138 research outputs found

    Geometric Embeddability of Complexes Is ??-Complete

    Get PDF
    We show that the decision problem of determining whether a given (abstract simplicial) k-complex has a geometric embedding in ?^d is complete for the Existential Theory of the Reals for all d ? 3 and k ? {d-1,d}. Consequently, the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution and other important problems from various fields related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract simplicial) complexes. This complements recent breakthroughs for the computational complexity of piece-wise linear embeddability

    Minimum Bounded Chains and Minimum Homologous Chains in Embedded Simplicial Complexes

    Get PDF
    We study two optimization problems on simplicial complexes with homology over ??, the minimum bounded chain problem: given a d-dimensional complex ? embedded in ?^(d+1) and a null-homologous (d-1)-cycle C in ?, find the minimum d-chain with boundary C, and the minimum homologous chain problem: given a (d+1)-manifold ? and a d-chain D in ?, find the minimum d-chain homologous to D. We show strong hardness results for both problems even for small values of d; d = 2 for the former problem, and d=1 for the latter problem. We show that both problems are APX-hard, and hard to approximate within any constant factor assuming the unique games conjecture. On the positive side, we show that both problems are fixed-parameter tractable with respect to the size of the optimal solution. Moreover, we provide an O(?{log ?_d})-approximation algorithm for the minimum bounded chain problem where ?_d is the dth Betti number of ?. Finally, we provide an O(?{log n_{d+1}})-approximation algorithm for the minimum homologous chain problem where n_{d+1} is the number of (d+1)-simplices in ?

    Eliminating Higher-Multiplicity Intersections, II. The Deleted Product Criterion in the rr-Metastable Range

    Get PDF
    Motivated by Tverberg-type problems in topological combinatorics and by classical results about embeddings (maps without double points), we study the question whether a finite simplicial complex K can be mapped into R^d without higher-multiplicity intersections. We focus on conditions for the existence of almost r-embeddings, i.e., maps from K to R^d without r-intersection points among any set of r pairwise disjoint simplices of K. Generalizing the classical Haefliger-Weber embeddability criterion, we show that a well-known necessary deleted product condition for the existence of almost r-embeddings is sufficient in a suitable r-metastable range of dimensions (r d > (r+1) dim K +2). This significantly extends one of the main results of our previous paper (which treated the special case where d=rk and dim K=(r-1)k, for some k> 3).Comment: 35 pages, 10 figures (v2: reference for the algorithmic aspects updated & appendix on Block Bundles added
    • …
    corecore