memory bandwidth. Secondly, the 

cycles necessary to access the pixels for both search stages can 

be shared to reduce the total number of cycles. 

 

 
 

Fig. 8. Two stage search approach used for CCE implementation. Stages are 

independent of each other and can be performed in parallel in hardware. 

 

It is important to note that the AMVP calculation for all 

CUs uses exact motion vectors of the neighbors and AMVP is 

accurate and hence can track motion well in most cases. 

The proposed IME search strategy checks a total of 285 

candidates for each CU as opposed to up to 848 candidates 

that are checked in fast search strategy in HM-3.0. This results 

in roughly 2× hardware area reduction in IME for the same 

throughput constraint. Actual savings might be larger in 

implementation because of the additional complexity due to 

inter-dependent stages of HM-3.0 algorithm. Lastly, for FME, 

search strategy of HM is used where sub-pixel positions are 

evaluated around the best integer motion vector to find the best 

sub-pixel accurate motion vector. 

 

C. Sharing Reference Pixel Buffers for CCE Motion 

Estimation 

 

Sharing the on-chip reference buffer across parallel engines 

can provide significant savings in terms of area and off-chip 

bandwidth. However, restricting the search range of parallel 

engines to a shared window will result in coding efficiency 

loss. This loss can be minimized by determining the shared 

search window carefully. 

In the case of separate reference buffers with ±64 search 

range for each engine, the implementation in Fig. 7 requires 

three 1R1W (1 read, 1 write) port memories with 39kB, 

27.5kB and 22.5kB sizes for 64×64, 32×32 and 16×16 engines 

respectively as given in Table IV. Total area consumed by 

these three memories can be estimated to be roughly 1.25mm
2
 

in a 65nm CMOS technology [19] as shown in Table VI. It 

should be noted that this area is for storing the pixels on the 

chip for a single direction and single reference frame. 

In contrast to this, in the case of a shared reference buffer 

with ±64 search range, the size is determined by the largest CU 

size and a single 39kB memory is needed with 3R1W ports. 

Although the bit-cell area and some peripheral components 

need to be expanded to support multiple read ports, the overall 

area can be smaller as shown in Table VI. Hence, shared 

search range across parallel engines results in 16% area 

savings for the implementation considered in Fig. 7. 

 

 
Separate Buffer 

(3 x 1R1W) 

Shared Buffer 

(1 x 3R1W) 

Memory Size 89kB 39kB 

Est. Cell Area 0.85m2 1.55m2 

Est. Array Area 0.75mm2 0.61mm2 

Est. Periphery Area 0.5mm2 0.44mm2 

Est. Total Area 1.25mm2 1.05mm2 

 
Table VI. Area comparison of shared and separate reference buffers. 

Estimates are based on a 65nm CMOS technology. 

 

With independent motion searches, each engine might have 

different search centers and consequently access different parts 

of the reference frame as the search window. Table VII shows 

maximum and average off-chip bandwidth for 64×64, 32×32 

and 16×16 engines. The upper limit on the bandwidth is 

calculated by assuming that the entire on-chip reference buffer 

needs to be updated between consecutive CUs and hence no 

data re-use is possible. The total maximum off-chip bandwidth 

is 29.5 GB/s for supporting 4K×2K resolution at 30fps 

assuming a search range of ±64. Average bandwidth number 

with close to 100% data re-use between consecutive LCUs is 

12.7 GB/s. In the case of a shared reference window across 

engines, the maximum bandwidth is equal to the maximum 

bandwidth of the 64×64 LCU since the size of the shared 

search window is determined by the largest CU size given that 

the reference pixel data for smaller CUs are part of the data for 

the LCU. Sharing the search window provides 13.4× and 8.3× 
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savings in terms of the maximum and average bandwidth 

requirements.  

 
CU Size Max. Off-Chip BW Avg. Off-Chip BW 

64x64 2.2GB/s 1.5GB/s 

32x32 6.4GB/s 3.6GB/s 

16x16 20.9GB/s 7.6GB/s 

Total 29.5GB/s 12.7GB/s 

 

Table VII.  Maximum and average off-chip bandwidth requirement for 

different CU sizes (search range is ±64) for supporting 4K×2K at 30fps. 

Average off-chip bandwidth is calculated by an experiment on Traffic 

sequence under random access condition. 

 
(a) 

 
(b) 

 

Fig. 9. (a) Density maps for the relative location of pixels from best-matching 

blocks with respect to the AMVP of the LCU for (a) PeopleOnStreet and (b) 

Traffic sequences. More than 99% of the pixels lie within ±64 (a 192x192 

block of pixels surrounding a 64x64 CU) of the AMVP of the LCU 

(2560x1600 sequences with QP=22 in random-access configuration). 

 

In order to minimize the coding efficiency impact of sharing 

search window across engines, a good representative should be 

selected for the motion of all CUs within an LCU. AMVP of 

the LCU is observed to provide a good center point for the 

shared search window. Fig. 9 shows the density map for the 

relative location of the pixels from best matching blocks with 

respect to the AMVP of the LCU for two different sequences. 

Best matching blocks are calculated with the original HM-3.0 

fast search algorithm and the search range is ±64 pixels in each 

direction. For both sequences, more than 99% of the best 

matching pixels lie in the ±64 vicinity of the AMVP (192x192 

block of pixels surrounding the 64x64 block that AMVP is 

pointing to) of the LCU. This indicates that AMVP of the LCU 

can be used as the search window center without introducing 

significant coding efficiency loss. 

For smaller CUs that have different AMVPs and 

consequently different search centers, the search window is 

modified to fit in the shared window such that the window is 

shifted to make sure it lands inside the shared search window 

in the on-chip buffer. It is important to note that although the 

search window is modified, original AMVP of the CU is used 

in cost calculations. Moreover, total number of candidates 

stays the same for all CU sizes regardless of the search 

window being modified or not. This provides simplicity in 

hardware implementation. 

 

D. Reference Pixel Data Pre-fetching Strategy 

 

For a practical hardware implementation, off-chip memories 

are used for large storage requirement of reference frames. 

DRAMs are generally used to implement these off-chip 

storage. Because of the internal mechanism of DRAMs, it is 

necessary to request the data from off-chip memories in 

advance since the latency of these memories can be on the 

order of thousands of cycles. Stalling the encoding operation 

while waiting for the pixel data from DRAM can cause a 

reduction of the throughput of the system.  

To address this, the pre-fetching strategy described in [20] 

is implemented for CCE motion estimation. This strategy 

involves calculating the center of the reference window by 

only using the information from the top row such that the 

requests for the pixels can be placed in advance. 

 

E. Enlarging On-Chip Reference Buffers for Higher Data 

Reuse Rate 

 

In order to share the cycles between writing to and reading 

from the reference buffer, larger on-chip storage is necessary. 

This extra storage is used to start writing the data for the next 

LCU while motion estimation for current LCU is continuing. 

For this purpose, an extra storage that is 64 pixels wide (size 

of an LCU) is necessary. Obviously, extra storage alone is not 

adequate if the search center from current LCU to next LCU is 

changing. This issue can be addressed by allowing a larger 

storage for reference buffers and algorithm modifications. 

In the ideal case where consecutive LCUs have the same 

AMVP, a 100% data reuse rate can be achieved where search 

window moves to the right by 64 pixels for every LCU. An 

illustration of 100% data reuse case is shown in Fig. 10-a, 

where five LCUs and their corresponding search window are 

shown. However, this is highly unlikely and AMVP of 

consecutive LCUs can be very different from each other 

especially in frames with complex motion. Fig. 10-b shows a 

case where data reuse between five LCUs is very poor. 
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In the discussion above, we always considered the case 

where on-chip reference buffer size is equal to the search 

window size and additional storage for the next LCU. 

However, if the on-chip memory size is increased to hold a 

larger window, data reuse rate can be improved as there is a 

higher chance of the data on the chip matching next LCU’s 

search window. Although larger on-chip memories result in 

larger bandwidth per LCU, the improvement in data reuse rate 

can over-power this increase and results in a reduction in 

overall average bandwidth.  

 

 
(a) 

 

 
(b) 

 

Fig. 10. Search ranges of five consecutive LCUs with (a) uniform motion 

maximizing data reuse and (b) non-uniform motion causing lower data reuse 

rate. 
 

It should be noted that although on-chip memories hold a 

larger window, search window is not increased and kept as 

±64 in each direction and consequently the total number of 

candidates in motion search is not affected from this 

modification. Fig. 11 shows the reference window with N extra 

pixels on each side and also the extra 64 pixels for the next 

LCU. 

 

 
 

Fig. 11. Extra storage is needed for on-chip buffers to share cycles for read 

and write accesses to the memories and N extra pixels on each side of the 

reference buffer is considered for improving data reuse rate. 

{200+2N}×{200+2N} portion is used for current LCU and 64×{200+2N} 

portion is used for next LCU. LCU size is 64×64 and search range is ±64. 
 

The effect of increasing reference buffer size by N pixels on 

all four sides is analyzed in terms of bandwidth. Fig. 12 plots 

total off-chip bandwidth, maximum data reuse rate and on-chip 

buffer size for two different sequences with changing N. 

With increasing N, on-chip buffer size and the bandwidth 

due to updating a larger buffer for every LCU increase. 

However, also with increasing N, maximum data reuse rate 

increases. Fig. 12 also shows the bandwidth with 0% data 

reuse without any increase in on-chip buffer size (i.e. N=0) 

and the bandwidth with 100% data reuse with N=32.  

Because of the conflicting trends, write bandwidth makes a 

minimum around N = 16 for both sequences. This provides 

close to 1.8X savings in off-chip bandwidth at the expense of 

35% area increase in reference pixel buffers.  

 

 
 
Fig. 12. Total off-chip write bandwidth, maximum data reuse rate and on-chip 

buffer size for Traffic (2560×1600) and BasketballDrive (1920x1080) 

sequences. Simulations are performed in Random Access test condition with 

QP = 22. 

 

To further improve data reuse rate and reduce off-chip 

bandwidth, pre-fetching algorithm is modified to limit the 

difference between two AMVPs (centers of search windows) 

to ±N. Intuitively, this translates to the search window being 

able to track changes in motion by at most N pixel step sizes. 

For this work, N is chosen to be 16 to minimize its effect on 

the coding efficiency and to minimize total bandwidth. 

 

F. Effect on Bit-Rate 

 

The changes in various parts of the search strategy for CCE 

motion estimation are implemented in the HM-3.0 software 

and their effect on coding efficiency is quantified under 

common conditions. Simulations are performed under the 

conditions defined in [4]. 

Table VIII shows coding efficiency change with respect to 

the HM-3.0 fast search algorithm in configuration #5 after 

each modification. Columns LD, LDP and RA stands for low-

delay, low-delay with P and random-access test conditions as 
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defined by JCT-VC [4]. Avg column is the average of LD, 

LDP and RA. Lastly, Max and Min columns are the maximum 

and minimum rate change for all tested sequences respectively. 

The average cumulative rate increase due to the proposed 

changes is 1.6%. Search algorithm changes constitute 1% of 

this increase. Random-access test conditions result in the 

largest coding efficiency degradation as the distance between 

the reference frame and the coded frame is longer in this test 

condition. In general, sequences with lower resolution face a 

larger degradation of coding efficiency compared to the 

sequences with higher resolution because of the architectural 

decision to not support CU sizes smaller than 16x16. 

 

G. Hardware Implementation of a CU Engine 

 

Hardware implementation results presented in this section 

are based on the CCE ME implementation discussed in Section 

III.  

Fig. 13 shows the architecture of one CU engine. Integer 

and fractional motion estimation parts are implemented 

together and they are not pipelined for maximum coding 

efficiency as pipelining these processes would require integer 

motion vectors to be used in the AMVP calculations. 

Reference buffer and block buffer hold reference and 

current CU’s data respectively. Reference buffer write control 

exerts write operations on the reference buffer for the next 

LCU whereas read control accesses the search range data. 

AMVP part calculates the motion vector predictor list. Cost 

tree and comparator array are capable of calculating the cost of 

4 motion vector candidates/cycle for the 16×16 CU for which 

the cycle budget is the shortest. For larger CU sizes, although 

the number of cost calculations is the same, the throughput is 

lower (e.g. 1 motion vector candidate/cycle for 32x32 CU). 

 

 

 

 

Best position and cost is stored in sequential elements and 

compared against costs for newer candidates. Finally, engine 

control ensures the flow of data inside the engine as well as the 

communication of higher level control units.  

This design is targeted towards an encoder supporting real-

time processing of 4Kx2K frame resolution at 30fps with a 

200MHz clock as given in Table III. These specs require the 

processing of each 64x64 LCU to be completed in 3292 cycles 

and the hardware design is parallelized to provide this 

throughput. 

 

 
 

Fig. 13. Architecture of one engine in CCE HEVC motion estimation 

implementation. 

 

To be able to support the 4 motion vector candidates/cycle 

output requirement for the 16x16 CU engine, search range is 

partitioned into 88 blocks of SRAMs, each block holding 

roughly 200 words and four neighboring pixels on every word. 

Fig. 14 shows the allocation of pixels on memory banks. 

Going from one LCU to the next, since most of the data is 

reused, only pointers to the memory locations are changed. 

This is handled in the read control by holding the left-top 

coordinate (Left-TopX, Left-TopY) of the search range as well 

as an address bias (AB) which is incremented by 64 pixels for 

every LCU. Engine control requests a stripe (8×44) of 

reference pixels by providing the left-top coordinate (InX,InY) 

to read control. After data is read from SRAM blocks, 8×44 

pixel block is output in the next cycle. There is a multiplexer 

 
# of Search 

Candidates 

On-Chip Buffer 

Size (mm2) 

Off-Chip BW 

(GB/s) 
LD LDP RA Avg Max Min 

HM-3.0 Anchor (Conf. #5) 466 1.25 12.7 0 0 0 0 0 0 

Search Algorithm 285 1.25 12.7 0.6 0.8 1.6 1.0 3.1 0.1 

Search Algorithm 

& 

Shared Search Range 

285 1.05 1.5 0.6 1.0 2.9 1.5 7.4 0.2 

Search Algorithm 

& 

Shared Search Range 

& 

Pre-fetch 

285 1.05 1.5 0.9 1.0 2.9 1.6 7.3 0.2 

Search Algorithm 

& 

Shared Search Range 

& 

Pre-fetch 

& 

Limited Search Range Movement 

with N=16 

285 1.38 1.25 0.9 1.0 2.9 1.6 7.4 0.2 

 

Table VIII. Simulation results for the coding efficiency change after the search algorithm, shared search window, pre-fetching and limiting the movement of 

search range center by N = 16 with respect to HM-3.0 (configuration #5). Number of search candidates, on-chip buffer size and off-chip bandwidth numbers are 

also provided for comparison. All columns with coding efficiency change (i.e. LD, LDP, RA, Avg, Max and Min) are in percentage values. 
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array at the output of the read control to select appropriate 

outputs from SRAM blocks and put them in order. 

New data overwrites the older data sequentially for every 

LCU in the reference buffer. At the beginning of an LCU line 

in the frame, all memory locations need to be updated. For all 

other LCUs, a 64×232 block (as explained in Fig. 11 with 

N=16) and possibly N=16 pixel wide edges are updated since, 

at the algorithm level, the movement of the search center is 

limited to be less than N=16 pixels between consecutive 

LCUs. Lastly, the search range accessed by the read control 

and the pixels that are overwritten by write control are not 

overlapping so read and write operations can be done in the 

same cycle. 

Synthesis results for the reference buffer read and write 

control show that a total of 52.6k gates are used. Read control 

takes up a larger area due to the multiplexers to select the 

outputs from 88 SRAM blocks. 

 

 
 

Fig. 14. Search range partitioning and physical location of pixels in memory 

banks for the search range shown in Fig. 11 with N=16. 

 

 
 

Fig. 15 Cost tree implementation using 1-bit absolute difference (AD) and 

motion vector cost calculation. 

 

As shown in Fig. 15, cost tree calculates costs and adds the 

motion vector cost to create total motion cost. 1-bit partial 

absolute-differences (AD) are calculated and 1-bit ‘msb’ 

information is propagated to the output to make the critical 

path shorter. ADs and msb bits from multiple pixels are 

summed in parallel. MV cost calculation is implemented with 

a priority encoder as shown in Fig. 15. The input to the priority 

encoder is the absolute difference of the candidate and the 

motion vector predictor. Then, comparator array compares 

costs of candidates with the smallest cost and decides if the 

smallest cost needs to be updated or not. At the end of the 

search, smallest cost and its corresponding candidates are 

signaled as motion vectors. Lastly, cost tree and comparator 

array implementation results in 131k gates. 

Fig. 16 shows the implementation of the AMVP block. A0-1 

and B0-2 are spatial neighbors and C and H are temporal 

neighbors to the current block [13]. A scaling operation is used 

if the motion information from the neighbors cannot be used 

directly. The scaling operation involves two multiplication 

operations and constitutes a large fraction of the overall area 

of the AMVP block. Micro architecture of the scaling block is 

shown in Fig. 17. Picture order count (POC) values of the 

current and reference frame as well as the POC values of the 

neighboring blocks are used to calculate the scaling factor. 

Two multiplication operations are pipelined to meet the 

frequency requirements. Once the motion vector predictor 

candidates are calculated, they undergo a “uniquify” operation 

to ensure that the final AMVP list is composed of distinct 

members. AMVP block results in 26k gates. 

 
 

 
 

Fig. 16. Block diagram of the AMVP block. 

IV. CONCLUSION 

Motion estimation is one of the most critical blocks in 

HEVC encoder designs, and is analyzed for its hardware 

implementation cost in this work. This study presents the 

trade-offs between coding efficiency and hardware cost in 

order to make critical design decisions. Specifically, a motion 

estimation implementation providing coding efficiency 

equivalent to the reference software is considered and its 

hardware cost is quantified. This design is found to be very 

costly in hardware.  

 

 
 

Fig. 17. Implementation of the scaling unit in AMVP. 

 

To reduce hardware cost, first, a reduction in the number of 

coding engines is considered and quantitative analysis has 
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been performed to find the configuration providing the best 

trade-off. Secondly, to further reduce hardware cost, hardware-

oriented algorithms are developed that are suitable for the 

selected architecture. Overall, 56x on-chip bandwidth, 151x 

off-chip bandwidth, 4.3x core area and 4.5x on-chip memory 

area savings are achieved when compared to the hardware 

implementation of the HM reference software design. These 

savings are achieved at the expense of <4% coding efficiency 

degradation with respect to the HM-3.0 supporting all CU 

sizes and PU types and with fast search. Finally, the 

methodology used in this work can be generalized to other 

parts of a video codec design for understanding hardware cost 

and coding efficiency trade-offs and eventually to make 

critical design decisions. 
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