385 research outputs found

    Asynchronous iterative computations with Web information retrieval structures: The PageRank case

    Get PDF
    There are several ideas being used today for Web information retrieval, and specifically in Web search engines. The PageRank algorithm is one of those that introduce a content-neutral ranking function over Web pages. This ranking is applied to the set of pages returned by the Google search engine in response to posting a search query. PageRank is based in part on two simple common sense concepts: (i)A page is important if many important pages include links to it. (ii)A page containing many links has reduced impact on the importance of the pages it links to. In this paper we focus on asynchronous iterative schemes to compute PageRank over large sets of Web pages. The elimination of the synchronizing phases is expected to be advantageous on heterogeneous platforms. The motivation for a possible move to such large scale distributed platforms lies in the size of matrices representing Web structure. In orders of magnitude: 101010^{10} pages with 101110^{11} nonzero elements and 101210^{12} bytes just to store a small percentage of the Web (the already crawled); distributed memory machines are necessary for such computations. The present research is part of our general objective, to explore the potential of asynchronous computational models as an underlying framework for very large scale computations over the Grid. The area of ``internet algorithmics'' appears to offer many occasions for computations of unprecedent dimensionality that would be good candidates for this framework.Comment: 8 pages to appear at ParCo2005 Conference Proceeding

    Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis

    Full text link
    Database theory and database practice are typically the domain of computer scientists who adopt what may be termed an algorithmic perspective on their data. This perspective is very different than the more statistical perspective adopted by statisticians, scientific computers, machine learners, and other who work on what may be broadly termed statistical data analysis. In this article, I will address fundamental aspects of this algorithmic-statistical disconnect, with an eye to bridging the gap between these two very different approaches. A concept that lies at the heart of this disconnect is that of statistical regularization, a notion that has to do with how robust is the output of an algorithm to the noise properties of the input data. Although it is nearly completely absent from computer science, which historically has taken the input data as given and modeled algorithms discretely, regularization in one form or another is central to nearly every application domain that applies algorithms to noisy data. By using several case studies, I will illustrate, both theoretically and empirically, the nonobvious fact that approximate computation, in and of itself, can implicitly lead to statistical regularization. This and other recent work suggests that, by exploiting in a more principled way the statistical properties implicit in worst-case algorithms, one can in many cases satisfy the bicriteria of having algorithms that are scalable to very large-scale databases and that also have good inferential or predictive properties.Comment: To appear in the Proceedings of the 2012 ACM Symposium on Principles of Database Systems (PODS 2012

    A parallel algorithm to calculate the costrank of a network

    No full text
    We developed analogous parallel algorithms to implement CostRank for distributed memory parallel computers using multi processors. Our intent is to make CostRank calculations for the growing number of hosts in a fast and a scalable way. In the same way we intent to secure large scale networks that require fast and reliable computing to calculate the ranking of enormous graphs with thousands of vertices (states) and millions or arcs (links). In our proposed approach we focus on a parallel CostRank computational architecture on a cluster of PCs networked via Gigabit Ethernet LAN to evaluate the performance and scalability of our implementation. In particular, a partitioning of input data, graph files, and ranking vectors with load balancing technique can improve the runtime and scalability of large-scale parallel computations. An application case study of analogous Cost Rank computation is presented. Applying parallel environment models for one-dimensional sparse matrix partitioning on a modified research page, results in a significant reduction in communication overhead and in per-iteration runtime. We provide an analytical discussion of analogous algorithms performance in terms of I/O and synchronization cost, as well as of memory usage

    Learning-assisted Theorem Proving with Millions of Lemmas

    Full text link
    Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.Comment: journal version of arXiv:1310.2797 (which was submitted to LPAR conference
    • …
    corecore