860 research outputs found

    Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations

    Get PDF
    Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of Ordinary Differential Equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit (LSB) in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society

    Efficient Memristive Stochastic Differential Equation Solver

    Get PDF
    Herein, an efficient numerical solver for stochastic differential equations based on memristors is presented. The solver utilizes the stochastic switching effect in memristive devices to simulate the generation of a Brownian path and employs iterative Euler method computations within memristive crossbars. The correctness of the solution paths generated by the system is examined by solving the Black–Scholes equations and comparing the paths to analytical solutions. It is found that the absolute error of a 128-step path is limited to an order of (Figure presented.). The tolerance of the system to crossbar nonidealities is also assessed by comparing the numerical and analytical paths' variation in error. The numerical solver is sensitive to the variation in operating conditions, with the error increasing by (Figure presented.), (Figure presented.), and (Figure presented.) as the ambient temperature, wire resistance, and stuck probability of the memristor increase to extreme conditions. The solver is tested on a variety of problems to show its utility for different calculations. And, the resource consumption of the proposed structure built with existing technology is estimated and it is compared with similar iterative solvers. The solver generates a solution with the same level of accuracy from (Figure presented.) to (Figure presented.) faster than similar digital or mixed-signal designs

    COEL: A Web-based Chemistry Simulation Framework

    Get PDF
    The chemical reaction network (CRN) is a widely used formalism to describe macroscopic behavior of chemical systems. Available tools for CRN modelling and simulation require local access, installation, and often involve local file storage, which is susceptible to loss, lacks searchable structure, and does not support concurrency. Furthermore, simulations are often single-threaded, and user interfaces are non-trivial to use. Therefore there are significant hurdles to conducting efficient and collaborative chemical research. In this paper, we introduce a new enterprise chemistry simulation framework, COEL, which addresses these issues. COEL is the first web-based framework of its kind. A visually pleasing and intuitive user interface, simulations that run on a large computational grid, reliable database storage, and transactional services make COEL ideal for collaborative research and education. COEL's most prominent features include ODE-based simulations of chemical reaction networks and multicompartment reaction networks, with rich options for user interactions with those networks. COEL provides DNA-strand displacement transformations and visualization (and is to our knowledge the first CRN framework to do so), GA optimization of rate constants, expression validation, an application-wide plotting engine, and SBML/Octave/Matlab export. We also present an overview of the underlying software and technologies employed and describe the main architectural decisions driving our development. COEL is available at http://coel-sim.org for selected research teams only. We plan to provide a part of COEL's functionality to the general public in the near future.Comment: 23 pages, 12 figures, 1 tabl

    Issues with rounding in the GCC implementation of the ISO 18037:2008 standard fixed-point arithmetic

    Full text link
    We describe various issues caused by the lack of round-to-nearest mode in the \textit{gcc} compiler implementation of the fixed-point arithmetic data types and operations. We demonstrate that round-to-nearest is not performed in the conversion of constants, conversion from one numerical type to a less precise type and results of multiplications. Furthermore, we show that mixed-precision operations in fixed-point arithmetic lose precision on arguments, even before carrying out arithmetic operations. The ISO 18037:2008 standard was created to standardize C language extensions, including fixed-point arithmetic, for embedded systems. Embedded systems are usually based on ARM processors, of which approximately 100 billion have been manufactured by now. Therefore, the observations about numerical issues that we discuss in this paper can be rather dangerous and are important to address, given the wide ranging type of applications that these embedded systems are running.Comment: To appear in the proceedings of the 27th IEEE Symposium on Computer Arithmeti

    VIRTUAL PROTOTYPING OF PEBB BASED POWER ELECTRONICS SYSTEM FOR GROUND VEHICLES

    Get PDF
    Power electronics are heavily involved in power and energy systems in plenty of applications nowadays. The increase of demand brings more challenges into simulations for development. Considering the complexity of the systems and high frequency operational conditions, this paper presents comprehensive research on modeling, simulating, and validation on ground vehicle propulsion system applications. To reduce the computational burden, the Power Electronics Building Blocks concept is utilized to simplify the structure of modeling under different conversion scenarios in ground vehicle systems. In addition, the Average and Switching versions models are included. To speedup the simulation, the engagement of advanced computing technique in simulations are introduced to realize faster-than-real-time simulations. By the comparison between widely used slower-than-real-time simulations in academy and faster-than-real-time simulation with advanced computational technology, the improvements are presented. Other than engaging advanced technique, this paper proposed an advanced model method different from the Average and Switch method but the combination with the advantages of accuracy and fast simulation time. Furthermore, to verify all the modeling and simulation results proposed, a hardware design is presented, and the results validation are provided at the end

    10271 Abstracts Collection -- Verification over discrete-continuous boundaries

    Get PDF
    From 4 July 2010 to 9 July 2010, the Dagstuhl Seminar 10271 ``Verification over discrete-continuous boundaries\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore