6 research outputs found

    Improved Hardness of Approximating Chromatic Number

    Full text link
    We prove that for sufficiently large K, it is NP-hard to color K-colorable graphs with less than 2^{K^{1/3}} colors. This improves the previous result of K versus K^{O(log K)} in Khot [14]

    Mixture Selection, Mechanism Design, and Signaling

    Full text link
    We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function gg from the nn-dimensional hypercube to the bounded interval [−1,1][-1,1], and an n×mn \times m matrix AA with bounded entries, maximize g(Ax)g(Ax) over xx in the mm-dimensional simplex. This problem arises naturally when one seeks to design a lottery over items for sale in an auction, or craft the posterior beliefs for agents in a Bayesian game through the provision of information (a.k.a. signaling). We present an approximation algorithm for this problem when gg simultaneously satisfies two smoothness properties: Lipschitz continuity with respect to the L∞L^\infty norm, and noise stability. The latter notion, which we define and cater to our setting, controls the degree to which low-probability errors in the inputs of gg can impact its output. When gg is both O(1)O(1)-Lipschitz continuous and O(1)O(1)-stable, we obtain an (additive) PTAS for mixture selection. We also show that neither assumption suffices by itself for an additive PTAS, and both assumptions together do not suffice for an additive FPTAS. We apply our algorithm to different game-theoretic applications from mechanism design and optimal signaling. We make progress on a number of open problems suggested in prior work by easily reducing them to mixture selection: we resolve an important special case of the small-menu lottery design problem posed by Dughmi, Han, and Nisan; we resolve the problem of revenue-maximizing signaling in Bayesian second-price auctions posed by Emek et al. and Miltersen and Sheffet; we design a quasipolynomial-time approximation scheme for the optimal signaling problem in normal form games suggested by Dughmi; and we design an approximation algorithm for the optimal signaling problem in the voting model of Alonso and C\^{a}mara

    Increasing revenue in Bayesian posted price auctions through signaling

    Get PDF
    We study single-item single-unit Bayesian posted price auctions, where buyers arrive sequentially and their valuations for the item being sold depend on a random, unknown state of nature. The seller has complete knowledge of the actual state and can send signals to the buyers so as to disclose information about it. For instance, the state of nature may reflect the condition and/or some particular features of the item, which are known to the seller only. The problem faced by the seller is about how to partially disclose information about the state so as to maximize revenue. Unlike classical signaling problems, in this setting, the seller must also correlate the signals being sent to the buyers with some price proposals for them. This introduces additional challenges compared to standard settings. As a preliminary step, we show that, w.l.o.g., the seller can deterministically propose a price to each buyer on the basis of the signal being sent to that buyer, rather than selecting prices stochastically and arbitrarily correlating them with signals sent to all the buyers. Next, we consider two cases: the one where the seller can only send signals publicly visible to all buyers, and the case in which the seller can privately send a different signal to each buyer. As a first step, we prove that, in both settings, the problem of maximizing the seller's revenue does not admit an additive FPTAS unless P = NP, even for basic instances with a single buyer. As a result, in the rest of the paper, we focus on designing additive PTASs. In order to do so, we first introduce a unifying framework encompassing both public and private signaling, whose core result is a decomposition lemma that allows focusing on a finite set of possible buyers' posteriors. This forms the basis on which our additive PTASs are developed. In particular, in the public signaling setting, our PTAS employs some ad hoc techniques based on linear programming, while our PTAS for the private setting relies on the ellipsoid method to solve an exponentially-sized LP in polynomial time. In the latter case, we need a custom approximate separation oracle, which we implement with a dynamic programming approach.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/)
    corecore