84 research outputs found

    Multimodal bivariate thematic maps with auditory and haptic display

    Get PDF
    Presented at the 8th International Conference on Auditory Display (ICAD), Kyoto, Japan, July 2-5, 2002.The purpose of this study is to explore the possibility of multimodal bivariate thematic maps by utilizing auditory and haptic displays. With four different modes of display, the completion time of tasks and the recall (retention) rate were measured in two separate experiments. In terms of the completion time, haptic displays seem to interfere with other modalities. However, Color-Auditory displays performed similarly to Color-Color displays. For the recall rate, multimodal displays have higher recall rates, with users performing the best on Auditory-Haptic displays. These findings confirmed the possibility of using auditory and haptic displays in visually dominant geographic information systems (GIS). We speculate that the natural quantitative hierarchies in auditory and haptic displays provide an advantage in the use of multiodal displays

    Structural compliance effects on the accuracy and safety of a R-CUBE haptic device

    Get PDF
    28th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2019; Kaiserslautern; Germany; 19 June 2019 through 21 June 2019This paper addresses the contribution of structural compliance on stiffness and safety of a R-CUBE Haptic Device. Structural compliance is determined in several poses via FEM analysis and addressed by referring to local and global indices of performance. Results are also compared with evidences from experimental tests. Comparison of numerical and experimental data allows to identify and separate the contributions to the overall compliance that are due to the structural stiffness, and other contributions such as joint clearance, pose and loading conditions.Axis IT and T (20/01.09.2016), European Regional Development Fun

    Haptic Feedback to Guide Interactive Product Design

    Get PDF
    Virtual Reality (VR) allows engineers to naturally interact with three-dimensional digital models in a three-dimensional space. This provides a unique interface between users and computer models not found in traditional desktop environments. Common uses of virtual reality in product design include prototype evaluation, virtual assembly and visualization of engineering analysis results. This work described in this paper is based on a methodology for interactive design that uses virtual reality as an interface to product design and analysis. Computer analysis models coupled with fast reanalysis approximations and geometric models in a virtual environment are developed to facilitate shape design changes and updated analysis results in real-time. This combined design and analysis environment encourages the rapid investigation of many possible shape and design changes and how they affect the final product performance. The application developed to test this methodology is referred the Immersive Virtual Design Application (IVDA)

    External force estimation for telerobotics without force sensor

    Get PDF
    This paper establishes an approach to external force estimation through the use of a mathematical model and current sensing, without employing a force/torque sensor. The advantages and need for force feedback have been well established in the field of telerobotics. This paper presents the requirement for sensorless force estimation and comparative results between a force sensor and the presented approach using an industrial robot. The approach presents not only a cost effective solution but also a solution for force sensing in hazardous environments, especially ionizing radiation prone environments where the dose rates limit the use of sensing equipment. The paper also discusses the applications and advantages presented by this work in various fields

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Haptics and the Biometric Authentication Challenge

    Get PDF

    Guiding a Human Follower with Interaction Forces: Implications on Physical Human-Robot Interaction

    Get PDF
    This work challenges the common assumption in physical human-robot interaction (pHRI) that the movement intention of a human user can be simply modeled with dynamic equations relating forces to movements, regardless of the user. Studies in physical human-human interaction (pHHI) suggest that interaction forces carry sophisticated information that reveals motor skills and roles in the partnership and even promotes adaptation and motor learning. In this view, simple force-displacement equations often used in pHRI studies may not be sufficient. To test this, this work measured and analyzed the interaction forces (F) between two humans as the leader guided the blindfolded follower on a randomly chosen path. The actual trajectory of the follower was transformed to the velocity commands (V) that would allow a hypothetical robot follower to track the same trajectory. Then, possible analytical relationships between F and V were obtained using neural network training. Results suggest that while F helps predict V, the relationship is not straightforward, that seemingly irrelevant components of F may be important, that force-velocity relationships are unique to each human follower, and that human neural control of movement may affect the prediction of the movement intent. It is suggested that user-specific, stereotype-free controllers may more accurately decode human intent in pHRI
    • …
    corecore