6 research outputs found

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo

    Robustly Solvable Constraint Satisfaction Problems

    Full text link
    An algorithm for a constraint satisfaction problem is called robust if it outputs an assignment satisfying at least (1−g(ε))(1-g(\varepsilon))-fraction of the constraints given a (1−ε)(1-\varepsilon)-satisfiable instance, where g(ε)→0g(\varepsilon) \rightarrow 0 as ε→0\varepsilon \rightarrow 0. Guruswami and Zhou conjectured a characterization of constraint languages for which the corresponding constraint satisfaction problem admits an efficient robust algorithm. This paper confirms their conjecture

    Hard constraint satisfaction problems have hard gaps at location 1

    No full text
    An instance of the maximum constraint satisfaction problem (Max CSP) is a finite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satisfied constraints. Max CSP captures many well-known problems (such as Maxk-SAT and Max Cut) and is consequently NP-hard. Thus, it is natural to study how restrictions on the allowed constraint types (or constraint language) affect the complexity and approximability of Max CSP. The PCP theorem is equivalent to the existence of a constraint language for which Max CSP has a hard gap at location 1; i.e. it is NP-hard to distinguish between satisfiable instances and instances where at most some constant fraction of the constraints are satisfiable. All constraint languages, for which the CSP problem (i.e., the problem of deciding whether all constraints can be satisfied) is currently known to be NP-hard, have a certain algebraic property. We prove that any constraint language with this algebraic property makes Max CSP have a hard gap at location 1 which, in particular, implies that such problems cannot have a PTAS unless P=NP. We then apply this result to Max CSP restricted to a single constraint type; this class of problems contains, for instance, Max Cut and Max DiCut. Assuming P≠NP, we show that such problems do not admit PTAS except in some trivial cases. Our results hold even if the number of occurrences of each variable is bounded by a constant. Finally, we give some applications of our results

    PTAS for Sparse General-Valued CSPs

    Full text link
    We study polynomial-time approximation schemes (PTASes) for constraint satisfaction problems (CSPs) such as Maximum Independent Set or Minimum Vertex Cover on sparse graph classes. Baker's approach gives a PTAS on planar graphs, excluded-minor classes, and beyond. For Max-CSPs, and even more generally, maximisation finite-valued CSPs (where constraints are arbitrary non-negative functions), Romero, Wrochna, and \v{Z}ivn\'y [SODA'21] showed that the Sherali-Adams LP relaxation gives a simple PTAS for all fractionally-treewidth-fragile classes, which is the most general "sparsity" condition for which a PTAS is known. We extend these results to general-valued CSPs, which include "crisp" (or "strict") constraints that have to be satisfied by every feasible assignment. The only condition on the crisp constraints is that their domain contains an element which is at least as feasible as all the others (but possibly less valuable). For minimisation general-valued CSPs with crisp constraints, we present a PTAS for all Baker graph classes -- a definition by Dvo\v{r}\'ak [SODA'20] which encompasses all classes where Baker's technique is known to work, except possibly for fractionally-treewidth-fragile classes. While this is standard for problems satisfying a certain monotonicity condition on crisp constraints, we show this can be relaxed to diagonalisability -- a property of relational structures connected to logics, statistical physics, and random CSPs

    An approximability-related parameter on graphs―-properties and applications

    Get PDF
    Graph TheoryInternational audienceWe introduce a binary parameter on optimisation problems called separation. The parameter is used to relate the approximation ratios of different optimisation problems; in other words, we can convert approximability (and non-approximability) result for one problem into (non)-approximability results for other problems. Our main application is the problem (weighted) maximum H-colourable subgraph (Max H-Col), which is a restriction of the general maximum constraint satisfaction problem (Max CSP) to a single, binary, and symmetric relation. Using known approximation ratios for Max k-cut, we obtain general asymptotic approximability results for Max H-Col for an arbitrary graph H. For several classes of graphs, we provide near-optimal results under the unique games conjecture. We also investigate separation as a graph parameter. In this vein, we study its properties on circular complete graphs. Furthermore, we establish a close connection to work by Šámal on cubical colourings of graphs. This connection shows that our parameter is closely related to a special type of chromatic number. We believe that this insight may turn out to be crucial for understanding the behaviour of the parameter, and in the longer term, for understanding the approximability of optimisation problems such as Max H-Col
    corecore