3,075 research outputs found

    Efficient hardware implementations of high throughput SHA-3 candidates keccak, luffa and blue midnight wish for single- and multi-message hashing

    Get PDF
    In November 2007 NIST announced that it would organize the SHA-3 competition to select a new cryptographic hash function family by 2012. In the selection process, hardware performances of the candidates will play an important role. Our analysis of previously proposed hardware implementations shows that three SHA-3 candidate algorithms can provide superior performance in hardware: Keccak, Luffa and Blue Midnight Wish (BMW). In this paper, we provide efficient and fast hardware implementations of these three algorithms. Considering both single- and multi-message hashing applications with an emphasis on both speed and efficiency, our work presents more comprehensive analysis of their hardware performances by providing different performance figures for different target devices. To our best knowledge, this is the first work that provides a comparative analysis of SHA-3 candidates in multi-message applications. We discover that BMW algorithm can provide much higher throughput than previously reported if used in multi-message hashing. We also show that better utilization of resources can increase speed via different configurations. We implement our designs using Verilog HDL, and map to both ASIC and FPGA devices (Spartan3, Virtex2, and Virtex 4) to give a better comparison with those in the literature. We report total area, maximum frequency, maximum throughput and throughput/area of the designs for all target devices. Given that the selection process for SHA3 is still open; our results will be instrumental to evaluate the hardware performance of the candidates

    A Standalone FPGA-based Miner for Lyra2REv2 Cryptocurrencies

    Full text link
    Lyra2REv2 is a hashing algorithm that consists of a chain of individual hashing algorithms, and it is used as a proof-of-work function in several cryptocurrencies. The most crucial and exotic hashing algorithm in the Lyra2REv2 chain is a specific instance of the general Lyra2 algorithm. This work presents the first hardware implementation of the specific instance of Lyra2 that is used in Lyra2REv2. Several properties of the aforementioned algorithm are exploited in order to optimize the design. In addition, an FPGA-based hardware implementation of a standalone miner for Lyra2REv2 on a Xilinx Multi-Processor System on Chip is presented. The proposed Lyra2REv2 miner is shown to be significantly more energy efficient than both a GPU and a commercially available FPGA-based miner. Finally, we also explain how the simplified Lyra2 and Lyra2REv2 architectures can be modified with minimal effort to also support the recent Lyra2REv3 chained hashing algorithm.Comment: 13 pages, accepted for publication in IEEE Trans. Circuits Syst. I. arXiv admin note: substantial text overlap with arXiv:1807.0576

    Hardware-based Security for Virtual Trusted Platform Modules

    Full text link
    Virtual Trusted Platform modules (TPMs) were proposed as a software-based alternative to the hardware-based TPMs to allow the use of their cryptographic functionalities in scenarios where multiple TPMs are required in a single platform, such as in virtualized environments. However, virtualizing TPMs, especially virutalizing the Platform Configuration Registers (PCRs), strikes against one of the core principles of Trusted Computing, namely the need for a hardware-based root of trust. In this paper we show how strength of hardware-based security can be gained in virtual PCRs by binding them to their corresponding hardware PCRs. We propose two approaches for such a binding. For this purpose, the first variant uses binary hash trees, whereas the other variant uses incremental hashing. In addition, we present an FPGA-based implementation of both variants and evaluate their performance

    Criticality Aware Soft Error Mitigation in the Configuration Memory of SRAM based FPGA

    Full text link
    Efficient low complexity error correcting code(ECC) is considered as an effective technique for mitigation of multi-bit upset (MBU) in the configuration memory(CM)of static random access memory (SRAM) based Field Programmable Gate Array (FPGA) devices. Traditional multi-bit ECCs have large overhead and complex decoding circuit to correct adjacent multibit error. In this work, we propose a simple multi-bit ECC which uses Secure Hash Algorithm for error detection and parity based two dimensional Erasure Product Code for error correction. Present error mitigation techniques perform error correction in the CM without considering the criticality or the execution period of the tasks allocated in different portion of CM. In most of the cases, error correction is not done in the right instant, which sometimes either suspends normal system operation or wastes hardware resources for less critical tasks. In this paper,we advocate for a dynamic priority-based hardware scheduling algorithm which chooses the tasks for error correction based on their area, execution period and criticality. The proposed method has been validated in terms of overhead due to redundant bits, error correction time and system reliabilityComment: 6 pages, 8 figures, conferenc

    Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3

    Get PDF
    We investigate the cost of Grover's quantum search algorithm when used in the context of pre-image attacks on the SHA-2 and SHA-3 families of hash functions. Our cost model assumes that the attack is run on a surface code based fault-tolerant quantum computer. Our estimates rely on a time-area metric that costs the number of logical qubits times the depth of the circuit in units of surface code cycles. As a surface code cycle involves a significant classical processing stage, our cost estimates allow for crude, but direct, comparisons of classical and quantum algorithms. We exhibit a circuit for a pre-image attack on SHA-256 that is approximately 2153.82^{153.8} surface code cycles deep and requires approximately 212.62^{12.6} logical qubits. This yields an overall cost of 2166.42^{166.4} logical-qubit-cycles. Likewise we exhibit a SHA3-256 circuit that is approximately 2146.52^{146.5} surface code cycles deep and requires approximately 2202^{20} logical qubits for a total cost of, again, 2166.52^{166.5} logical-qubit-cycles. Both attacks require on the order of 21282^{128} queries in a quantum black-box model, hence our results suggest that executing these attacks may be as much as 275275 billion times more expensive than one would expect from the simple query analysis.Comment: Same as the published version to appear in the Selected Areas of Cryptography (SAC) 2016. Comments are welcome

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device
    corecore