354 research outputs found

    Container network functions: bringing NFV to the network edge

    Get PDF
    In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers are exploiting virtualization over their network by implementing network services in virtual machines, decoupled from legacy hardware accelerated appliances. This effort, known as NFV, reduces OPEX and provides new business opportunities. At the same time, next generation mobile, enterprise, and IoT networks are introducing the concept of computing capabilities being pushed at the network edge, in close proximity of the users. However, the heavy footprint of today's NFV platforms prevents them from operating at the network edge. In this article, we identify the opportunities of virtualization at the network edge and present Glasgow Network Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight container VNFs, saving core network utilization and providing lower latency. Finally, we demonstrate three useful examples of the platform: IoT DDoS remediation, on-demand troubleshooting for telco networks, and supporting roaming of network functions

    NetFPGA-based firewall solution for 5G multi-tenant architectures

    Get PDF
    Future fifth-generation (5G) mobile networks entails architectural and network changes, mainly motivated by the idea of sharing resources between different network operators, which implies a reduction of the costs, thanks to the deployment of virtualised scenarios in shared infrastructures, and an improvement of the network usability. These architectural changes should guarantee that security and 5G Key Performance Indicators (KPIs) are achieved in 5G multi-tenant scenarios. The deployment of advanced architectures and network scenarios for the emerging 5G networks involves a renovation of the elements that compose them. Nowadays, there is no hardware solution which ensures the protection in 5G edge to core multi-tenant scenarios, therefore this paper proposes a fully functional 5G firewall based on a Field Programmable Gate Array (FPGA) that allows effective detention of cyber-attacks in 5G multi-tenant scenarios with user mobility support. The prototyped 5G firewall has been empirically evaluated to validate new capabilities in a 5G edge-to-core scenario. Moreover, an extensive performance and scalability test of the prototyped system has been carried out in a realistic testbed

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Infrastructure sharing of 5G mobile core networks on an SDN/NFV platform

    Get PDF
    When looking towards the deployment of 5G network architectures, mobile network operators will continue to face many challenges. The number of customers is approaching maximum market penetration, the number of devices per customer is increasing, and the number of non-human operated devices estimated to approach towards the tens of billions, network operators have a formidable task ahead of them. The proliferation of cloud computing techniques has created a multitude of applications for network services deployments, and at the forefront is the adoption of Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV). Mobile network operators (MNO) have the opportunity to leverage these technologies so that they can enable the delivery of traditional networking functionality in cloud environments. The benefit of this is reductions seen in the capital and operational expenditures of network infrastructure. When going for NFV, how a Virtualised Network Function (VNF) is designed, implemented, and placed over physical infrastructure can play a vital role on the performance metrics achieved by the network function. Not paying careful attention to this aspect could lead to the drastically reduced performance of network functions thus defeating the purpose of going for virtualisation solutions. The success of mobile network operators in the 5G arena will depend heavily on their ability to shift from their old operational models and embrace new technologies, design principles and innovation in both the business and technical aspects of the environment. The primary goal of this thesis is to design, implement and evaluate the viability of data centre and cloud network infrastructure sharing use case. More specifically, the core question addressed by this thesis is how virtualisation of network functions in a shared infrastructure environment can be achieved without adverse performance degradation. 5G should be operational with high penetration beyond the year 2020 with data traffic rates increasing exponentially and the number of connected devices expected to surpass tens of billions. Requirements for 5G mobile networks include higher flexibility, scalability, cost effectiveness and energy efficiency. Towards these goals, Software Defined Networking (SDN) and Network Functions Virtualisation have been adopted in recent proposals for future mobile networks architectures because they are considered critical technologies for 5G. A Shared Infrastructure Management Framework was designed and implemented for this purpose. This framework was further enhanced for performance optimisation of network functions and underlying physical infrastructure. The objective achieved was the identification of requirements for the design and development of an experimental testbed for future 5G mobile networks. This testbed deploys high performance virtualised network functions (VNFs) while catering for the infrastructure sharing use case of multiple network operators. The management and orchestration of the VNFs allow for automation, scalability, fault recovery, and security to be evaluated. The testbed developed is readily re-creatable and based on open-source software

    P4-NetFPGA-based network slicing solution for 5G MEC architectures

    Get PDF
    Network Slicing is one of the fundamental capabilities of the new Fifth-generation (5G)networks. It is defined as several logical networks that are created to fulfil specific Quality of Service (QoS)and Quality of Experience (QoE)requirements and are available over the same physical infrastructure. This paper proposes a novel extension to P4-NetFPGA framework to achieve network slicing between different 5G users in the edge-to-core network segment. This solution provides hardware-isolation of the performance in terms of bandwidth, latency and packet loss of 5G network traffic. The work proposed has been validated in a real 5G infrastructure

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    VNF-AAPC : accelerator-aware VNF placement and chaining

    Get PDF
    In recent years, telecom operators have been migrating towards network architectures based on Network Function Virtualization in order to reduce their high Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). However, virtualization of some network functions is accompanied by a significant degradation of Virtual Network Function (VNF) performance in terms of their throughput or energy consumption. To address these challenges, use of hardware-accelerators, e.g. FPGAs, GPUs, to offload CPU-intensive operations from performance-critical VNFs has been proposed. Allocation of NFV infrastructure (NFVi) resources for VNF placement and chaining (VNF-PC) has been a major area of research recently. A variety of resources allocation models have been proposed to achieve various operator's objectives i.e. minimizing CAPEX, OPEX, latency, etc. However, the VNF-PC resource allocation problem for the case when NFVi incorporates hardware-accelerators remains unaddressed. Ignoring hardware-accelerators in NFVi while performing resource allocation for VNF-chains can nullify the advantages resulting from the use of hardware-accelerators. Therefore, accurate models and techniques for the accelerator-aware VNF-PC (VNF-AAPC) are needed in order to achieve the overall efficient utilization of all NFVi resources including hardware-accelerators. This paper investigates the problem of VNF-AAPC, i.e., how to allocate usual NFVi resources along-with hardware-accelerators to VNF-chains in a cost-efficient manner. Particularly, we propose two methods to tackle the VNF-AAPC problem. The first approach is based on Integer Linear Programming (ILP) which jointly optimizes VNF placement, chaining and accelerator allocation while concurring to all NFVi constraints. The second approach is a heuristic-based method that addresses the scalability issue of the ILP approach. The heuristic addresses the VNF-AAPC problem by following a two-step algorithm. The experimental evaluations indicate that incorporating accelerator-awareness in VNF-PC strategies can help operators to achieve additional cost-savings from the efficient allocation of hardware-accelerator resources

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore