15,962 research outputs found

    Absolutely free extrinsic evolution of passive low-pass filter

    Get PDF
    Evolutionary electronics is a brunch of evolvable hardware, where the evolutionary algorithm is applied towards electronic circuits. The success of evolutionary search most of all depends on variable length representation methodology. The low-pass filter is a standard task in evolutionary electronics to start with. The results of evolution enable one to qualify whether the methodology is good for further experiments. In this paper the maximum freedom for evolutionary search has been proclaimed as a main target during development of new VLR methodology. The introduction of R-support elements enables to perform an unconstrained evolution of analogue circuits for the first time. The proposed algorithm has been tested on the example of analogue low-pass filter. The experimental results demonstrate that the evolved filter is comparable with filters evolved previously using genetic programming and genetic algorithms techniques. The obtained results are compared in details with low-pass filters previously designed

    Constrained and unconstrained evolution of “ LCR” low-pass filters with oscillating length representation

    Get PDF
    The unconstrained evolution has already been applied in the past towards design of digital circuits, and extraordinary results have been obtained, including generation of circuits with smaller number of electronic components. In this paper both constrained and unconstrained evolutions, blended with oscillating length genotype sweeping strategy, are applied towards design of analogue “ LCR” circuits. The comparison of both evolutions is made and the promising results are obtained. The new algorithm has produced the best results in terms of quality of the circuits evolved and evolutionary resources required. It differs from previous ones by its simplicity and represents one of the first attempts to apply Evolutionary Strategy towards the analogue circuit design. The obtained results are compared in details with low-pass filters previously designed

    Self-Reconfigurable Analog Arrays: Off-The Shelf Adaptive Electronics for Space Applications

    Get PDF
    Development of analog electronic solutions for space avionics is expensive and lengthy. Lack of flexible analog devices, counterparts to digital Field Programmable Gate Arrays (FPGA), prevents analog designers from benefits of rapid prototyping. This forces them to expensive and lengthy custom design, fabrication, and qualification of application specific integrated circuits (ASIC). The limitations come from two directions: commercial Field Programmable Analog Arrays (FPAA) have limited variability in the components offered on-chip; and they are only qualified for best case scenarios for military grade (-55C to +125C). In order to avoid huge overheads, there is a growing trend towards avoiding thermal and radiation protection by developing extreme environment electronics, which maintain correct operation while exposed to temperature extremes (-180degC to +125degC). This paper describes a recent FPAA design, the Self-Reconfigurable Analog Array (SRAA) developed at JPL. It overcomes both limitations, offering a variety of analog cells inside the array together with the possibility of self-correction at extreme temperatures

    The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    Get PDF
    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Unconstrained evolution of close-to-ideal "LCR" low-pass filter

    Get PDF
    The unconstrained evolution has already been applied in the past towards design of digital circuits, and extraordinary results have been obtained, including generation of more compact circuits with smaller number of electronic components. In this paper the unconstrained evolution method is developed for analogue circuits. At first, the method is probed on the design of analogue low-pass filter with standard transition band. The algorithm produced the best results in terms of quality of the circuits evolved and evolutionary resources required. Then, the new methodology is applied towards more sophisticated task, the close-to-ideal low-pass filter. The new methodology developed differs from previous ones by its simplicity and represents one of the first attempts to apply evolutionary strategy towards the analogue circuit design. The obtained results are compared in details with low-pass filters previously designed

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF
    • 

    corecore