5 research outputs found

    Managing emergency situations in the smart city: The smart signal

    Get PDF
    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City

    Protocol and Architecture to Bring Things into Internet of Things

    Get PDF
    The Internet of Things (IoT) concept proposes that everyday objects are globally accessible from the Internet and integrate into new services having a remarkable impact on our society. Opposite to Internet world, things usually belong to resource-challenged environmentswhere energy, data throughput, and computing resources are scarce. Building upon existing standards in the field such as IEEE1451 and ZigBee and rooted in context semantics, this paper proposes CTP (Communication Things Protocol) as a protocol specification to allow interoperability among things with different communication standards as well as simplicity and functionality to build IoT systems. Also, this paper proposes the use of the IoT gateway as a fundamental component in IoT architectures to provide seamless connectivity and interoperability among things and connect two different worlds to build the IoT: the Things world and the Internet world. Both CTP and IoT gateway constitute a middleware content-centric architecture presented as the mechanism to achieve a balance between the intrinsic limitations of things in the physical world and what is required fromthem in the virtual world. Said middleware content-centric architecture is implemented within the frame of two European projects targeting smart environments and proving said CTP’s objectives in real scenarios

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version

    Highly reliable, low-latency communication in low-power wireless networks

    Get PDF
    Low-power wireless networks consist of spatially distributed, resource-constrained devices – also referred to as nodes – that are typically equipped with integrated or external sensors and actuators. Nodes communicate with each other using wireless transceivers, and thus, relay data – e. g., collected sensor values or commands for actuators – cooperatively through the network. This way, low-power wireless networks can support a plethora of different applications, including, e. g., monitoring the air quality in urban areas or controlling the heating, ventilation and cooling of large buildings. The use of wireless communication in such monitoring and actuating applications allows for a higher flexibility and ease of deployment – and thus, overall lower costs – compared to wired solutions. However, wireless communication is notoriously error-prone. Message losses happen often and unpredictably, making it challenging to support applications requiring both high reliability and low latency. Highly reliable, low-latency communication – along with high energy-efficiency – are, however, key requirements to support several important application scenarios and most notably the open-/closed-loop control functions found in e. g., industry and factory automation applications. Communication protocols that rely on synchronous transmissions have been shown to be able to overcome this limitation. These protocols depart from traditional single-link transmissions and do not attempt to avoid concurrent transmissions from different nodes to prevent collisions. On the contrary, they make nodes send the same message at the same time over several paths. Phenomena like constructive interference and capture then ensure that messages are received correctly with high probability. While many approaches relying on synchronous transmissions have been presented in the literature, two important aspects received only little consideration: (i) reliable operation in harsh environments and (ii) support for event-based data traffic. This thesis addresses these two open challenges and proposes novel communication protocols to overcome them
    corecore