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1 Abstract7

In recent years, telecom operators have been migrating towards network architectures based on Network Function8

Virtualization in order to reduce their high Capital Expenditure (CAPEX) and Operational Expenditure (OPEX).9

However, virtualization of some network functions is accompanied by a significant degradation of Virtual Network10

Function (VNF) performance in terms of their throughput or energy consumption. To address these challenges,11

use of hardware-accelerators, e.g. FPGAs, GPUs, to offload CPU-intensive operations from performance-critical12

VNFs has been proposed.13

Allocation of NFV infrastructure (NFVi) resources for VNF placement and chaining (VNF-PC) has been a major14

area of research recently. A variety of resources allocation models have been proposed to achieve various operator’s15

objectives i.e. minimizing CAPEX, OPEX, latency, etc. However, the VNF-PC resource allocation problem for the16

case when NFVi incorporates hardware-accelerators remains unaddressed. Ignoring hardware-accelerators in NFVi17

while performing resource allocation for VNF-chains can nullify the advantages resulting from the use of hardware-18

accelerators. Therefore, accurate models and techniques for the accelerator-aware VNF-PC (VNF-AAPC) are19

needed in order to achieve the overall efficient utilization of all NFVi resources including hardware-accelerators.20

This paper investigates the problem of VNF-AAPC, i.e., how to allocate usual NFVi resources along-with hardware-21

accelerators to VNF-chains in a cost-efficient manner. Particularly, we propose two methods to tackle the VNF-22

AAPC problem. The first approach is based on Integer Linear Programming (ILP) which jointly optimizes VNF23

placement, chaining and accelerator allocation while concurring to all NFVi constraints. The second approach is24

a heuristic-based method that addresses the scalability issue of the ILP approach. The heuristic addresses the25

VNF-AAPC problem by following a two-step algorithm.26

The experimental evaluations indicate that incorporating accelerator-awareness in VNF-PC strategies can help27

operators to achieve additional cost-savings from the efficient allocation of hardware-accelerator resources.28
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3 Introduction31

The incessant expansion in the number of connected users and network-services has resulted in exponential growth32

of traffic on the networks of telecom-operators. Telecom infrastructure thus needs to be scaled periodically to cope33

with the increasing traffic demands which result in high Capital Expenditure (CAPEX) and Operational Expen-34

diture (OPEX). However, the growth in Average Revenue Per User (ARPU) has been very marginal due to the35

cut-throat competition among the operators. As a result, operators are forced to seek new network architectures36

that are scalable, agile and cost-efficient [1].37

Network Function Virtualization (NFV) is a technology which leverages IT virtualization techniques for consoli-38

dating network appliances onto commercial-off-the-shelf (COTS) server machines. NFV aims to replace Network39

Functions (NFs) based on proprietary ASICs, also known as middleboxes, by their software instances running on40
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the general-purpose platforms consisting of x86 or ARM based high-volume servers (HVS). The software imple-41

mentation of a NF running in a virtualized environment is called Virtual Network Function (VNF). Fig 1 shows the42

reference architecture of NFV as proposed by ETSI [2]. The purpose of the virtualization layer is to abstract the43

NFV Infrastructure (NFVi), which includes the compute, storage and networking resources, from VNFs running44

over it. Various virtualization technologies e.g. VMs, containers, are exploited for the realization of the virtualiza-45

tion layer.46

Replacing network services based on middleboxes with VNF-chains running on COTS servers has several ad-
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Figure 1: Reference NFV architecture by ETSI [2]. Components shown in blue needs to be added/updated as a
result of inclusion of hardware-acceleration in NFVi.
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vantages, such as the reduction in CAPEX and OPEX, faster time-to-market (TTM) of services, ease of service48

management and upgrade, etc [1]. Although, NFV offers several advantages, replacing NFs middleboxes with49

VNFs can have a detrimental effect on their packet-processing performance, e.g. loss of throughput and/or un-50

deterministic latency. Furthermore, the growth in the computational capacity of CPUs is flattening with the time51

due to an expected end of Dennard’s scaling and Moore’s law in the coming years [3]. Performance improvement52

of software-based packet-processing platforms is expected to fall short as compared to the increasing data traffic53

on telecom networks. Therefore, matching the performance of middleboxes will be one of the key challenges faced54

by operators in the future too with regards to the widespread NFV adoption. This challenge has led to a recent55

interest in hardware-acceleration techniques for VNFs using externally connected hardware devices e.g. Graphics56

Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), Network Processing Units (NPUs), etc.57

Hardware-accelerators and CPUs can be used in conjunction such that CPU-intensive tasks can be offloaded from58

VNFs to hardware-accelerators and the rest of the VNF operations can be performed by the CPU of general-purpose59

hardware (COTS servers). As a consequence, an improvement in the overall packet-processing performance can be60

achieved.61

Due to the upward trend of outsourcing network processing to the cloud, data centers (DCs) are being considered62

as NFVi. The share of energy costs in a DC, which includes the cost of energy spent in servers, switches and cooling63

of DCs, mainly constitute the OPEX cost. A large number of VNF CPU cycles are consumed in packet-processing64

tasks which otherwise consume a fraction of energy if implemented in the hardware. For example, using hardware-65

acceleration to offload iFFT/FFT in cloud-RAN (C-RAN) scenarios to FPGAs, GPUs or DSP can result in power66

saving by about 70% per carrier [4]. As a consequence, additional VNFs can be accommodated on the same NFVi67

as some CPU cores are freed because of the offload to hardware-accelerators.68

Accelerators resources are being increasingly integrated with the NFVi layer along with the usual compute, network69

and storage (Fig. 1). However, the current Management and Orchestration (MANO) layer is mostly unaware of the70

acceleration requirements of VNFs and the location of hardware-accelerators in NFVi. As a result, the resource al-71

location decisions taken by the orchestrator are agnostic to VNF requirements and locality of hardware-accelerator72
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resources. This could lead to sub-optimal utilization of NFVi resources. Particularly, the inefficient allocation of73

hardware-accelerator resources can negate the advantages resulting from the use of hardware-accelerators in NFV74

environments.75

The overview of the accelerator-agnostic and accelerator-aware resource allocation procedure for VNF instantiation76

is depicted in Fig. 2 (a) and (b) respectively [2]. For the regular accelerator-agnostic VNF orchestration proce-77

dure (Fig. 2 (a)), NFV Orchestrator (NFVO) first validates the received VNF instantiation request and passes78

the corresponding VNF descriptor (VNFD) to the VNF Manager (VNFM). As VNFM is agnostic to accelera-79

tor requirement of the VNF or existence of any offload capability in NFVi, it requests the reservation of regular80

NFVi resources (compute, storage, and network) via Virtual Infrastructure Manager (VIM) which in turn allocates81

VMs/containers for the VNF and attach them to the network. VIM acknowledges NFVO when the resource reser-82

vation is complete. Further, deployment-specific configuration of VMs/containers can be performed through the83

corresponding VNFM after the VNF instantiation is completed. The instantiated VNF cannot offload its opera-84

tions to a hardware-accelerator as it is not allocated any such special resource. However, NFVO can ask VIM to85

reserve hardware-accelerator resources for the VNF if it is aware of specific VNF requirements and the presence of86

offload capabilities in NFVi as shown in Fig. 2 (b). After processing the accelerator requirement mentioned in the87

VNFD, the VNFM requests resource allocation including hardware-accelerator resources. The instantiated VNF88

can now offload specific operations depending on the available types of accelerator implementations and amount of89

resources.90

In order to achieve efficient utilization of all NFVi resource, it is imperative to incorporate accelerator-awareness
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Figure 2: Processes involved in (a) accelerator-agnostic and (b) accelerator-aware VNF instantiation.
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in the existing resource allocation models for NFV. VNF Placement and Chaining (VNF-PC) is the most important92

component of the NFV resource allocation procedure. VNF-PC is considered as NP-hard problem and has been93

widely topic researched in the literature [5]. With the inclusion of hardware-accelerator resources in NFVi, solving94

only the VNF-PC problem is not sufficient to obtain efficient allocation of NFVi resources. The VNF-PC problem95

needs to be altered in order to incorporate the resource allocation component for hardware-accelerators. We refer96

to this new problem as the Accelerator-aware VNF Placement and Chaining Problem (VNF-AAPC). Our objective97

in this paper is to model the VNF-AAPC problem and propose a scalable approach to solve this problem in a98

time-efficient manner. In order to address the above-mentioned objective we make the following contributions in99

this paper:100

1. To obtain optimal solutions for the VNF-AAPC problem, we present an Integer Linear Program (ILP)101

formulation of this problem. It is a single-step exact method which jointly optimizes three decisions, namely–102

(i) VNF placement and (ii) chaining and (iii) accelerator allocation.103

2. We design an efficient heuristic to solve the VNF-AAPC problem for DC topologies. This heuristic is particu-104
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larly useful for large-size instances of the VNF-AAPC problem where ILP model becomes too time-consuming105

to solve.106

3. We also evaluate the ILP model and the proposed heuristic on two different data-center topologies. Further-107

more, we compare the performance of accelerator-agnostic and accelerator-aware heuristics. Additionally, we108

present an analysis on the achievable cost-savings resulting from the use of hardware-accelerators in NFVi.109

Section 4 of this paper deals with the discussion about hardware-acceleration in NFV environments. Relevant110

literature in the domain of NFV resource allocation is presented in Section 5. Section 6 describes the ILP formulation111

of the VNF-AAPC problem. The proposed heuristic to solve the VNF-AAPC problem is discussed in section 8.112

Performance evaluation results and comparison of the ILP model with our heuristic is reported in Section 9. Finally,113

future work and conclusions of this paper are presented in section 10.114

4 Hardware-acceleration in NFV115

The transition of telecom’s network architectures from the purpose-built network appliances to VNFs running on116

COTS servers still face multiple challenges [1], [6]. One of the key obstacles is the virtualization of all NFs without117

breaking the Service Level Agreements (SLAs) of network services. However, it has been observed in many instances118

that the performance of VNFs is significantly degraded as compared to their hardware counterpart [7]. Authors119

in [7] investigated the impact of virtualizing firewall on its packet-processing performance. Processing latency in120

the virtual firewall could even reach ten times the processing latency in case of the hardware firewall. Performance121

bench-marking of IPSec is reported in a white paper by Intel in [8]. The results show that the processing of 48Gbps122

IPSec traffic requires on an average 9.5 CPU cores. The same traffic can, however, be processed using 4.6 CPU123

cores when accelerating AES-GCM de/encryption using a hardware-accelerator resulting in saving of about half of124

the CPU cores. Therefore, not just the performance boost of VNFs but also overall reduction in CPU utilization125

paves the way of hardware-accelerators in NFV environments.126

A large number of VNFs involve CPU-intensive tasks like de-duplication, cryptography, compression, etc [8], [9],127

[10], [11], [12], [13], [14]. The software implementation of these tasks has been found to be very energy inefficient128

(numbers of operations performed/energy consumed) as compared to their hardware implementation resulting in129

excessive CPU utilization. The motivation behind using hardware-accelerators in NFV environments is that specific130

VNF components run more efficiently if implemented in hardware as opposed to a software running on a CPU of131

a general-purpose COTS servers. For example, GPUs have been used to speedup video-transcoding applications132

(H.264 and H.265) by 9.6x over software-only solution while being 6.4x more energy efficient [13].133

Packet-processing in a VNF is usually accomplished by sequentially executing instructions of the VNF (VM/container)134

on one or more CPU cores. The packet-processing paradigm in architectures like FPGAs, NPUs, and GPUs is135

fundamentally different from that of a CPU. A GPU chip consists of thousands of computational cores that can be136

delegated execution units which are also known as GPU threads. Each GPU core executes the same NF on different137

packets sent by the CPU in the GPU memory [15]. With the large thread-level parallelism of GPUs and a good138

memory communication (low latency and high bandwidth), high packet-processing performance can be achieved.139

GPUNFV is a GPU-based NFV system which demonstrated line-rate packet-processing for stateful VNFs (e.g.140

flow monitor, firewall) by exploiting parallelism of GPUs [16]. FPGAs, on the other hand, contain millions of logic141

elements each of which contains lookup tables (LUTs) for implementing combinational logic and registers to store142

intermediary results. FPGAs also contain Block RAM (BRAM) to store a large amount of data which needs to143

be read (written) from (to) the main memory (RAM). Logic elements on an FPGA can be configured to realize144

different packet-processing functionalities. The parallelism in CPUs and GPUs is limited to the number of cores it145

has. Due to the massive amount of parallelism available on an FPGA at the gate-level, many processing tasks can146

be easily pipe-lined [17]. As a result, packet-processing tasks in VNFs can be offloaded to an FPGA very efficiently.147

Hardware-acceleration can be applied to a variety of VNFs that can benefit from the different kinds of parallelism148

available on hardware-accelerators. Table 1 lists various VNFs alongside their sub-tasks that can benefit from of-149

floading to hardware-accelerators. VNFs which contain components like cryptography, compression, de/encoding,150

etc, can be very efficiently offloaded to hardware-accelerators. Using an example of IPSec VNF, we next describe151

the most common approach of hardware-acceleration in NFV, i.e., FPGA look-aside acceleration.152

153
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Table 1: List of VNFs whose performance was improved after the indicated tasks were offloaded using hardware-
accelerators.

VNF Component func-
tions for accelera-
tion

References Improvements

IPSec, SSH AES
en/decryption,
SHA hash

[8], [9], [10], [11] CPU usage reduction of 50% and 94%
at packet size of 578B and 9000B, re-
spectively [8].

DPI Multihash, Bloom-
filter, regex,

[11], [12] 20x throughput improvement [12].

Media
Transcoding

VP8, H.264, H.256 [13] 9.6x gain in performance (FPS)
and 6.4x overall efficiency (perfor-
mance/watt).

vRAN RS, FFT/iFFT,
Turbo de/coding

[4], [14] C-RAN power consumption reduction
from 70W/carrier to 18W/carrier when
i/FFT are offloaded. Turbo decoding
time can be reduced by 50-60% by of-
floading it to a accelerator.

Dedup Rabin hash, marker
selection, chunk
hash

[12] 8.2x improvement in throughput over
software-only Dedup VNF.

4.1 VNF hardware-acceleration example154

IPSec tunneling is one of the most popular ways of securing inter-network communication between branch-offices155

of an enterprise or LTE networks via encrypted tunnels [18]. Fig 3 (a) shows a standard IPSec setup. At one156

end of the IPSec tunnel, a VM containing IPSec application (e.g. libreswan 1) is running on a server. The IPSec157

VNF must perform all the required cryptographic functions (en/decryption and SHA) on IPSec packets. These158

functions are usually provided by a software library (e.g. SSL) which contains implementations for various ciphers159

(e.g. DES-128, AES-128,256) and hashes (e.g. md5, SHA-256,512). Nowadays, certain CPU architectures (e.g.160

x86 and AMD) offer AES-NI and SHA-NI instructions dedicated for de/encryption and hashing operations which161

results in a better performance as compared to the traditional CPU architectures. Despite this improvement, a162

large number of CPU cores are still required to process the IPSec traffic at the line-rate, e.g., 9.5 CPU cores are163

required to handle IPSec traffic @ 48Gbps [8] as compared to only 3.3 CPU cores for processing of plain IP traffic164

(without IPSec). Moreover, packet-processing cost (CPU cycles/packet) varies with the packet-size which makes165

software-based IPSec solution inefficient for the IPSec packets of longer sizes (> 1200 B).166

Next, we describe the look-aside VNF hardware-acceleration approach taking IPSec as an example. A hardware167

designer typically first writes the required hardware-accelerator (e.g. AES-256, SHA-512) in a Hardware Descriptor168

Language (HDL), e.g. VHDL or Verilog. The HDL design is then compiled to a programming file, called bitfile169

using FPGA synthesis and implementation tools. The bitfile is then used to program the FPGA fabric in order170

to instantiate the desired accelerator function. The accelerator can then be modified or a new accelerator could171

be instantiated by re-programming the FPGA fabric with a bitfile corresponding to the new accelerator. This172

makes FPGAs re-programmable, unlike ASICs which offer a limited amount of configuration. In Fig. 3 (b), the173

AES (encryption and decryption) and SHA hash accelerators are instantiated by downloading their bitfiles to the174

FPGA card. Now, AES-256 de/encryption and SHA-512 hash operations can be offloaded from the IPSec VNF to175

accelerators running on the FPGA card [8]. For each IPSec packet, its payload is sent to the accelerator memory176

in order to perform the required cryptographic functions. After the function computation is over, the result of177

the operation is copied back from the accelerator memory to the main memory. The communication between the178

main memory and accelerators is accomplished via the PCIe bus. The overhead due to communications between179

CPUs and accelerators becomes insignificant for large packet-sizes. Moreover, hybrid chips like Intel Xeon+FPGA180

integrated-FPGA CPUs provide a tight coupling between CPUs and FPGAs thereby both CPUs and FPGAs can181

access the same memory and can avoid excessive overhead due to data transfers between them [19]. Nevertheless,182

many CPU cores are relieved from performing intensive cryptographic operations, thus a large number of CPU183

cores are free to run other workloads or VNFs [8].184

1https://libreswan.org/
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Figure 3: Illustration for the setup in (a) non-accelerated and (b) accelerated operation of IPSec VNF.

4.2 Trade-offs186

Although highest programmability and flexibility can be achieved by running VNFs on CPUs (x86 or ARM), NF187

implementations based on technologies like GPUs, FPGAs, NPUs could be necessary for some performance-critical188

VNFs. Therefore, a spectrum of VNF implementation technologies result in a variety of solutions, ranging from189

one end of the highly-flexible and full-software NFs to the other end of the high-performance ASIC implementation190

and hardware-accelerated VNFs situated in between. Authors in [18] proposed an architecture for the unified191

handling and abstraction of hardware-accelerators in order to ease the manageability of accelerators. A virtual192

accelerator layer along with standard interfaces can be used in order to avoid compatibility and portability issues.193

This also helps to separate the concerns of VNF developers and hardware-accelerators designers. By abstracting194

hardware-accelerators, the same VNF image can be used for many hardware-accelerators without any modification.195

Fig. 4 illustrates the comparison between various VNF implementation technologies based on their performance196

and flexibility metrics [18]. A purpose-built ASIC implementation of an NF will offer the highest packet-processing197

performance but a very limited configuration will be possible e.g. update of forwarding tables in a router. On the198

other hand, platforms based on COTS servers offer huge programmability/flexibility, e.g. update of protocols, at199

the cost of performance. Although, devices having intermediate performance and flexibility, e.g. GPUs and FP-200

GAs can also be used to realize full VNFs, however; more complex the packet processing task is, more challenging201

it is to implement on an FPGA or GPU. Hybrid platforms with a combination of CPU + hardware-accelerator202

(CPU+FPGA or CPU+GPU) are the most popular approach to achieving high-performance without losing too203

much programmability/flexibility. In hybrid platforms, the performance-critical tasks, e.g. en/decryption and204

hashing, etc, are implemented in the hardware and other complex tasks are still run in software running on a CPU.205

Keeping into account service requirements and trade-offs of various technologies, telecom operators or third-party206

VNF developers have to select the right platform for their VNF implementation. For example, IPSec VNF running207

on a CPU when offloaded to an FPGA can improve its throughput and halve its CPU usage with a fraction of more208

investment. Due to their widespread popularity in the packet-processing application, we focus only on FPGAs as209

hardware-accelerators for VNFs. However, models and heuristics proposed in this paper could be easily adapted210

for different types of hardware-accelerators depending upon their nature. There are two popular modes of using211

hardware-accelerators in the NFV environments, namely– look-aside and bump-in-the-wire [20]. Look-aside mode212

of hardware-acceleration is generally used to offload compute-intensive algorithms, e.g., offloading crypto-operations213

of IPSec to an FPGA. ”Bump-in-the-wire” (in-line) is other mode where packet processing is done on the fly, e.g.214

on P4 switches or smartNICs, as they are transferred to/from the network. Bump-in-the-wire mode is therefore215

preferred mode to accelerate first/last VNFs of a VNF-chain [3] as accelerating VNFs. In this paper, our focus216

will be on modelling scenarios with look-aside mode of acceleration. However, to accommodate scenarios with217

bump-in-the-wire acceleration, appropriate constraints regarding required position-aware acceleration and latency218

requirements can be added to the proposed model.219

Multiple VNFs running on a server-node can also share the same accelerator instance deployed on hardware-220
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Figure 4: Comparison of various technologies for VNF implementation [18]. Green region: CPU+GPU and Orange
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accelerator cards. The network packets reaching a VNF running on a host are transferred to a particular accel-221

erator instance over the PCIe bus. Offloading packet processing from stateless VNFs to accelerator instances is222

straightforward, as the order of incoming packet is not important. To offload stateful VNFs, where the state of223

a VNF is required to process packets, input packets along with the VNF state are transferred to the accelerator224

instance [16]. The state in the VNF is updated after the completion of processing in the accelerator instance.225

226

5 Related Works227

Various mathematical models and algorithms have been proposed to tackle the VNF-PC problem. The solution to228

VNF-PC problem attempts to allocate NFVi resources for the placement and chaining of VNFs. This problem is229

similar to Virtual Network Embedding (VNE) problem, a well-known problem in the area of network virtualization230

[5]. In VNF-PC problem, VNFs are equivalent to virtual nodes of VNE which are chained by virtual links. In231

addition to that, VNF-PC has an accompanying optimization goal which is described by the objective function232

of the problem. The objective function could be the minimization of power consumption, the required number of233

server-nodes, and links or maximization of resiliency, QoS, net profit, etc.234

VNF-PC problem has been tackled using two different approaches in the past. The first approach is to exploit235

exact methods that result in an optimal solution but this approach is generally useful for small-scale instances of236

VNF-PC problem. Another approach is to solve VNF-PC problem is to use heuristics and thereby compromise a237

small amount of efficiency for the scalability.238

Using the ILP formulation, authors in [21] modeled resource allocation in a hybrid NFV scenario where services239

are provided using both dedicated hardware appliances and VNFs. This model was evaluated using two types of240

service chain requests and a small service provider scenario. A Mixed Integer Quadratically Constrained Program241

(MIQCP) model for VNF-PC optimization problem was introduced in [22]. Pareto set analysis was performed242

to investigate the trade-offs between three different objective functions. The evaluation of the model shows the243

objective function (e.g. minimization of latency, link utilization or allocated nodes) has a direct impact on the244

VNF placement and chaining. Authors in [23] formulated the multi-objective VNF-PC problem considering both245

legacy Traffic Engineering (TE) ISP goals and combined TE-NFV goals.246

Because of the inherent complexity of VNF-PC problem, exact approaches based on ILP/MILP become impractical247

for realistic network sizes. Therefore, many heuristic-based algorithms have also been proposed to solve this problem248

in a reasonable time.249

The problem of Elastic VNF Placement(EVNFP) was studied in [24] and an ILP model was presented for minimizing250

operational costs in NFV scenarios. Authors also developed an algorithm called Simple Lazy Facility Location251

(SLFL) in order to solve EVNFP problem in polynomial time. Evaluations show that SLFL reduced operational252

costs by 5-8% and also increased the request acceptance rate by 2x as compared to the first-fit and random253

alternatives.254
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S. Sahhaf et al. studied the decomposition and embedding of network services in [25]. An ILP model was proposed255

whose objective was to minimize the total cost due to the mapping of different decomposed VNF components256

(e.g. VM, container, DPDK) to the physical nodes in NFVi. A heuristic algorithm, consisting of two phases–257

backtracking and mapping, was also proposed. The experimental results show a decrease in mapping cost and an258

increase in the request acceptance ratio in the long run for both ILP and heuristic approaches.259

F. Carpio et al. studied the problem of network load balancing for the deployment of Service Function Chains260

(SFCs) [26]. In particular, the authors addressed the problem of distance-to-data center by the use of VNF replicas261

in order to load balance the network. Three approaches– ILP model, Genetic Algorithm, and random fit placement262

algorithm were designed and compared to realize efficient VNF placement and replication method in an NFV263

environment.264

Although a lot of resource allocation studies have been carried out in the past, only two studies have considered265

hardware-accelerator in their models. H. Fan et. al. proposed an architecture to implement uniform deployment266

and allocation of accelerator resources in NFV environments [27]. The authors proposed an algorithm to achieve267

efficient allotment of accelerator resources in forwarding and server nodes. Algorithms take as an input the network268

topology and capacity of physical resources and output the amount of accelerator resources that should be provided269

on forwarding or server nodes. This study concerns the optimization of accelerators resource provisioning not with270

the optimization of accelerator allocation to VNFs.271

The concept of heterogeneous components has been described in [28]. A heterogeneous service consists of multiple272

implementation options that could be deployed to serve the dynamic requirements of the service. The paper studied273

the problem of joint Scaling, Placement and Routing (SPRING) for heterogeneous services. To address the SPRING274

problem, a MILP formulation and a heuristic algorithm were proposed. The SPRING model focuses on efficient275

resource allocation in heterogeneous infrastructure with lower processing times. This paper does not consider the276

distribution of hardware-accelerator resources in a data-center. Furthermore, VNF-PC decision did not take into277

account the communication between the hardware-accelerator and the CPU on a server-node.278

This work is a major extension to our previous work where we modeled only VNF placement in a heterogeneous279

NFV environment [29] using a best-fit based approach. Here, we address the complete problem of accelerator-aware280

VNF placement and chaining along with a thorough evaluation of the ILP model and heuristics.281

6 Problem Overview282

Services in the NFV domain are realized by processing network traffic through a sequence of VNFs. In order to283

fully exploit the benefits of NFV technology, it is necessary to efficiently allocate NFVi resources to VNF-chains.284

Resource allocation requires a mapping of the service’s VNF Forwarding Graph (VNF-FG) to NFVi resources [5].285

A VNF-FG consists of nodes representing VNFs and edges stand for virtual links between VNFs. Therefore, the286

mapping process can be thought of as a two steps process, namely (i) VNF placement and (ii) VNF Chaining. “VNF287

placement” involves the assignment of VNFs to COTS servers, whereas “VNF chaining” step involves allocation of288

a path in the physical network to every virtual link of VNF-FG. “VNF chaining” ensures the appropriate steering289

of network traffic through the sequence of VNFs constituting the service. Together this problem is referred to as290

VNF placement and chaining (VNF-PC) problem.291

In addition to the usual compute, network and storage resources, NFVi also includes hardware-accelerator resources.292

With the inclusion of hardware-accelerators in NFVi, VNF-PC models must be revised. In order to ensure efficient293

utilization of all NFVi resources, both placement and chaining decision should take into account the accelerator294

resources (e.g. total logic elements and BRAM of FPGAs, cores/threads of GPUs) along with the usual NFVi295

resources, i.e. compute, storage and network. This problem will be referred to as accelerator-aware VNF placement296

and chaining (VNF-AAPC) problem.297

We motivate the importance of modeling the VNF-AAPC problem by a simple example illustrated in Fig 5. As an298

input, NFVi consists of five server-node each with 5 CPU cores and connected with each other as shown in Fig 5.299

One of the server-node is equipped with a hardware-accelerator card connected over the PCIe bus. The objective of300

VNF-PC problem is to deploy VNF-chains s1 and s2 using as few server-nodes as possible. The CPU requirements301

of all VNFs is indicated in the boxes above each VNF. VNF f12 is an ’accelerate-able’ VNF, i.e., it consumes 4302

CPU units when it is not accelerated and 2 CPU units when it is able to offload its operations to an accelerator303

on a hardware-accelerator card. For the sake of simplicity, we assume sufficient bandwidth is available on physical304

links for the chaining of VNFs. The result of the usual (accelerator-agnostic) VNF placement method, where only305

CPU resources are considered, is shown in Fig. 5 (a). In total, five server-nodes are required for the deployment of306

s1 and s2. With the accelerator-aware strategy, however, only four server nodes are required for the placement of307

same VNF-chains as shown in Fig 5 (b). This is because the VNF f12 is deployed on a server-node attached with308
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a hardware-accelerator card and is able to reduce its CPU requirement by half.309
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Figure 5: Illustration comparing VNF placement in accelerator-agnostic and accelerator-aware VNF placement
scenarios. The CPU requirement of each VNF is indicated in the box above it.

310

7 ILP Formulation311

Next, we introduce notations, decision variables, objective function and constraints required for the ILP formulation312

of the VNF-AAPC problem. ILP model for the VNF-AAPC problem provides a single-step method for obtaining313

optimal resource allocation.314

Table 2 gives the description of the notations used in the formulation. NFVi network is represented by a connected315

directed graph G = (N,E). Set N consists of all the physical nodes in the NFVi network and E represents all the316

physical links between nodes. A node can be a computational device (e.g. COTS server) or a forwarding device317

(e.g. switch). N c ⊂ N denotes a set of all COTS servers having computational resources required to run VNFs.318

The capacity of different resource types in a node n ∈ N c is denoted by the following three parameters: Rcpu(n),319

Rbus(n) and Racc(n). Rcpu(n) denotes the total number of CPU cores available for running VNFs on node n.320

IO communication capacity of a node is dependent on the bandwidth (Mbps) of the PCI(e) bus which is denoted321

by Rbus(n). The same PCI(e) bus is shared for two tasks. First, for communication with accelerators and secondly322

for sending/receiving packets to/from the network using NIC card.323

The amount of resources present on the hardware-accelerator card attached to server-node n is represented by324

Racc(n). We use Racc(n) only to denote the total number of logic elements present on an FPGA board. However,325

other resources like the amount of BRAM available on an FPGA can also be represented similarly.326

A is a catalog of all types of accelerator implementations available for instantiation on the hardware-accelerator327

cards attached to server-nodes. For example, if FPGA bitfile implementations for only AES and SHA accelerators328

are available, i.e. A = {AES, SHA}, en/decryption (AES) or hashing (SHA) tasks from an IPSec VNF can be329

offloaded to AES and SHA accelerators running on an FPGA card. However, tasks like en/decoding involved in330

the vTC (video transcoding) VNF cannot be offloaded using any accelerator implementation present in A.331

Each implementation of an accelerator type a ∈ A requires a certain amount of resources, represented by r(a),332

on the hardware-accelerator card. Again, r(a) can be used to represent requirement of any type of resource on a333

hardware-accelerator card. In our formulation, r(a) denotes only the required number of logic elements to imple-334

ment an accelerator of type a on an FPGA card.335

We assume each service-request s received by the telecom operator consists of a VNF-FG Gs and corresponding336

bandwidth requirement (ts). The VNF-FG Gs = (Fs,Ls) of the service-request s consists of a set of VNFs Fs and337
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a set of virtual links between VNFs denoted by Ls. Two consecutive VNFs of the service-request s denoted by fsk338

and fsk+1 are joined by a virtual link (fsk , f
s
k+1) ∈ Ls. For the sake of simplicity, we assume the traffic compression339

ratio of every VNF is 1. This implies that the amount of traffic (ts) doesn’t change while passing through a sequence340

of VNFs.341

CPU requirement for a VNF fs ∈ Fs, in terms of the total number of cores required, is denoted by cpu0(fs) and342

the reduction in the total number of cores due to offloading is denoted by cpur(fs). In other words, cpu0(fs)343

denotes the number of CPU cores required by the VNF fs to process the network traffic coming at the rate ts.344

The type of accelerator required for offloading a VNF fs is denoted by atype(fs).345

αn
fs is a binary variable used to indicate if VNF f of the service-request s is placed on node n. Allocation of an346

accelerator to VNF fs placed on node n is indicated by βn
fs . A computational node n ∈ N c is said to be in-use if347

at least one VNF is placed on n. This is denoted by a binary variable xn. Instantiation of an accelerator of type a348

on the hardware-accelerator card attached to n is indicated by a binary variable δna .349

The binary variable γ
ni,nj

fs
k ,f

s
k+1

is an indicator variable which denotes if the virtual link (fsk , f
s
k+1) ∈ Ls mapping to a350

path in G contains physical-link (ni, nj) or not.351

In a scenario when a telecom operator leases server-nodes from an Infrastructure Provider (InP) to deploy VNF-352

chains, she ought to acquire a minimum number of server-nodes as possible. The cost of a server-node is included353

to the total cost if that node is used to host at least one VNF. The cost of using a computational node n ∈ N c in354

is denoted by Cn (in $). Usually, parameters like Rcpu(n), Rbus(n) and Racc(n) determine the value of cn.355

356

Table 2: Description of parameters and decision variables
Input parameters

Notation Description
G Directed graph G = (N,E) represents the network.
N Set of all forwarding and computational nodes within the network.
N c Set N c ⊂ N contains all nodes of the network with positive computational

resources (all server-nodes).
b(ni, nj) Maximum bandwidth (in Mbps) of a physical-link (ni, nj) ∈ E. **
Rcpu(n) Maximum CPU resources (in total number of CPU cores) available on n ∈ N c.
Racc(n) Maximum accelerator-fabric resources (in total number of logic elements) avail-

able on n ∈ N c.
Rbus(n) Maximum bandwidth (in Mbps) of the PCIe bus of node n ∈ N c.

A Set of all available accelerator types (in NFVI).
r(a) Resource requirement (logic elements) of the accelerator type a ∈ A.
S Set of all VNF-chains.
Gs Directed graph Gs = (Fs,Ls) represents VNF-FG of request s ∈ S.
Fs Set of all VNFs in VNF-FG of the VNF-chain s ∈ S.
Ls Set of all directed virtual links in the VNF-FG of the VNF-chain s ∈ S.
ts Throughput requirement (Mbps) of the VNF-chain s ∈ S.

cpu0(fs) CPU requirement (cores) of VNF f ∈ Fs .
cpur(fs) CPU reduction (cores) for VNF f ∈ Fs.
atype(fs) Type of accelerator needed for acceleration of VNF fFs.

cn Cost ($) of running a computational node n ∈ N c.

Decision variables
Notation Description
αn
fs Binary variable indicates if VNF fs of VNF-chain s is placed on n.

βn
fs Binary variable indicates if VNF fs of VNF-chain s is accelerated on n.

xn Binary variable indicates if computational node n ∈ N c is used for hosting
at-least one VNF.

δna Binary variable indicates if accelerator of type a is instantiated on the node n
γ
ni,nj

fs
k ,f

s
k+1

Binary variable indicates if the virtual link (fsk , f
s
k+1) mapping to a path in the

physical-network contains the physical-link (ni, nj), (ni, nj) ∈ E.

Next, we discuss the objective function and constraints describing the ILP model for the accelerator-aware VNF357

placement and chaining problem.358
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7.1 Objective359

The objective (1) of our ILP formulation is to minimize the total cost incurred to the operator from the use of360

server-nodes, some of which are attached to a hardware-accelerator card. The decision variable xn is used to de-361

termine whether a server-node is used or not.362

363

obj : min
( ∑
n∈Nc

cnxn
)

(1)

7.2 Constraints364

We classify all the constraints in four categories: (i) Physical node constraints, (ii) Link Mapping constraints, (iii)365

Accelerator Constraints and (iv) Auxiliary Constraints, which are explained as follows.366

7.2.1 Physical Node Constraints367

The sum of effective CPU usage of all VNFs placed on any node should not surpass its maximum CPU capacity.368

This constraint in depicted in (2).369

The constraint in (3) indicates the finite availability of resources on the hardware-accelerator card for the instan-370

tiation of accelerators.371

The rate of communication between VNFs and accelerators instantiated on the hardware-accelerator card is bounded372

by the maximum bandwidth of the PCIe bus, as indicated in (4). The first term in the LHS of (4) is the bus band-373

width consumption due to the traffic between neighboring VNFs. First, summation over the traffic coming from374

VNFs (fsk) placed on server-node ni to its neighboring VNFs (fsk+1) placed on nj is carried out and a factor of two375

is there to represent the traffic both coming to and from the VNFs running on server-node ni. The term 2tsβ
ni

fs376

represents the bandwidth utilization due to communication between the VNF fs and accelerator fabric on the node377

n.378

379 ∑
s∈S,fs∈Fs

αn
fscpu0(fs)− βn

fscpur(fs) ≤ Rcpu(n) ∀n ∈ N c (2)

∑
a∈A

r(a)δna ≤ Racc(n) ∀n ∈ N c (3)

∑
∀nj∈N

((ni,nj)∈E)

∑
s∈S,

(fs
k ,f

s
k+1)∈Ls

2tsγ
ni,nj

fs
k ,f

s
k+1

+
∑
s∈S,

fs∈Fs

2tsβ
ni

fs ≤ Rbus(ni) ∀ni ∈ N c (4)

7.2.2 Physical link constraints380

The flow-conservation constraint is described in (5). This constraint ensures that a virtual link (fsk , f
s
k+1) is always381

mapped to a physical path in the network. Also, it ensures that for a non-computation node n ∈ N \ N c, the382

net-traffic outflow or inflow is always zero.383

The constraint in (6) guarantees that the sum of bandwidths allocated to virtual links on a physical-link (ni, nj)384

never exceeds its capacity b(ni, nj).385 ∑
∀nj∈N

((ni,nj)∈E)

(γ
ni,nj

fs
k ,f

s
k+1
− γnj ,ni

fs
k ,f

s
k+1

) = (αni

fs
k
− αni

fs
k+1

)

∀s ∈ S,∀(fsk , fsk+1) ∈ Ls,∀ni ∈ N

(5)

∑
s∈S

(fs
k ,f

s
k+1)∈Ls

tsγ
ni,nj

fs
k ,f

s
k+1
≤ b(ni, nj) ∀(ni, nj) ∈ E (6)
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7.2.3 Accelerator constraints386

The constraint in (7) is a consequence of the fact that a VNF fs can be given access to an accelerator on a node387

n only if it is placed on it.388

The constraint in (8) ensures that an accelerator of a particular type is instantiated if a non-zero number of VNFs389

are using that accelerator type. This constraint is easily linearized by replacing it with a pair of constraints indicated390

in (9a-9b). M1 (big M) in constraint (9b) is a constant with a value greater than the total number of VNFs fs in391

all the service-chain requests s ∈ S.392

βn
fs ≤ αn

fs ∀n ∈ N, ∀s ∈ S, ∀fs ∈ Fs (7)
393

δna =


1, if

∑
∀s∈S,∀fs∈Fs,
a=atype(fs)

βn
fs ≥ 1

0, otherwise

∀n ∈ N, ∀a ∈ A (8)

δna ≤
∑

∀s∈S,∀fs∈Fs

a=atype(fs)

βn
fs ∀n ∈ N, ∀a ∈ A (9a)

∑
∀s∈S,∀fs∈Fs

a=atype(fs)

βn
fs ≤M1δ

n
a ∀n ∈ N, ∀a ∈ A (9b)

7.2.4 Auxiliary Constraints394

The set of constraints in this subsection restrict the value of decision variables xn, yni,nj
, αn

fs , βfs , δna , γ
ni,nj

fs
k ,f

s
k+1

.395

A server-node is considered to be running if at least one VNF is mapped onto it, as indicated by the constraint396

in (10). The pair of constraints (11a - 11b) forces xn to be equal to 1 if at least one VNF is placed on node n.397

In constraint 11b, M2 is a constant with a value greater than the total number of VNFs fs in all service-chain398

requests s ∈ S.399

xn =

1, if
∑

∀s∈S,∀fs∈Fs

αn
fs ≥ 1

0, otherwise
∀n ∈ N (10)

xn ≤
∑

s∈S,fs∈Fs

αn
fs ∀n ∈ N (11a)

400 ∑
s∈S,fs∈Fs

αn
fs ≤M2xn ∀n ∈ N (11b)

Each VNF in a service-chain request must be placed only once. This is represented by the constraint in (12).401

The set of constraint in (13) ensures decision variables αn
fs , βn

fs , δna and γ
ni,nj

fs
k ,f

s
k+1

can only take binary (0 or 1) values.402

403 ∑
n∈N

αn
fs = 1 ∀s ∈ S, ∀fs ∈ Fs (12)

xn, α
n
fs , βn

fs , δna , γ
ni,nj

fs
k ,f

s
k+1
∈ {0, 1}

∀n ∈ N, ∀(ni, nj) ∈ E,∀s ∈ S, ∀fs ∈ Fs,∀(fsk , fsk+1) ∈ Ls
(13)

The above ILP formulation implements a single-step method to solve the VNF-AAPC problem. For a given NFVi404

graph G and a set of requested service-chain requests S, the above ILP formulation not only given an optimum405

VNF placement αn
fs and chaining γ

ni,nj

fs
k ,f

s
k+1

solution but also gives an optimum accelerator allocation βn
fs for VNFs.406

As the VNF-PC is considered to be an NP-hard problem, it does not scale with the problem size. The accelerator407

awareness further increases its complexity. As a result, the ILP formulation of the VNF-AAPC problem is chal-408

lenging to solve for networks of realistic sizes. In order to address the non-scalability issue with ILP, we propose a409

method based on heuristics for solving the VNF-AAPC problem in a time-efficient manner.410

411
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8 Proposed Heuristics412

Next, we describe two heuristic-based algorithms for solving the VNF-PC problem for NFVi containing hardware-413

accelerator resources along with the usual resources. The first heuristic we propose is an accelerator-agnostic414

algorithm which does not take into the account presence of hardware-accelerators in NFVi while performing VNF-415

FG mapping. This algorithm will serve as a baseline for the evaluation of our second algorithm, i.e., accelerator-416

aware VNF-PC heuristic.417

8.1 Accelerator-agnostic VNF-PC heuristic418

Accelerator-agnostic VNF-PC heuristic involves the hierarchical deployment of VNF-chains [30]. Hierarchical de-419

ployment exploits classification of nodes into different levels of DC topologies, e.g. different levels in a leaf-spine420

DC topology are server, rack, and cluster. Starting from the lowest level, i.e. server-node level, VNF-PC is at-421

tempted at each level until the VNF-chain is deployed at a level. Also, previously used server-node is checked for422

the placement of subsequent VNF of a VNF-chain resulting in the localization of VNFs of the same VNF-chain.423

The pseudo-code for the accelerator-agnostic VNF-PC algorithm is described in Alg. 1. The procedure AgPlaceChain424

is called from Alg. 2 in order to map VNF-FG (Gs = (Fs,Ls)) corresponding to all service-requests (line 3) onto425

NFVi. The mapping of each VNF-FG is attempted at different levels of the data-center, e.g., in leaf-spine topology,426

first at node, then at rack, and at last at cluster level (Alg. 2 lines 2-6). Mapping on node level is done by assigning427

NodesSet equal to the set of all server-nodes ∀n ∈ N c. If no one server-node is able to allocate all the VNFs of a428

chain, NodesSet is assigned all nodes per rack. If the mapping of a VNF-chain is not possible to any of the rack,429

NodesSet is assigned all the nodes in the cluster and VNF-PC is attempted again.430

In Alg. 1, for each VNF fs ∈ Fs placement is first tried on the previously used node np. A new node is only431

selected if enough CPU resources aren’t available on np (line 7-15). An attempt for accelerator allocation is done on432

node np (line 16) by invoking procedure AccelVNF. When all VNFs ∀fs ∈ Fs are placed, virtual-links are mapped433

to physical-paths in G using the procedure ChainVNFs. If the placement of any VNF fs ∈ Fs fails or procedure434

ChainVNFs returns False, all resources are updated to their previous values just after the start of the procedure435

AgPlaceChain (lines 23-25).436

The procedure AccelVNF (Alg. 3) checks whether an accelerator can be granted to VNF fs node np. This is done437

by verifying whether enough CPU and bus resources are available on np (line 2). If atype(fs) is not already instan-438

tiated on the hardware-accelerator card attached to node np, it is checked whether enough accelerator resources439

are available on the card (lines 5-11) to instantiate the accelerator type atype(fs). All the required resources are440

updated accordingly if fs is allocated an accelerator (lines 9-10,13-14) in this procedure.441

The chaining procedure for mapping of virtual links to physical paths is described in Alg. 4. For each virtual link442

(fsk , f
s
k+1) ∈ Ls, all set of shortest paths between two physical nodes hosting fsk and fsk+1 are stored first in P (line443

7). Each path is checked sequentially for its available bandwidth on all of its physical links using the procedure444

bw (lines 9). If a path with enough bandwidth is available, γ[fsk , f
s
k+1] (line 13) along with bus (line 12) and link445

bandwidths (line 11) are updated for every physical link (∀(ni, nj) ∈ p) in the path p. If any virtual link cannot446

be mapped to a physical path, values of resources and variables are reverted to their previous values at the start447

of the procedure (lines 19-22).448

An example illustrating the working of the accelerator-agnostic VNF-PC heuristic is shown in Fig. 6. Consider two449

VNF-chains (s1 : f11 → f12 → f13 → f14, s2 : f21 → f22 → f23) supposed to be deployed on a given NFVi, which450

here is a DC in the leaf-spine topology. The heuristic starts with the chain s1 and first tries its deployment on451

the server-node level. As no server-node can accommodate all VNFs of this VNF-chain, the heuristic moves to the452

next level of the topology, i.e., rack level. Again, no rack has enough resources to host the complete VNF-chain s1.453

Therefore, the heuristic now considers all server-nodes of the cluster and uses rack0 and rack1 for the placement of454

VNF-chain s1. After the placement of all VNFs of the first chain is completed, network bandwidth is then allocated455

to the virtual links of the VNF-chain via the ChainVNFs procedure as shown in Fig. 6. The same process will be456

followed for the deployment of the VNF-chain s2 which is deployed in rack2.457

458

8.2 Accelerator-aware VNF-PC heuristic459

The accelerator-aware VNF-PC heuristic is based on combines hierarchical deployment with segmentation of VNF-460

chains. A VNF-chain is first split at ’accelerate-able’ VNFs, i.e. VNFs which require hardware-accelerators461

∀s,∀fs, atype(fs) ∈ A. VNF-chain deployment is then performed in two phases. In the first phase, VNF placement462

along with accelerator-allocation is performed for all accelerate-able VNFs. Sub-graphs (VNF-FGs) corresponding463
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Figure 6: Illustration showing placement and chaining in accelerator-agnostic VNF-PC heuristic on the leaf-spine
topology.

to the remaining VNF-chain segments are mapped to the NFVi using the hierarchical deployment in the second464

phase.465

The procedure for allocation of accelerators to VNFs (PlaceAccelVNFs) is shown in Alg. 5. First, a list of all466

server-nodes attached with a hardware-accelerator card are stored in Na. Accelerate-able VNFs constituting the467

VNF-chain request s are assigned to F s
acc. Accelerator allocation is then attempted for every VNF in F s

acc. A468

list of server-nodes with enough resources and having accelerator atype(fs) already instantiated on its attached469

hardware-accelerator card is stored in Nfs (line 6). Out of all server-nodes in Nfs , a node, a closest node where470

(any) previous VNF of the same VNF-chain request s was placed, is assigned to na (line 8-9). If no node has471

sufficient resources and accelerator of type atype(fs) instantiated on it, a node with highest CPU utilization is then472

selected from Na (line 11). Using the procedure AccelVNF (Alg. 3), placement and accelerator allocation for VNF473

fs is attempted on na (line 13).474

In Alg. 6, each server-node used in previous step is iterated over for the complete mapping of remaining VNF-chain475

segments (lines 4-27). Un-mapped segments of all service-requests are identified for which at least one adjacent476

VNF is placed on node n (lines 5-9). An attempt is then made to map each segment seg in Sn
seg with as much prox-477

imity to n as possible. The process followed for the mapping of each VNF-FG segment ∀seg ∈ Sn
seg is similar to the478

one followed in the accelerator-agnostic VNF-PC heuristic (Alg. 2). The mapping is attempted first on nodel level,479

then on the rack level containing node and at last on the whole cluster level using the procedure AgPlaceChain480

(line 14). In addition, newly placed VNF segment seg and its adjacent VNFs, which were previously placed using481

PlaceAccelVNFs, are linked via procedure ChainVNFs (line 19).482

At last, VNF-chain requests which haven’t been yet mapped to NFVi are identified (line 28). Set SR contains483

all those VNF-chain requests s ∈ S which either (i) do not have any VNF with an accelerator implementation484

available in A or (ii) enough resources were not available to allocate accelerator to VNFs during the first step (line485

2). Mapping of all service-requests in SR is attempted in the hierarchical way (lines 31-35) discussed in Alg. 2.486

Again, consider the deployment of two VNF-chains (s1 : f11 → f12 → f13 → f14, s2 : f21 → f22 → f23) on the same487

NFVi topology as shown in Fig. 7. In accelerator-aware PC heuristic, accelerate-able VNFs of two VNF-chains488

are placed in the first phase, so f12 is placed on the first server-node of rack0 which has an attached hardware-489

accelerator card. In the second phase, the heuristic loops over the server-nodes which have VNFs placed on them,490

while determining and placing the remaining segments of VNF-chains. Therefore, deployment of the VNF-chain491

segment f11 and f13 → f14 is then attempted using the same procedure as discussed in accelerator-agnostic heuris-492

tic. After the successful deployment of VNF-chain segments of s1, two segments f11, f13 → f14 are chained to the493

VNF f12 via ChainVNFs procedure. At last, the second VNF-chain (no accelerate-able VNFs) s2 is then deployed494
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Algorithm 1: Accelerator-agnostic VNF-PC procedure.

1 Procedure AgPlaceChain(NodesSet, α, β, γ, (Fs,Ls)):
2 tries, plc, np ← 0,True, φ;
3 while tries ≤MAX TRIES do
4 for Nodes in NodesSet do
5 α0, β0, Nodes0 ← α, β,Nodes;
6 for fs in Fs do
7 if np == φ or

(
cpu0(fs)

)
> Rcpu(np)

)
then

8 N = {n : ∀n ∈ Nodes,Rcpu(n) ≥ (cpu0(fs)};
9 if N == φ then

10 plc← False;
11 break;

12 else
13 np ← Random(N )*;
14 end

15 end
16 if AccelVNF(fs, np, node accels, ts) == False then
17 Rcpu(np)←Rcpu(np)− cpu0(fs);
18 else
19 β[fs]← np;
20 end
21 α[fs]← np;

22 end
23 if ChainVNFs(α, γ, Ls, G) == False or plc == False then
24 α, β,Nodes← α0, β0, Nodes0;
25 else
26 return True;
27 end

28 end
29 tries← tries+ 1;

30 end

31 end

Algorithm 2: Main service-chain allocation procedure.

1 Procedure AllocateChain(G,Nc, racks, cluster,Gs, α, β, γ):
2 for NodesSet in

{
{{n} : n ∈ Nc

}
, racks, clusters} do

3 if AgPlaceChain(NodesSet, α, β, γ,Gs) then
4 break;
5 end

6 end

7 end

in rack1 using the same procedure as followed in the accelerator-agnostic heuristic. It can be observed that the495

accelerator-aware VNF-PC heuristic results in using one less server-node as compared to the accelerator-agnostic496

heuristic for the deployment of VNF-chains s1 and s2.497

498
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Algorithm 3: VNF acceleration procedure

1 Procedure AccelVNF(fs, np, node accels, ts):
2 if atype(fs) /∈ A or Rcpu(np) <

(
cpu0(fs)− cpur(fs)

)
or Rpci(np) < 2ts then

3 return False;
4 else
5 if atype(fs) /∈ node accels[np] then
6 if r(atype(fs)) > Racc(np) then
7 return False;
8 else
9 Racc ← Racc − r(atype(fs));

10 node accels[n]← node accels[n] ∪ {atype(fs)};
11 end

12 end
13 Rcpu(n)←Rcpu(n)−

(
cpu0(fs)− cpur(fs)

)
;

14 Rpci(n)←Rpci(n)− 2ts;
15 return True;

16 end

17 end

rack 0
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VNF placement

ACC Available accelerator

Virtual link

Figure 7: Illustration showing placement and chaining in accelerator-aware VNF-PC heuristic on the leaf-spine
topology.
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Algorithm 4: VNF chaining procedure

1 Procedure ChainVNFs(α, γ, Ls, G):
2 G0(N0, E0)← G(N,E);
3 γ0 ← γ ;
4 for (fs

k ,f
s
k+1) in Ls do

5 done← False;
6 if α[fs

k ] 6= α[fs
k+1] then

7 P ← ShortestPaths(G, α[fs
k ], α[fs

k+1])*;
8 for p in P do
9 if bw(p) >= ts* then

10 for (ni, nj) in p do
11 b(ni, nj)← b(ni, nj)− ts*;
12 Rbus(ni)←Rbus(ni) - 2ts;
13 γ[fs

k , f
s
k+1]← (ni, nj);

14 done← True;

15 end
16 break;

17 end

18 end
19 if done == False then
20 G(N,E)← G0(N0, E0);
21 γ ← γ0;
22 return False;

23 end

24 end

25 end
26 return True;

27 end

Algorithm 5: Placement procedure for accelerate-able VNFs.

1 Procedure PlaceAccelVNFs(α, β, γ, node accels, S):
2 Na ← {n ∈ Nc : Racc(n) > 0};
3 for s in S do
4 F s

acc ← {fs ∈ Fs : atype(fs) ∈ A};
5 for fs in Facc do
6 Nfs ← {n ∈ Nc : atype(fs) ∈ node accels[n], 2ts < Rbus,

(
cpu0(fs)− cpur(fs)

)
< Rcpu(n)}

7 if Nfs 6= φ then
8 np ← select node from Nfs where previous VNF of the service chain s was placed;
9 na ← arg min

n
PathLen(n, np) ;

10 else
11 na ← select a node from Na with sufficient resources;
12 end
13 if AccelVNF(fs, na, node accels, ts) then
14 α[fs], β[fs]← na, na;
15 end

16 end

17 end
18 used nodes← all used nodes in N ;
19 return used nodes;

20 end
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Algorithm 6: Accelerator-aware VNF-PC procedure.

1 Procedure AccelAwarePlaceChain(α, β, γ, S):
2 used nodes← PlaceAccelVNFs(α, β, S);
3 Sp

seg ← {};
4 for n in used nodes do
5 node chains ← {s ∈ S : ∃fs ∈ Fs placed on node};
6 Sn

seg ← {};
7 for chain in node chains do
8 Sn

seg ← Sn
seg∪ {all possible chain segments in chain};

9 end
/* place remaining segments of chains */

10 for seg in Sn
seg do

11 Gseg ← VNF forwarding sub-graph corresponding to seg;
12 if seg 6⊂ Sp

seg then
13 for NodesSet in {{node}, rack node, cluster node} do
14 if AgPlaceChain({NodesSet}, α, β, γ, Gseg) then
15 fseg

l ← leftmost VNF of seg;
16 facc

l ← VNF which needs to be linked with the leftmost VNF of seg;
17 fseg

r ← rightmost VNF of seg;
18 facc

r ← VNF which needs to be linked with the rightmost VNF of seg;
19 if ChainVNFs(α, γ, {(facc

l , fseg
l )}, G) and ChainVNFs(α, γ, {(fseg

r , facc
r )}, G) then

20 Sp
seg ← Sp

seg ∪ {seg};
21 break;

22 end

23 end

24 end

25 end

26 end

27 end
28 SR ← S \ {s ∈ S : α[fs] 6= φ, ∀fs ∈ Fs} ;

/* placement and chaining of remaining service-chains */

29 for s in SR do
30 for NodesSet in

{
{{n} : n ∈ Nc

}
, racks, clusters} do

31 if AgPlaceChain(NodesSet, α, β, γ,Gs) then
32 break;
33 end

34 end

35 end

36 end
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9 Performance evaluation499

The objective of this section is to assess the scalability and efficiency of the ILP model and VNF-PC heuristics500

using simulation experiments. We first describe the simulation environment used in our evaluation and then present501

the results obtained after performing experiments on the ILP model and heuristics.502

9.1 Setup and Parameters503

Table 3: Default values/range of various parameters involved in simulation experiments.
Parameter Value or range Parameter Value or range
| S | [5, 250] co(f c) 3-5 (cores)

Rcpu(n) 24 (cores) ci(f
c) (0.40 - 0.60)co(f c)

Racc(n) 0,100k (LUTs) ρvnfacc , ρnacc 0.20, 0.30
Rbus(n) 80 (Gbps) b(ni, nj) 10, 40 (Gbps)

VNF-chain length 4-6 accel. type (a) a1 a2 a3
ts 100-500 (Mbps) r(a) (LUTs) 40k 28k 30k
cn 1, 1.20

The ILP model for VNF-AAP problem has been built using Python API of IBM’s ILOG CPLEX called DOcplex504

(Decision Optimization CPLEX Modeling ). DOcplex provides a user-friendly API to write the ILP model which is505

then solved by the CPLEX solver. All heuristic algorithms are written in Python programming language. We used506

an Intel Xeon server machine with quad-core CPU @ 2.40GHz with 16GB of RAM memory running Ubuntu-16.04507

OS to carry out evaluations of the ILP and heuristics. Each data point reported in the evaluations indicates an508

average over 10 iterations along with the corresponding confidence interval of one standard deviation (68%).509

For evaluation of heuristics, we have considered two different DC topologies for simulating the physical network: (i)510

three-tier and (ii) leaf-spine. For three-tier topology, we vary the value of k to adjust the size of the network. For511

example e.g. when k=6 we will have k=6 pods, each pod containing k/2 =3 access switches and k/2 = 3 aggregate512

switches. Each access-switch (ToR switch) is connected to 6/2=3 server-nodes and therefore the total number of513

server-nodes in all the pods equal to 54. For leaf-spine, we have considered 4 core-switches and 16 leaf-switches514

(ToR switch). Each leaf-switch is connected to 16 server-nodes, therefore, resulting in a total of 320 server-nodes.515

In both the topologies, the links connecting server-nodes with ToR switches and switches with switches are 10Gbps516

and 40Gbps links respectively.517

Each server-node has 24 CPU cores, 16GB/s of PCIe bandwidth, and has 100k LUTs if a hardware-accelerator518

card is attached to the server-node. For simplicity we assume cost cn of a server-node to be 1.20$ if it is attached519

with a hardware-accelerator, otherwise 1$. The other parameters considered in evaluations are given in Table 3.520

521

9.1.1 Comparison of ILP and Heuristic522

Before presenting evaluation results regarding total node costs, we first report total execution times for ILP and523

heuristic approach. Fig. 9 shows distribution of total execution for both approaches when deploying 5 VNF-chains524

on a leaf-spine topology shown in Fig. 8. As expected, it can be observed that the execution time of ILP-approach is525

orders of magnitude larger than the heuristic approach. Moreover, when the number of VNF-chains to be deployed526

on the given topology becomes large | S |≥ 15 the total execution time could reach up to several hours.527

Fig. 10 shows the evolution of CPLEX solutions with time for the deployment of 15 VNF-chains. It can be observed528

that CPLEX takes about 2 hours to complete the execution for this instance, yet the gap between the incumbent529

solution and the lower-bound estimated by CPLEX after one hour is negligible ( 0.5%). Nevertheless, only small530

sizes instances of the VNF-AAPC problem can be solved using the ILP approach in a reasonable time.531

Fig. 11 gives the comparison between ILP and heuristic in terms of total nodes cost for the deployment of different532

number of VNF-chains. Here we have limited the maximum execution time of CPEX instances to one hour. The533

bar chart shows (i) ILP incumbent solution (ILP) and (ii) best lower-bound (ILP-LB) estimated by CPLEX until534

one hour and (iii) VNF-AAPC heuristic solution. We can observe that there exists a small penalty (on average535

∼5%) when using the heuristic approach instead of the ILP approach. As mentioned earlier, the gap between536

ILP-LB and ILP is almost negligible after one hour of CPLEX execution time.537

For the deployment of 20 VNF chains, we can observe that the total nodes cost using the ILP approach is higher538
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Figure 9: Comparison of ILP model and heuristic in terms of total execution times for the leaf-spine topology.

than with the heuristic method. As the total time of execution is limited, CPLEX was not able to reach the optimal539

solution in the given time and the VNF-AAPC heuristic method is able to achieve more efficient allocation than540

the ILP approach. Although, CPLEX can find the optimal solution if allowed to run without any time limitation,541

the performance of the heuristic is still very close to the estimated lower bound by CPLEX. As mentioned earlier,542

it will be impracticable to use ILP to solve problem instances of size larger than 15 VNF-chains.543

9.1.2 VNF-PC Heuristic Comparison544

Here, we compare the performance of heuristic algorithms among themselves in terms of the following performance545

metrics.546

1. First, total node cost is the cost due to server-nodes which also includes additional costs due to installation of547

hardware-accelerators in some of the server nodes. The comparison of node costs will indicate the resulting548

cost-saving in NFVi by using a particular VNF-PC scheme.549

2. Second, β/α is the ratio of total VNFs allocated hardware-accelerators to the total VNFs in all VNF-chains.550

It is possible that VNF-PC algorithm might not allocate an accelerator to an accelerate-able VNF. This metric551

shows the efficiency of the VNF-PC algorithm in terms of utilization of hardware-accelerator resources. A552

higher value of β/α indicates efficient allocation of hardware-accelerator resources by the VNF-PC algorithm.553
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3. Third, CPUrem is the average amount of CPU cores remaining per server-node left unallocated after the554

completion of VNF-PC. A high CPUrem indicates the poor consolidation of VNFs, thereby resulting in555

overall inefficient allocation of resources.556

To bench-mark the performance of the proposed VNF-AAPC heuristic, we also evaluate the performance of the557

accelerator-agnostic VNF-PC heuristic. The accelerator-agnostic VNF-PC heuristic will serve as the baseline for558

the evaluation of our VNF-AAPC heuristic.559

Fig. 12 (a) and (d) show the total node costs incurred to the operator as a result of deployment of different numbers560

of VNF-chains on three-tier and leaf-spine DC topologies, respectively. In both topologies, the results show the561

lowest resource cost in case of accelerator-aware VNF-PC heuristic. This arises from the efficient consolidation562

of VNFs, as explained below, by the accelerator-aware heuristic as contrast to the poor VNF consolidation in563

accelerator-agnostic heuristic.564

For the accelerator-agnostic VNF-PC, the VNF placement process is unaware of the presence of accelerator resources565

on a server-node. The chance of an accelerator being allocated to a VNF depends on the odds of an accelerate-566

able VNF being placed on a server-node with a hardware-accelerator. The probability (pacc) of allocation of an567

accelerator to a VNF using the accelerator-agnostic VNF-PC heuristic is thus given by the product pacc = ρvnfacc ρ
n
acc.568

Here, ρvnfacc is the fraction of VNF that can be offloaded using a hardware-accelerator (accelerate-able VNFs) and569
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ρnacc is the fraction of server-nodes attached with a hardware-accelerator. Therefore, pacc gives odds of accelerator570

allocation to a VNF with the accelerator-agnostic heuristic. This can also be verified from the resulting β/α571

ratios depicted in Fig. 12 (b) and (e). The β/α ratio for the accelerator-agnostic heuristic remains smaller than572

the accelerator-aware heuristic for any value of total VNF-chains. The explicit allocation of accelerators to VNFs573

occurs in the accelerator-aware heuristic which is in contrast to the accelerator-agnostic heuristic where accelerator-574

allocation is arbitrary. Moreover, we observed an increase in beta/alpha ratio with the increasing number of total575

VNF-chains. This observation can be attributed to the fact that the accelerator-aware heuristic attempts to576

reuse the deployed accelerator instances and nodes attached with hardware-accelerators. Therefore, increasing the577

number of VNF-chains causes an increase in the number of candidates for accelerator allocation; thus resulting in578

a better beta/alpha ratio.579

CPUrem metrics for both heuristics are depicted in Fig. 12 (c) and (f). VNF consolidation on server-nodes tends580

to increase with the total number of VNF chains as the chance of placing VNF on a server-node will increase with581

the increase in the total number of VNFs. This is confirmed by the decreasing CPUrem with the increasing number582

of VNF-chains for both topologies. Moreover, as more VNFs are granted accelerator using the accelerator-aware583

heuristic compared to the accelerator-agnostic heuristic, the corresponding CPUrem is smaller and therefore more584

VNF consolidation is achieved.585

We also try to show the impact of changing the fraction of nodes ρnacc with an attached hardware-accelerator card586

on overall performance metrics; when deploying the same set of VNF-chains. For this experiment, we decreased587

the fraction of server-nodes attached with a hardware-accelerators in a three-tier topology with k = 10 and mea-588

sured the performance metrics for both heuristics. It can be observed from Fig. 13 that the total nodes cost for589

accelerator-aware heuristic remains less than that of the accelerator-agnostic heuristic for all values of ρnacc. Also,590

as the fraction of nodes with hardware-accelerator ρnacc is reduced, the additional accelerator cost is decreased for591

both accelerator-agnostic and accelerator-aware VNF-PC heuristics which is negated by the additional costs due592

to the requirement of extra server-nodes.593

As expected, β/α ratio decreases with decreasing ρnacc for both accelerator-agnostic and accelerator-aware heuris-594

tics. The β/α ratio decreases almost linearly with the decrease in ρnacc. This, again, arises from the fact that the595

probability of accelerator allocation in the accelerator-agnostic heuristic is directly proportional to ρnacc value which596

is not the case with the accelerator-aware heuristic. As placement decisions for accelerate-able VNFs are separate597

in accelerator-aware VNF-PC heuristic, there is no drastic impact on its β/α ratio with a decrease in ρnacc value.598

There isn’t any significant change in CPUrem for both heuristics with the change in ρnacc values. However, VNF599

consolidation for accelerator-aware heuristic is better than the accelerator-agnostic heuristic as was expected.600

601

9.2 Overall cost analysis602

In this section, we analyze the cost-saving achieved as a result of incorporating hardware-acceleration in NFVi.603

We assume the total number of server-nodes (without any hardware-accelerator) required for the deployment of a604

given set of VNF-chains is N . The total cost Cost0 incurred to the operator as a result of running server-nodes605

can be expressed as follows:606

Cost0 = Nc0 (14)

Here, c0 is the cost of running a single server-node (without hardware-accelerator) and N is the total number of607

server-nodes required for the deployment of a set of VNF-chains.608

After the installation of hardware-accelerators in server-nodes, the total cost of deployment Costacc of for the same609

set of VNF-chains can be expressed as follows:610

Costacc = (1 + cacc)c0N(1− ρred)ρnacc + c0N(1− ρred)(1− ρnacc) (15)

The first term and the second term of eq. 15 refer to the cost of using server-nodes attached with and with-611

out hardware-accelerators, respectively. cacc is the additional cost of installation of hardware-accelerator in a612

server-node relative to the original server-node cost, ρnacc is the fraction of server-nodes that are installed with a613

hardware-accelerator and ρred is the relative (total number of server-nodes) reduction in the number of server-nodes614

after hardware-acceleration for VNFs.615

Fig. 14 compares the total server-nodes required for the deployment of 100 VNF-chains on a leaf-spine topology616

in two cases, (i) when server-nodes are not attached with any hardware accelerator card and (ii) when sever-nodes617

are attached with a hardware-accelerator card. We have used the accelerator-agnostic heuristic for the case when618

NFVi does not contain any hardware-accelerators and for the case when NFVi contains hardware-accelerators, we619

have used the accelerator-aware heuristic. It can be observed that the relative reduction ρred in the total number620
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Figure 12: Comparison of accelerator-agnostic and accelerator-aware heuristics in terms of total node costs, β/α
ratio and CPUrem for three-tier and leaf-spine topologies. Plots for three-tier topology are shown in (a), (b) and

(c) and plots in (d), (e) and (f) correspond to leaf-spine topology.
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of server-nodes by using hardware-accelerators is 18-20%.621
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Figure 14: Total server-nodes required for the deployment of 100 VNF-chains on a leaf-spine topology in two cases,
(i) when server-nodes are not attached with any hardware accelerator card and (ii) when sever-nodes are attached
with a hardware-accelerator card.

Relative cost-savings (G) is the relative reduction in the total cost as a result of using hardware-acceleration in623

NFVi. G can be obtained by using the expression shown below:624

G = (Cost0 − Costacc)/Cost0 = 1− (1− ρred).
(
1− ρnacc + (1 + cacc).ρ

n
acc

)
(16)

Eq. 16 gives an expression for the achievable cost-saving in terms of relative server-node reduction ρred and625

additional costs of hardware-accelerators (cacc). Using eq. 16, we can plot the required minimum ρred to achieve626

a given cost-saving G as shown in Fig. 15. Fig. 15 shows four different contours corresponding to four different G627

values. For example, to achieve an overall 15% savings (G = 0.15) on server-nodes cost, VNF-PC algorithm should628

achieve at least 18% reduction of total server-nodes, when an additional cost of 18.5% is needed for the installation629

of hardware-accelerators. As expected, one can observe that higher G values require high server-node reduction630

ρred and low additional costs cacc. Therefore, efficient accelerator-aware VNF-PC heuristics are required to gain631

the benefits of hardware-accelerator even when costs of hardware-accelerators are expected to reduce in the future.632

As stated earlier, about ρred = 18 − 20% reduction in total server-nodes can be obtained using our VNF-AAPC633

heuristic. As a result, about 15% of overall cost-saving (G) is achievable by the operator.634
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10 Conclusion635

NFVi generally includes all hardware and software components required to build a virtualized environment for636

running VNFs. However, due to specific performance or energy goals, it becomes essential to provide some kind637

of acceleration to certain VNFs. However, the current NFVi resource allocation models do not consider hardware-638

accelerator resources while performing placement and chaining of VNFs; therefore, resulting in an inefficient uti-639

lization of NFVi resources.640

In this paper, we modeled the VNF-AAPC problem for NFV environments containing hardware-accelerators along641

with the usual NFVi resources. To tackle the VNF-AAPC problem, we proposed two approaches: (i) ILP method642

and (ii) heuristic algorithm. As opposed to the ILP-approach, the heuristic-based method is able to scale with the643

problem size at the cost of a small penalty. Both approaches aim at minimizing the cost incurred to the operator644

due to the utilization of resources for the deployment VNF-chains. The heuristic-based approach performs tasks of645

VNF placement and chaining in two different phases: (i) Placement of accelerate-able VNFs, (ii) Placement and646

Chaining of remaining VNF-chain segments. The proposed methods were also evaluated using simulation exper-647

iments and then were compared in terms of their resulting cost and other performance metrics. The simulation648

results indicate that the accelerator-aware heuristic approach can achieve 12-14% cost-savings as compared to the649

accelerator-agnostic heuristic. Finally, we also performed overall cost-analysis on the use of hardware-accelerators650

in NFV environments. The analysis shows that the proposed accelerator-aware VNF-PC heuristic could be used651

to achieve significant cost-savings when using hardware-accelerators in NFVi.652

Hardware-accelerators are not only utilized in cloud DCs for performance enhancements of VNFs but also in653

other scenarios e.g. network edges, Centralized Radio Access Networks (CRANs). To reduce the energy cost and654

meet strict performance requirements in CRAN, various techniques to offload baseband processing functions, e.g.655

iFFT/FFT, turbo-coding, using hardware-accelerators are being investigated. However, the problem to model656

resource dimensioning for virtual base stations in cloud RANs (C-RAN) architectures with hardware-accelerators657

still remains to be investigated.658
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[28] S. Dräxler and H. Karl, “SPRING: Scaling, placement, and routing of heterogeneous services with flexible727

structures,” in 2019 IEEE Conference on Network Softwarization (NetSoft), pp. 115–123, June 2019.728

[29] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “VNF-AAP: Accelerator-aware virtual network729

function placement,” 2019.730

[30] N. Kodirov, S. Bayless, F. Ruffy, I. Beschastnikh, H. H. Hoos, and A. J. Hu, “VNF chain allocation and731

management at data center scale,” in Proceedings of the 2018 Symposium on Architectures for Networking and732

Communications Systems, pp. 125–140, ACM, 2018.733

27


