577 research outputs found

    Securing Soft IPs against Hardware Trojan Insertion

    Get PDF
    Due to the increasing complexity of hardware designs, third-party hardware Intellectual Property (IP) blocks are often incorporated in order to alleviate the burden on hardware designers. However, the prevalence use of third-party IPs has raised security concerns such as Trojans inserted by attackers. Hardware Trojans in these soft IPs are extremely difficult to detect through functional testing and no single detection methodology has been able to completely address this issue. Based on a Register-Transfer Level (RTL) and gate-level soft IP analysis method named Structural Checking, this dissertation presents a hardware Trojan detection methodology and tool by detailing the implementation of a Golden Reference Library for matching an unknown IP to a functionally similar Golden Reference. The matching result is quantified in percentages so that two different IPs with similar functions have a high percentage match. A match of the unknown IP to a whitelisted IP advances it to be identified with a known functionality while a match to a blacklisted IP causes it to be detected with Trojan. Examples are given on how this methodology can successfully identify hardware Trojans inserted in unknown third-party IPs. In addition to soft IPs analysis, Structural Checking provides data flow tracking capability to help users discover vulnerable nodes of the soft IPs. Structural Checking is implemented with a graphical user interface, so it does not take users much time to use the tool

    Rapid mapping of digital integrated circuit logic gates via multi-spectral backside imaging

    Full text link
    Modern semiconductor integrated circuits are increasingly fabricated at untrusted third party foundries. There now exist myriad security threats of malicious tampering at the hardware level and hence a clear and pressing need for new tools that enable rapid, robust and low-cost validation of circuit layouts. Optical backside imaging offers an attractive platform, but its limited resolution and throughput cannot cope with the nanoscale sizes of modern circuitry and the need to image over a large area. We propose and demonstrate a multi-spectral imaging approach to overcome these obstacles by identifying key circuit elements on the basis of their spectral response. This obviates the need to directly image the nanoscale components that define them, thereby relaxing resolution and spatial sampling requirements by 1 and 2 - 4 orders of magnitude respectively. Our results directly address critical security needs in the integrated circuit supply chain and highlight the potential of spectroscopic techniques to address fundamental resolution obstacles caused by the need to image ever shrinking feature sizes in semiconductor integrated circuits

    Design, Fabrication, and Run-time Strategies for Hardware-Assisted Security

    Get PDF
    Today, electronic computing devices are critically involved in our daily lives, basic infrastructure, and national defense systems. With the growing number of threats against them, hardware-based security features offer the best chance for building secure and trustworthy cyber systems. In this dissertation, we investigate ways of making hardware-based security into a reality with primary focus on two areas: Hardware Trojan Detection and Physically Unclonable Functions (PUFs). Hardware Trojans are malicious modifications made to original IC designs or layouts that can jeopardize the integrity of hardware and software platforms. Since most modern systems critically depend on ICs, detection of hardware Trojans has garnered significant interest in academia, industry, as well as governmental agencies. The majority of existing detection schemes focus on test-time because of the limited hardware resources available at run-time. In this dissertation, we explore innovative run-time solutions that utilize on-chip thermal sensor measurements and fundamental estimation/detection theory to expose changes in IC power/thermal profile caused by Trojan activation. The proposed solutions are low overhead and also generalizable to many other sensing modalities and problem instances. Simulation results using state-of-the-art tools on publicly available Trojan benchmarks verify that our approaches can detect Trojans quickly and with few false positives. Physically Unclonable Functions (PUFs) are circuits that rely on IC fabrication variations to generate unique signatures for various security applications such as IC authentication, anti-counterfeiting, cryptographic key generation, and tamper resistance. While the existence of variations has been well exploited in PUF design, knowledge of exactly how variations come into existence has largely been ignored. Yet, for several decades the Design-for-Manufacturability (DFM) community has actually investigated the fundamental sources of these variations. Furthermore, since manufacturing variations are often harmful to IC yield, the existing DFM tools have been geared towards suppressing them (counter-intuitive for PUFs). In this dissertation, we make several improvements over current state-of-the-art work in PUFs. First, our approaches exploit existing DFM models to improve PUFs at physical layout and mask generation levels. Second, our proposed algorithms reverse the role of standard DFM tools and extend them towards improving PUF quality without harming non-PUF portions of the IC. Finally, since our approaches occur after design and before fabrication, they are applicable to all types of PUFs and have little overhead in terms of area, power, etc. The innovative and unconventional techniques presented in this dissertation should act as important building blocks for future work in cyber security

    Internet-of-Things (IoT) Security Threats: Attacks on Communication Interface

    Get PDF
    Internet of Things (IoT) devices collect and process information from remote places and have significantly increased the productivity of distributed systems or individuals. Due to the limited budget on power consumption, IoT devices typically do not include security features such as advanced data encryption and device authentication. In general, the hardware components deployed in IoT devices are not from high end markets. As a result, the integrity and security assurance of most IoT devices are questionable. For example, adversary can implement a Hardware Trojan (HT) in the fabrication process for the IoT hardware devices to cause information leak or malfunctions. In this work, we investigate the security threats on IoT with a special emphasis on the attacks that aim for compromising the communication interface between IoT devices and their main processing host. First, we analyze the security threats on low-energy smart light bulbs, and then we exploit the limitation of Bluetooth protocols to monitor the unencrypted data packet from the air-gapped network. Second, we examine the security vulnerabilities of single-wire serial communication protocol used in data exchange between a sensor and a microcontroller. Third, we implement a Man-in-the-Middle (MITM) attack on a master-slave communication protocol adopted in Inter-integrated Circuit (I2C) interface. Our MITM attack is executed by an analog hardware Trojan, which crosses the boundary between digital and analog worlds. Furthermore, an obfuscated Trojan detection method(ADobf) is proposed to monitor the abnormal behaviors induced by analog Trojans on the I2C interface
    • …
    corecore