4 research outputs found

    See What You Feel: A Crossmodal Tool for Measuring Haptic Size Illusions

    Get PDF
    The purpose of this research is to present the employment of a simple-to-use crossmodal method for measuring haptic size illusions. The method, that we call See what you feel, was tested by employing Uznadze’s classic haptic aftereffect in which two spheres physically identical (test spheres) appear different in size after that the hands holding them underwent an adaptation session with other two spheres (adapting spheres), one bigger and the other smaller than the two test spheres. To measure the entity of the illusion, a three-dimensional visual scale was created and participants were asked to find on it the spheres that corresponded in size to the spheres they were holding in their hands out of sight. The method, tested on 160 right-handed participants, is robust and easily understood by participants

    Haptic adaptation to slant: No transfer between exploration modes

    Get PDF
    Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptic size aftereffects revisited

    No full text
    corecore