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Abstract
Motivated by Tverberg-type problems in topological combinatorics and by classical results about
embeddings (maps without double points), we study the question whether a finite simplicial com-
plex K can be mapped into Rd without higher-multiplicity intersections. We focus on conditions
for the existence of almost r-embeddings, i.e., maps f : K → Rd such that f(σ1)∩ · · · ∩ f(σr) = ∅
whenever σ1, . . . , σr are pairwise disjoint simplices of K.

Generalizing the classical Haefliger-Weber embeddability criterion, we show that a well-known
necessary deleted product condition for the existence of almost r-embeddings is sufficient in a
suitable r-metastable range of dimensions: If rd ≥ (r+ 1) dimK + 3, then there exists an almost
r-embedding K → Rd if and only if there exists an equivariant map (K)r∆ →Sr Sd(r−1)−1,
where (K)r∆ is the deleted r-fold product of K, the target Sd(r−1)−1 is the sphere of dimension
d(r − 1)− 1, and Sr is the symmetric group. This significantly extends one of the main results
of our previous paper (which treated the special case where d = rk and dimK = (r − 1)k for
some k ≥ 3), and settles an open question raised there.
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1 Introduction

Let K be a finite simplicial complex, and let f : K → Rd be a continuous map.1 Given an
integer r ≥ 2, we say that y ∈ Rd is an r-fold point or r-intersection point of f if it
has r pairwise distinct preimages, i.e., if there exist y1, . . . , yr ∈ K such that f(y1) = . . . =
f(yr) = y and yi 6= yj for 1 ≤ i < j ≤ r. We will pay particular attention to r-fold points
that are global2 in the sense that their preimages lie in r pairwise disjoint simplices of K,
i.e., y ∈ f(σ1) ∩ . . . ∩ f(σr), where σi ∩ σj = ∅ for 1 ≤ i < j ≤ r.

∗ Research supported by the Swiss National Science Foundation (Project SNSF-PP00P2-138948). We
would like to thank Arkadiy Skopenkov for many helpful comments.

1 For simplicity, throughout most of the paper we use the same notation for a simplicial complex K and
its underlying topological space, relying on context to distinguish between the two when necessary.

2 In our previous paper [17], we used the terminology “r-Tverberg point” instead of “global r-fold point.”
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51:2 Eliminating Higher-Multiplicity Intersections, II

We say that a map f : K → Rd is an r-embedding if it has no r-fold points, and we say
that f is an almost r-embedding if it has no global r-fold points.3

The most fundamental case r = 2 is that of embeddings (=2-embeddings), i.e., injective
continuous maps f : K → Rd. Finding conditions for a simplicial complexK to be embeddable
into Rd — a higher-dimensional generalization of graph planarity — is a classical problem in
topology (see [27, 33] for surveys) and has recently also become the subject of systematic
study from a viewpoint of algorithms and computational complexity (see [23, 22, 9]).

Here, we are interested in necessary and sufficient conditions for the existence of almost
r-embeddings. One motivation are Tverberg-type problems in topological combinatorics (see
the corresponding subsection below). Another motivation is that, in the classical case r = 2,
embeddability is often proved in two steps: in the first step, the existence of an almost
embedding (=almost 2-embedding) is established; in the second step this almost embedding
is transformed into a honest embedding, by removing local self-intersections. Similarly, we
expect the existence of an almost r-embedding to be not only an obvious necessary condition
but a useful stepping stone towards the existence of r-embeddings and, in a further step,
towards the existence of embeddings in certain ranges of dimensions.

The Deleted Product Criterion for Almost r-Embeddings

There is a natural necessary condition for the existence of almost r-embeddings. Given a
simplicial complex K and r ≥ 2, the (combinatorial) deleted r-fold product4 of K is
defined as

(K)r∆ := {(x1, . . . , xr) ∈ σ1 × · · · × σr | σi a simplex of K,σi ∩ σj = ∅ for 1 ≤ i < j ≤ r}.

The deleted product is a regular polytopal cell complex (a subcomplex of the cartesian
product), whose cells are products of r-tuples of pairwise disjoint simplices of K.

I Lemma 1 (Necessity of the Deleted Product Criterion). Let K be a finite simplicial complex,
and let d ≥ 1 and r ≥ 2 be integers. If there exists an almost r-embedding f : K → Rd then
there exists an equivariant map5

f̃ : (K)r∆ →Sr
Sd(r−1)−1,

where Sd(r−1)−1 =
{

(y1, . . . , yr) ∈ (Rd)r |
∑r
i=1 yi = 0,

∑r
i=1 ‖yi‖22 = 1

}
, and the symmetric

group Sr acts on both spaces by permuting components.

Proof. Given f : K → Rd, define fr : (K)r∆ → (Rd)r by fr(x1, . . . , xr) := (f(x1), . . . f(xr)).
Then f is an almost r-embedding iff its image avoids the thin diagonal δr(Rd) := {(y, . . . , y) |
y ∈ Rd} ⊂ (Rd)r. Moreover, Sd(r−1)−1 is the unit sphere in the orthogonal complement
δr(Rd)⊥ ∼= Rd(r−1), and there is a straightforward homotopy equivalence ρ : (Rd)r \ δr(Rd) '
Sd(r−1)−1. Both fr and ρ are equivariant hence so is their composition

f̃ := ρ ◦ fr : (K)r∆ →Sr
Sd(r−1)−1. J

3 We emphasize that the definitions of global r-fold points and of almost r-embeddings depend on the
actual simplicial complex K (the specific triangulation), not just the underlying topological space.

4 For more background on deleted products and the broader configuration space/test map framework, see,
e.g., [21] or [39, 40].

5 Here and in what follows, if X and Y are spaces on which a finite group G acts (all group actions will
be from the right) then we will use the notation F : X →G Y for maps that are equivariant, i.e., that
satisfy F (x · g) = F (x) · g for all x ∈ X and g ∈ G).
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Our main result is that the converse of Lemma 1 holds in a wide range of dimensions.

I Theorem 2 (Sufficiency of the Deleted Product Criterion in the r-Metastable Range). Let
m, d ≥ 1 and r ≥ 2 be integers satisfying

rd ≥ (r + 1)m+ 3. (1)

Suppose that K is a finite m-dimensional simplicial complex and that there exists an equivari-
ant map F : (K)r∆ →Sr S

d(r−1)−1. Then there exists an almost r-embedding f : K → Rd.

I Remark.
a. When studying almost r-embeddings, it suffices to consider maps f : K → Rd that are

piecewise-linear6 (PL) and in general position.7
b. Theorem 2 is trivial for codimension d − m ≤ 2. Indeed, if r, d,m satisfy (1) and,

additionally, d−m ≤ 2 then a straightforward calculation shows that (r − 1)d > rm, so
that a map K → Rd in general position has no r-fold points.

c. The special case r = 2 of Theorem 2 corresponds to the classical Haefliger–Weber Theorem
[16, 37], which guarantees that for 2d ≥ 3m + 3 the existence of an equivariant map
(K)2

∆ →S2 Sd−1 guarantees the existence of an almost embedding f : K → Rd. An
almost embedding can be then be turned into an embedding by a delicate construction
of Skopenkov [32] or Weber [37]. The condition 2d ≥ 3m+ 3 is often referred to as the
metastable range; correspondingly, we call Condition (1) the r-metastable range.

d. Theorem 2 significantly extends one of the main results of our previous paper [18, Thm. 7]
and [17, Thm. 3], which treated the special case (r − 1)d = rm, d−m ≥ 3. That special
case corresponds to the situation when the set Σr of global r-fold points is 0-dimensional,
i.e., consists of a finite number of points. In the present paper, we deal with the case
where Σr is of higher dimension.

e. The r-metastable range is very close to the condition rd > (r + 1)m that guarantees that
a map f : K → Rd in general position does not have any (r + 1)-fold points.

Background and Motivation: Topological Tverberg-Type Problems

Tverberg’s classical theorem [35] in convex geometry can be rephrased as follows: if N =
(d+ 1)(r − 1) then any affine map from the N -dimensional simplex σN to Rd has a global
r-fold point, i.e., there does not exist an affine almost r-embedding of σN in Rd.

Bajmoczy and Bárány [2] and Tverberg [15, Problem 84] raised the question whether the
conclusion holds true, more generally, for arbitrary continuous maps:

I Conjecture 3 (Topological Tverberg Conjecture). Let r ≥ 2, d ≥ 1, and N = (d+ 1)(r− 1).
Then there is no almost r-embedding σN → Rd.

This was proved by Bajmoczy and Bárány [2] for r = 2, by Bárány, Shlosman, and Szűcs [4]
for all primes r, and by Özaydin [24] for prime powers r, but the case of arbitrary r remained
open and was considered a central unsolved problem of topological combinatorics.

There are numerous close relatives and other variants of (topological) Tverberg-type
problems and results. These can be seen as generalized nonembeddability results or problems
and typically state that a particular complex K (or family of complexes) does not admit
an almost r-embedding into Rd. Well-known examples are the Colored Tverberg Problem

6 Recall that f is PL if there is some subdivision K′ of K such that f |σ is affine for each simplex σ of K′.
7 Every continuous map g : K → Rd can be approximated arbitrarily closely by PL maps in general

position, and if g is an almost r-embedding, then the same holds for any map sufficiently close to g.

SoCG 2016
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[5, 3, 41, 40, 6] and generalized Van Kampen–Flores-type results [29, 36]. Theorem 2 provides
a general necessary and sufficient condition for topological Tverberg-type results in the
r-metastable range.

The topological Tverberg conjecture and the subsequent developments played an important
role in the introduction and use of methods from equivariant topology in discrete and
computational geometry. The prime and prime power cases of Conjecture 3 were proved via
Lemma 1, (σN )r∆ →Sr

Sd(r−1)−1. However, this fails in the remaining cases: Özaydin [24,
Thm. 4.2] showed that if r is not a prime power then there exists an equivariant map
F : (∆N )r∆ →Sr

Sd(r−1)−1.
In the extended abstract of our previous paper [17], we proposed a new approach to the

conjecture, based on the idea of combining Özaydin’s result with the sufficiency of the deleted
product product ([17, Thm 3]) to construct counterexamples, i.e., almost r-embeddings
σN → Rd, whenever r is not a prime power. At the time we suggested this in [17], there
remained what seemed a very serious obstacle to completing this approach: Our theory
required the assumption of codimension d− dimK ≥ 3, which is not satisfied for K = σN .

In a recent breakthrough, Frick [12] was the first to find a way to overcome this “codi-
mension 3 barrier” and to construct counterexamples to the topological Tverberg conjecture
for all parameters (d, r) with d ≥ 3r + 1 and r not a prime power, by a clever reduction
(using a combinatorial trick discovered independently in [14, p. 445-446] and [7, Thm. 6.3])
to a suitable lower-dimensional skeleton for which the codimension condition is satisfied and
the required almost r-embedding exists by Özaydin’s result and ours.

A different solution to the codimension 3 obstacle (based on the notion of prismatic maps)
is given in the full version of our paper [18], leading to counterexamples for d ≥ 3r. In joint
work with Avvakumov and Skopenkov [1], we recently improved this further and obtained
counterexamples for d ≥ 2r, using an extension (for r ≥ 3) of [18, Thm. 7] to codimension 2.

In conclusion, methods from equivariant topology and the general framework of con-
figuration spaces and test maps [39, 40] have been very successfully used in discrete and
computational geometry. In particular, equivariant obstruction theory and, more generally
equivariant homotopy theory, provide powerful tools for deciding whether suitable test maps
exist. However in cases where the existence of a test map does not settle the problem (as
with the topological Tverberg conjecture), further geometric ideas are needed. The general
philosophy and underlying idea here and in the two companion papers [18, 1] is to comple-
ment equivariant methods by methods from geometric topology, in particular piecewise-linear
topology, and we hope that these will find further applications.

I Remark (Further Questions and Future Research).
a. Beyond the r-Metastable Range. Is condition (1) in Theorem 2 necessary? In the case

r = 2, it is known that for d ≥ 3, the Haefliger–Weber Theorem fails outside the
metastable range: for every pair (m, d) with 2d < 3m+ 3 and d ≥ 3, there are examples
[20, 31, 11, 30, 13] of m-dimensional complexes K such that (K)2

∆ →S2 S
d−1 but K does

not embed into Rd. Moreover, in the case r = 2, m = 2 and d = 4, the examples do not
even admit an almost embedding into R4, see [1].
On the other hand, as remarked above, in [1] the following extension of [18, Thm. 7] is
proved: if r ≥ 3 d = 2r, and m = 2(r− 1), then a finite m-dimensional complex K admits
an almost r-embedding if and only if there exists an equivariant map (K)r∆ →Sr

Sd(r−1)−1.
It would be interesting to know whether there is analogous extension (for r ≥ 3) of
Theorem 2 that is nontrivial in codimension d−m = 2.

b. The Planar Case and Hanani–Tutte. In the classical setting (r = 2) of embeddings, the
case d = 2,m = 1 of graph planarity is somewhat exceptional: the parameters lie outside
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the (2-fold) metastable range, but the existence of an equivariant map F : (K)2
∆ →S2 S

1

is sufficient for a graph K to be planar, by the Hanani–Tutte Theorem8 [10, 34]. The
classical proofs of that theorem rely on Kuratowski’s Theorem, but recently [25, 26], more
direct proofs have been found that do not use forbidden minors. It would be interesting to
know whether there is an analogue of the Hanani–Tutte theorem for almost r-embeddings
of 2-dimensional complexes in R2, as an approach to constructing counterexamples to
the topological Tverberg conjecture in dimension d = 2. We plan to investigate this in a
future paper.

Structure of the Paper

The remainder of the paper is devoted to the proof of Theorem 2. By Lemma 1, we only need
to show that the existence of an equivariant map (K)r∆ →Sr

Sd(r−1)−1 implies the existence
of an almost r-embedding K → Rd. Moreover, by Remarks 1 (b) and (d), we may assume,
in addition to the parameters being in the r-fold metastable range, that the codimension
d−m of the image of K in Rd is at least 3, and that the intersection multiplicity r is also at
least 3. Thus, we will work under the following hypothesis:

rd ≥ (r + 1)m+ 3, d−m ≥ 3, and r ≥ 3. (2)

The proof of Theorem 2 is based on two main lemmas: Lemma 5 (Reduction Lemma)
reduces the situation to a single r-tuple of pairwise disjoint simplices of K, and Lemma 7
(generalized Weber–Whitney Trick) solves that reduced situation. In Section 2, we give the
precise (and somewhat technical) statements of these lemmas, along with some background,
and prove the Reduction Lemma 5. In Section 3, we show how to prove Theorem 2 using
these lemmas.

Due to the page limit, the proof of Lemma 7 is omitted from this extended abstract; we
refer to the full version of this paper [19] for the details.

2 The Two Main Lemmas

In this section, we formulate the two main lemmas on which the proof of Theorem 2 rests.
We work in the piecewise-linear (PL) category (standard references are [38, 28]). All

manifolds (possibly with boundary) are PL-manifolds (can be triangulated as locally finite
simplicial complexes such that the link of every nonempty face is either a PL-sphere or a
PL-ball), and all maps between polyhedra (geometric realizations of simplicial complexes)
are PL-maps (i.e., simplicial on sufficiently fine subdivisions).9 In particular, all balls are
PL-ball and all spheres are PL-spheres (PL-homeomorphic to a simplex and the boundary of
a simplex, respectively).

A submanifold P of a manifold Q is properly embedded if ∂P = P ∩∂Q. The singular
set of a PL-map f defined on a polyhedron K is the closure in K of the set of points at
which f is not injective.

One basic fact that we will use for the proofs of both Lemmas 5 and 7 is the following
version of engulfing [38, Ch. VII]:

8 The existence of an equivariant map implies, via standard equivariant obstruction theory, that there
exists a map from the graph K into R2 such that the images of any two disjoint (independent) edges
intersect an even number of times, which is the hypothesis of the Hanani–Tutte Theorem.

9 The PL assumption is no loss of generality: if K is a finite simplicial complex and f : K → Rd is an
almost r-embedding then f can be slightly perturbed to a PL map with the same property.

SoCG 2016
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C1

σ1

(f−1fσ2) ∩ σ1

(f−1fσ3) ∩ σ1

Figure 1 For r = 3, the construction of C1 inside of σ1. The collapsible polyhedron C1 is a “cone”
over the triple intersection set S1 (which consists of four isolated points in the picture).

I Theorem 4 (Engulfing, [38, Ch. VII, Thm. 20]). Let M be an m-dimensional k-connected
manifold with k ≤ m − 3. Let X a compact x-dimensional subpolyhedron in the interior
of M . If x ≤ k, then there exists a collapsible subpolyhedron C in the interior of M with
X ⊆ C and dim(C) ≤ x+ 1.

The collapsible polyhedron C can be thought of as an analogue of a “cone” over X.

I Lemma 5 (Reduction Lemma). Let m, d, r be three positive integers satisfying (2). Suppose
f : K → Rd is a map in general position, and σ1, . . . , σr be pairwise disjoint simplices of
K of dimension s1, . . . , sr ≤ m such that f−1(f(σ1) ∩ · · · ∩ f(σr)) ∩ σi is contained in the
interior of σi. Then there exists a ball Bd in Rd such that
1. Bd intersects each f(σi) in a ball that is properly embedded in Bd, and that ball avoids

the image of the singular set of f |σi
, as well as f(∂σi);

2. Bd contains f(σ1) ∩ · · · ∩ f(σr) in its interior; and
3. Bd does not intersect any other parts of the image f(K).

Proof. Let us consider Si := f−1(f(σ1)∩ · · · ∩ f(σr))∩σi. By general position [28, Thm 5.4]
this is a polyhedron of dimension at most s1+· · ·+sr−(r−1)d ≤ rm−(r−1)d. By Theorem 4,
we find Ci ⊆ σi collapsible, containing Si, and of dimension at most rm − (r − 1)d + 1.
Figure 1 illustrates the case r = 3.

The dimension of the singular set of f |σi is at most 2si − d. Hence, Ci is disjoint from
it since (rm− (r − 1)d+ 1) + (2si − d)− si ≤ (r + 1)m− rd+ 1, which is negative in the
metastable range. Thus, f is injective in a neighbourhood of Ci.

Again by Theorem 4, we find in Rd a collapsible polyhedron CRd of dimension at most
rm− (r − 1)d+ 2 and containing f(C1) ∪ · · · ∪ f(Cr). Figure 2 illustrates the construction
for r = 3. By general position we have the following properties:
1. CRd intersects f(σi) exactly in f(Ci). Indeed, in the metastable range, rm− (r − 1)d+

2 + si − d ≤ (r + 1)m− rd+ 2 < 0.
2. CRd does not intersect any other part of f(K) (by a similar computation).

We take a small regular neighbourhood [28, Ch. 3] B of CRd , which still avoids the
singular set of each f |σi as well as other parts of f(K). This regular neighbourhood is a
ball, since CRd is collapsible. The intersection B ∩ f(σi) is a regular neighbourhood of f(Ci)
which is also a collapsible space, hence B ∩ f(σi) is a ball (properly contained in B). J

An ambient isotopy H of a PL-manifold X is a collection of homeomorphisms Ht :
X → X for t ∈ [0, 1], which vary continuously with t, and with H0 = id. We say that an
ambient isotopy H throws a subspace Y ⊆ X onto Z if H1(Y ) = Z, see [38, Ch. V].

We say that an ambient isotopy H of X is proper if Ht|∂X = id∂X for all t.
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fC1

fC3

fC2

fσ1

fσ3

fσ2

Figure 2 For r = 3, the polyhedron CRd is a “cone” over fC1 ∪ fC2 ∪ fC3.

I Definition 6. Let m, d, r be three positive integers satisfying (2). Let σ1, . . . , σr be balls
of dimensions s1, . . . , sr ≤ m. We define

s := s1 + . . .+ sr.

Let f be a continuous map, mapping the disjoint union of the σi to a d-dimensional ball Bd,
i.e.,

f : σ1 t · · · t σr → Bd.

We define the test map f̃ associated to f

f̃ : σ1 × · · · × σr → Bd × · · · ×Bd, by (x1, ..., xr) 7→ (fx1, ..., fxr).

If, for each i = 1, ..., r,

fσ1 ∩ · · · ∩ f∂σi ∩ · · · ∩ fσr = ∅,

then f̃∂(σ1×· · ·×σr) ⊂ Bd×· · ·×Bd, avoids the thin diagonal δr(Bd) = {(x, . . . , x) | x ∈
Bd} of Bd. Thus,

∂(σ1 × · · · × σr)→ (Bd × · · · ×Bd) \ δr(Bd). (3)

Observe that ∂(σ1 × · · · × σr) ∼= Ss−1, where s :=
∑
i si, and (Bd × · · · ×Bd) \ δr(Bd) is

homotopy equivalent to Sd(r−1)−1. Therefore, the map (3) defines an element

α(f) ∈ πs−1(Sd(r−1)−1),

which we call intersection class of f .

I Lemma 7 (Generalized Weber-Whitney Trick). Let m, d, r be three positive integers sat-
isfying (2). Let σ1, . . . , σr be balls of dimensions s1, . . . , sr ≤ m properly contained in a
d-dimensional ball B and with σ1 ∩ · · · ∩ σr in the interior of B.
1. Let us denote by α the intersection class of the map σ1 t · · · t σr → Bd.

If α = 0, then there exists (r − 1) proper ambient isotopies of B that we can apply to
σ1, . . . , σr−1, respectively, to remove the r-intersection set; i.e., there exist (r − 1) proper
isotopies H1

t , . . . ,H
r−1
t of B throwing σi onto σ′i := Hi

1σi and such that

σ′1 ∩ · · · ∩ σ′r−1 ∩ σr = ∅.

2. Let us assume that σ1 ∩ · · · ∩ σr = ∅ and σ2 ∩ · · · ∩ σr 6= ∅, and let z ∈ πs(Sd(r−1)−1).
There exists Jt a proper ambient isotopy of B such that

SoCG 2016
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J1σ1 ∩ σ2 ∩ · · · ∩ σr−1 ∩ σr = ∅,
The intersection class of f is z, where

f : (σ1 × I) t σ2 t · · · t σr → Bd

is defined as the inclusion on σi for i ≥ 2, and for (x, t) ∈ σ1 × I, f(x, t) = Jt(x).

I Remark.
For r = 2, Lemma 7 already appears in Section 4 of Weber’s thesis [37].
Roughly speaking, Part 1 of Lemma 7 means that if the intersection class vanishes, then
one can resolve the r-intersection set.
Part 2 means that each element of πs(Sd(r−1)−1) can be obtained by moving from a fixed
solution to a new solution.

3 Proof of Theorem 2

Here, we show how to use Lemmas 5 and 7 to prove the main theorem. The inductive
argument used in the proof mirrors that of Section 5 in Weber’s thesis [37], where Theorem 2
is proven for r = 2.

Proof of Theorem 2. We are given F : (K)r∆ →Sr
Sd(r−1)−1, and we want to construct

f : K → Rd without global r-fold point.
We start with a map f : K → Rd in general position. Inductively, we will redefine f

on the skeleta of K as to get the desired property. There are two levels in the induction.
To describe these, let us fix a total ordering of the simplices of K that extends the partial
ordering by dimension, i.e.,

K = {τ1, . . . , τN}, dim τi ≤ dim τi+1 for 1 ≤ i ≤ N − 1.

First, we give a very informal plan of the “double induction” that we are going to use in
the proof: we go over the list of simplices τ1, ..., τN , and for each simplex τi we consider all
the global r-fold points of τi with all the simplices before τi in the list. More precisely, we
consider the list li of all r-tuples of pairwise disjoint simplices containing τi and simplices
before τi in the list τ1, ..., τN . For each r-tuple in li, we need to eliminate its global r-fold
points.

Therefore, once τi is fixed, we have a new list li. We are going to order li (by a notion of
dimension), and then inductively scan over it and remove the global r-fold points for each
r-tuple in li.

Let us describe now the first level of the inductive argument. We have to prove the
following: Suppose we are given a map f : K → Rd in general position with the following
two properties:
1. Restricted to the subcomplex L = {τ1, . . . , τN−1} the map f |L does not have any r-fold

points between disjoint r-tuples of simplices;
2. f̃ restricted to (L)r∆ is Sr-equivariantly homotopic to F , where f̃ is the map defined in

Lemma 1.

Then we can redefine f as to have these two properties on the whole of K. This is the
first level of induction.

For the second level of the induction, let us define the dimension of a finite set of
simplices as the sum of their individual dimensions. For the the purposes of this proof, we
use the terminology k-collection for a set of cardinality k. Consider those (r− 1)-collections
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t of simplices of L that, together with τN , form an r-collection of pairwise disjoint simplices.
We fix a total ordering of these (r − 1)-collections that extends the partial ordering given by
dimension, i.e., we list them as

t1, . . . , tM ,

with dim ti ≤ dim ti+1 for 1 ≤ i < M. (Thus, each ti is an (r− 1)-collection of simplices of L,
and ti joined with τN is a r-collection of pairwise disjoint simplices.) Once again, inductively,
it suffices to prove the following: Assuming that f has the two properties
1. For each (r − 1)-collection ti in the list t1, . . . , tM−1, the map f does not have any r-fold

points with preimages in the r-collection formed by adjoining τN to ti.
2. the map f̃ is Sr-equivariantly homotopic to F on the complex

(L)r∆ ∪
⋃

i≤M−1
[ti ∪ {τN}] ⊆ (K)r∆,

where the operator [−] converts an unordered r-collection of pairwise disjoint simplices of
K into the set of its corresponding cells10 in (K)r∆.

Then we can modify f as to have these two properties on the list t1, . . . , tM .
In order to do so, let us consider the r-collection tM ∪ {τN}. We rename its elements as

tM ∪ {τN} = {σ1, . . . , σr}, (with τN = σr).

By the induction hypothesis (namely the order on the τi and the ti), for each i = 1, . . . , r,
f−1(fσ1 ∩ · · · ∩ fσr) ∩ σi is contained in the interior of σi (since the induction has already
“worked” on the simplices in ∂σi). Furthermore, the map f̃ : ∂(σ1 × · · · × σr)→ Sd(r−1)−1 is
homotopic to F , this also follows from the ordering on the τi and the ti (the homotopy is
already defined on all the cells of ∂(σ1 × · · · × σr)).

We are in position to apply Lemma 5: we find a ball Bd in Rd with the three properties
listed in the Lemma. Let us call σ′i the sub-ball in σi properly embedded into Bd, i.e.,
σ′i

f
↪→ Bd , and f∂σ′i = ∂Bd ∩ fσ′i.
By the Combinatorial Annulus Theorem [8, 3.10], there exists an isotopy of σi in itself

that progressively retracts σi to σ′i. I.e., there exists Git : σi → σi with Gi0 being the identity
and Gi1 being a homeomorphism between σi and σ′i. We define a homotopy by

G : ∂(I × σ1 × · · · × σr)
fG1×···×fGr

−−−−−−−−−→ Rd × · · · × Rd \ δrRd
(t, x1, . . . , xr) 7−→ (fG1

tx1, . . . fG
r
txr).

(4)

By the induction hypothesis,

∂(σ1 × · · · × σr)
f×···×f−−−−−→ Rd × · · · × Rd \ δrRd (5)

is homotopic to F , and F is defined over σ1 × · · · × σr. Therefore, the homotopy class of

∂(σ′1 × · · · × σ′r)
f×···×f−−−−−→ Bd × · · · ×Bd \ δrBd

is trivial. Hence, we can use the first part of the Lemma 7 to find (r − 1) proper ambient
isotopies of B, say H1

t , . . . ,H
r−1
t , such that H1

1 (fσ′1) ∩ · · · ∩Hr−1
1 (fσ′r−1) ∩ fσ′r = ∅. This

removes the r-fold points.

10 E.g., [{α, β, γ}] = {α× β × γ, α× γ × β, β × α× γ, β × γ × α, γ × α× β, γ × β × α}.
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To finish the induction, we also need to extend the equivariant homotopy between f̃ and
F on the cell σ1 × · · · × σr, as the homotopy is already defined on ∂(σ1 × · · · × σr). This is
when the second part of Lemma 7 becomes useful.

We define a map on ∂(I × σ1 × · · · × σr)→ Rd × · · · × Rd \ δrRd in the following way:
1. on {0} × σ1 × · · · × σr, we use F ,
2. on [0, 1

3 ]× ∂(σ1 × · · · × σr), we use the homotopy from F to (5),
3. on [ 1

3 ,
2
3 ]× ∂(σ1 × · · · × σr), we use G,

4. on [ 2
3 , 1]× ∂(σ1 × · · · × σr), we use (H1

t × · · · ×Hr−1
t × id) ◦ (fG1

1 × · · · × fGr1),
5. {1} × σ1 × · · · × σr, we use (H1

1 × · · · ×Hr−1
1 × id) ◦ (fG1

1 × · · · × fGr1).
This defines a class θ ∈ π∑ dimσi

(Sd(r−1)−1). To conclude, we need to have θ = 0 (this is

the condition to be able to extend to homotopy between f̃ and F ).
By the second part of Lemma 7, we can11 perform a “second move” on σ1 with an ambient

isotopy Jt of B such that

∂(I × σ1 × · · · × σr)
(Jt×id×···×id)◦(H1

1×···×H
r−1
1 ×id)◦(fG1

1×···×fG
r
1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rd × · · · × Rd \ δrRd

represents exactly −θ. Therefore, by using this last move, we can assume that θ = 0, i.e., we
can extend the equivariant homotopy between f̃ and F , as needed for the induction. J
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