7 research outputs found

    PLC Memory Attack Detection and Response in a Clean Water Supply System

    Get PDF
    Industrial Control Systems (ICS) are frequently used in manufacturing and critical infrastructures like water treatment, chemical plants, and transportation schemes. Citizens tend to take modern-day conveniences such as trains, planes or tap water for granted without considering the critical systems involved for their operations. Interrupting these industries could lead to disastrous consequences, leading to financial losses or even costing human lives. For that reason, researchers have been actively investigating the threats targeting ICS. In this paper, the authors propose a mechanism of attack detection and mitigation for attacks focusing on the input memory of Programming Logic Controllers (PLCs). To help investigate this concept, a testbed that models a clean water supply system was built using components and technologies currently used in the industry. The mechanism supporting attack detection and response for the input memory is implemented within the PLC itself as part of its programming. The mechanism of response involves three different techniques: optimised datablocks, switching between control strategies and obtaining the sensor readings directly from its analogue channel. The results demonstrate the feasibility of the proposed approach along with the effectiveness of each response mechanism

    Counter-terrorism in cyber-physical spaces: Best practices and technologies from the state of the art

    Full text link
    Context: The demand for protection and security of physical spaces and urban areas increased with the escalation of terroristic attacks in recent years. We envision with the proposed cyber-physical systems and spaces, a city that would indeed become a smarter urbanistic object, proactively providing alerts and being protective against any threat. Objectives: This survey intend to provide a systematic multivocal literature survey comprised of an updated, comprehensive and timely overview of state of the art in counter-terrorism cyber-physical systems, hence aimed at the protection of cyber-physical spaces. Hence, provide guidelines to law enforcement agencies and practitioners providing a description of technologies and best practices for the protection of public spaces. Methods: We analyzed 112 papers collected from different online sources, both from the academic field and from websites and blogs ranging from 2004 till mid-2022. Results: a) There is no one single bullet-proof solution available for the protection of public spaces. b) From our analysis we found three major active fields for the protection of public spaces: Information Technologies, Architectural approaches, Organizational field. c) While the academic suggest best practices and methodologies for the protection of urban areas, the market did not provide any type of implementation of such suggested approaches, which shows a lack of fertilization between academia and industry. Conclusion: The overall analysis has led us to state that there is no one single solution available, conversely, multiple methods and techniques can be put in place to guarantee safety and security in public spaces. The techniques range from architectural design to rethink the design of public spaces keeping security into account in continuity, to emerging technologies such as AI and predictive surveillance

    Industrial control systems cybersecurity analysis and countermeasures

    Get PDF
    Industrial Control Systems (ICS) are frequently used in the manufacturing industry and critical infrastructures, such as water, oil and transportation. Disruption of these industries could have disastrous consequences, leading to financial loss or even human lives. Over time, technological development has improved ICS components; however, little research has been done to improve its security posture. In this research, a novel attack vector addressed to the Input and Output memory of the latest SIMATIC S7-1500 PLC is presented. The results obtained during the experimentation process show that attacks on the PLC memory can have a significantly detrimental effect on the operations of the control system. Furthermore, this research describes implements and evaluates the physical, hybrid and virtual model of a Clean Water Supply System developed for the cybersecurity analysis of the Industrial Control System. The physical testbed is implemented on the Festo MPA platform, while the virtual representation of this platform is implemented in MATLAB. The results obtained during the evaluation of the three testbeds show the strengths and weaknesses of each implementation. Likewise, this research proposes two approaches for Industrial Control Systems cyber-security analysis. The first approach involves an attack detection and mitigation mechanism that focuses on the input memory of PLC and is implemented as part of its code. The response mechanism involves three different techniques: optimized data blocks, switching between control strategies, and obtaining sensor readings directly from the analogue channel. The Clean Water Supply System described above is employed for the practical evaluation of this approach. The second approach corresponds to a supervised energy-based system to anomaly detection using a novel energy-based dataset. The results obtained during the experimentation process show that machine learning algorithms can classify the variations of energy produced by the execution of cyber-attacks as anomalous. The results show the feasibility of the approach presented in this research by achieving an F1-Score of 95.5%, and 6.8% FNR with the Multilayer Perceptron Classifier
    corecore