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Abstract. This paper addresses the contribution of structural compliance on 

stiffness and safety of a R-CUBE Haptic Device. Structural compliance is de-

termined in several poses via FEM analysis and addressed by referring to local 

and global indices of performance. Results are also compared with evidences 

from experimental tests. Comparison of numerical and experimental data allows 

to identify and separate the contributions to the overall compliance that are due 

to the structural stiffness, and other contributions such as joint clearance, pose 

and loading conditions. 
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1 Introduction  

Haptic feedback is mostly combining force or contact feedback to the position in-

formation so that users can push, pull, feel, and manipulate objects in virtual envi-

ronments instead of just seeing a video representation, [1,2]. Over the last decades, a 

variety of haptic interfaces have been developed ranging from simple single-DOF 

(Degrees of Freedom) devices to complex, multi-DOF wearable devices often with a 

trade-off between complexity/workspace and user-friendliness/costs. A haptic device 

architecture is also affected by the intended application, which can range from aug-

mentation of graphical user interfaces (GUIs) to master interfaces in teleoperation or 

rehabilitation [1,2]. The PHANToM desktop haptic interface is probably the most 

commonly used commercial haptic interface, [3].  

In a haptic interaction, the position of the end-effector must be measured to gener-

ate an accurate haptic stimulus. However, compliant displacements can significantly 

affect the positioning accuracy, due to the loading condition/poses. Correspondingly, 

force/torque feedback to the user is generated inaccurately. These effects might be-

come critical also from a safety viewpoint in applications such as the teleoperation of 

a robot for surgery tasks [2]. However, safety aspects are still needing in-depth inves-

tigation as available literature and standards such as [4-6] still do not provide proper 
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guidelines for these specific applications. In fact, they mostly aim at eliminating 

avoidable hazards or using adequate protections to prevent risks, which is often not 

implementable for haptic devices where a close interaction with human is mandatory. 

Hence, safety aspects should be here conceived as implementing actions that can re-

duce and/or mitigate risks, especially from robot mechanical design viewpoint.  

In this paper, we limit our attention to the contribution of the structural compliance 

of a haptic device to both accuracy and safety. Considering rigid joints and no control 

effects is herewith assumed as the worst-case scenario. We address our attention to 

the specific case of study of a R-CUBE haptic device prototype. In particular, section 

2 describes the R-CUBE architecture; section 3 investigates the structural compliance 

in several poses via Finite Element Analysis (FEM). Local and global indices of per-

formance are computed and discussed. Results are compared with evidences from 

experimental tests. The comparison of numerical and experimental results allows 

identifying and splitting the contributions to the overall compliance that are due to the 

structural stiffness from the joint clearance or due to the pose and loading conditions. 

2 R-CUBE Architecture 

In the last decades, research on parallel manipulators has been quite rich due to 

their expected advantages, for example, in terms of stiffness, accuracy, dynamics, as 

compared with serial manipulators. However, most of these manipulators have cou-

pled motions between the position and orientation of the end-effector as well as they 

have complex control features also due to singularities. Recent research on parallel 

manipulators with a reduced number of degrees of freedom (DOFs) has been aiming 

at possibilities of achieving kinematic architectures with reduction of the number of 

active DOFs and decoupling of the position and orientation of the end-effector, [7-9]. 

R-CUBE manipulator is a 3 DOFs parallel manipulator, whose kinematic scheme 

can be modeled as proposed for example in the scheme of Fig.1.  
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Fig. 1. A kinematic sketch of the R-CUBE manipulator. 



 

 

 

 

 

One of its main features is the possibility to achieve decoupled translational mo-

tions along X-, Y- and Z-axes, by rotating the first joint angle of each chain 

(and in Fig.1).  It is composed of 3 kinematic chains that connect the end-

effector to the base frame. Each kinematic chain has 4 links and 5 revolute joints as 

shown in the scheme of Fig.1. All the actuators can be conveniently located at the 

base frame. Singularity analysis shows that the singularities can be easily avoided by 

means of a careful design [9]. The above features make R-CUBE architecture suitable 

as haptic device. Further details on R-CUBE can be found at [7-10]. 

3 Structural Performance  

Several attempts have been made to properly model stiffness performance such as 

reported in [10, 11]. A stiffness model may be implemented for predicting and com-

pensating compliant displacements on the end-effector for achieving a more accurate 

and safe haptic control. However, several aspects contribute to the overall stiffness 

behavior including structural stiffness, joint clearance, joints/motor stiffness, loading 

conditions and pose of the manipulator.  

In this section, we focus on the structural stiffness. The calculation of the structural 

stiffness is assessed through linear FE-based static simulations within a commercial 

package. The FE model of the R-CUBE manipulator is created by discretizing the 

geometry of links and joints as a connected set of four-sided solid elements with four 

grid points as shown in Fig.2. The aim of the static simulations is to calculate the 

displacement of the center of gravity of the end-effector (mobile platform). The FE 

mesh density needs to be properly set up for reducing the overall size of the FE model 

and, thus, the required computational cost. In particular, the dimension of the discrete 

elements is here set up to decrease its size going from the base to the end-effector. 

This choice is made since the displacements are expected to grow accordingly.  

Auxiliary rigid body elements are used in order to join the mating links of each 

chain, obtaining a decoupling of the structural and joints stiffness. The associated 

material is assumed as a Poly-Lactic Acid (PLA) with specifications from a common-

ly used material for 3D printing. The material properties have been obtained experi-

mentally by means of a bending test on a single 3D printed link. Table 1 shows the 

relationship between the applied bending force ΔF and the produced compliant dis-

placement Δx that has been experimentally measured. The stiffness of a link can be 

estimated as 

 

𝑘 =  
ΔF

Δx
 (1) 

On the other hand, the bending stiffness of the link is defined as [11, 12] 

 
𝑘 = 3 𝐸𝐼 𝐿3⁄   (2) 



 

 

 

 

 

where E is the Young Modulus of the material, L is the length of the tested link and 

 

𝐼 = 0.15 
𝜋 𝐷4

64
 (3) 

where D is the diameter of the examined link. The second moment of area [11, 12] is 

considered at 15% as the used infill value for the 3D printed element with PLA. 

Hence, knowing that D = 6 mm and L = 129.6 mm for the tested link and combining 

equations (1) and (2), it is possible to compute the Young Modulus as E = 2.7 GPa. 

 The base of the R-CUBE manipulator is fixed to the ground while the force is ap-

plied at the midpoint of end-effector. The direction of the load is along one of the X-, 

Y- and Z-axes according to the considered analysis case. The aim of the simulations is 

to compute the compliant displacement of the center of the end-effector along the 

direction of the applied load. The static analysis tests estimate the compliant dis-

placements (x, y,z) of the center of the end-effector. Two reference configura-

tions (Fig. 2) have been chosen to perform the static simulation tests. The simulation 

results are shown in Table 2 for two different loading conditions. Namely, it has been 

considered the case with only gravity and the case gravity plus external load of 1.8 N 

that is applied along X-, Y- or Z-directions. Results allow to analyze the influence of 

the own weight of the structure on the overall results. The results show that the effect 

of the own weight of the structure is not very significant with a maximum contribu-

tion of about 18% along Z-axis. Numerical simulations have been also performed to 

estimate the main structural eigenvalues that have been chosen as a local stiffness 

index for the structure, such as proposed in [11]. 

Table 1. Results of bending tests on a single link with PLA infill equal to 15%. 

F [N] 0.34 1.32 2.30 3.29 4.27 5.25 

x [mm] 0.29 0.72 1.25 1.79 2.35 2.91 

 

  
a)  b)  

Fig. 2. FEM model of the considered R-CUBE haptic device: a) Test Pose 1 (TP1); b) Test 

Pose 2 (TP2). 



 

 

 

 

 

Table 3. shows the values λi (i = 1,…,10) of the first ten eigenvalues that are com-

puted for four test poses TP1, TP2, TP3 and TP4 whose joint configuration is de-

scribed in Table 4. The stiffness performance can be locally analyzed by referring to 

the maximum and minimum eigenvalues of the stiffness matrix as they provide in-

formation on the maximum and minimum deformations at a given pose, [11]. Moreo-

ver, the simulation results in Table 3 show that the minimum value of the eigenvalues 

of each test pose is similar to the others. On the other hand, a difference can be identi-

fied in terms of maximum eigenvalues. In fact, TP1 shows a maximum natural fre-

quency of 653.37 Hz that is the smallest one among the four simulated configurations. 

The FE simulations are also used to address the safety aspect that is due to accidental 

collisions between the end-effector of the manipulator and an operator. 

Table 2. FEA computed compliant displacements under only gravity or gravity plus a load of 

1.81 N that is applied along X-, Y- or Z-directions. 

 TP1 TP2 

 Force + Gravity Gravity Force + Gravity Gravity 

x [mm] 0.054 0.001 0.164 0.006 

y [mm] 0.057 0.004 0.148 0.009 

z [mm] 0.071 0.013 0.114 0.017 

Table 3. FEA simulated first 10 natural frequencies at test poses TP1, TP2, TP3 and TP4. 

 TP1 TP2 TP3 TP4 

λ1 [Hz]   96.19   98.25   95.55   96.79 

λ2 [Hz] 125.12 101.75 103.23 108.25 

λ3 [Hz] 131.67 135.33 144.42 142.15 

λ4 [Hz] 175.67 214.08 221.65 206.63 

λ5 [Hz] 189.29 227.04 231.59 233.25 

λ6 [Hz] 285.54 248.97 248.02 248.08 

λ7 [Hz] 343.71 356.16 349.15 342.72 

λ8 [Hz] 439.15 419.22 414.35 409.63 

λ9 [Hz] 503.22 698.75 682.64 616.14 

λ10 [Hz] 653.37 725.43 716.71 658.26 

Table 4. Joint configuration of the selected testing poses. 

Joint Configuration [deg] TP1 TP2 TP3 TP4 

ϕ11 -30 0 0 0 

ϕ21 -30 0 +30 -30 

ϕ31 -30 +30 +30 +30 



 

 

 

 

 

It is to note that the main mechanical risk cases for a robot can be identified as a di-

rect collision with humans or indirect collisions where a human can be hit by ele-

ments that a robot hurls or drops. The latter case is not being expected for a haptic 

device. A possible way to describe the safety reliability of a service robot can be 

based on [13]. In particular, the safety performance of the R-CUBE can be assessed 

by computing an index that considers the acceleration of the impact between the de-

vice and the head of an operator. The Safety Index for Robots (SIR), [13], relies on 

the definition of safety used in automotive industry such as the widely used HIC 

(Head Injury Criterion) index, [13]. Considering the case of the R-CUBE end-effector 

moving at uniform velocity 𝑣, it is possible to assume the system robot-operator as a 

mass-spring-mass model, with K being the combined stiffness of the R-CUBE and the 

human head, Mr the mass of R-CUBE and Moper the impacted operator-head mass, 

[13]. Thus, the SIR index can be computed as 

𝑆𝐼𝑅 = 2560 × (2 𝜋⁄ )
3
2(1 9.81⁄ )

5
2(𝐾 𝑀𝑜𝑝𝑒𝑟⁄ )

3
4(𝑀𝑟 (𝑀𝑟 + 𝑀𝑜𝑝𝑒𝑟)⁄ )

7
4𝑣

5
2 (4) 

Considering that the stiffness of the manipulator changes with the pose, it is con-

venient to analyze the variability of the SIR values among the different configurations 

as well as different directions of impact. Table 5 shows the SIR values associated to 

four different testing poses along X-, Y- and Z-directions. A constant speed of 2 m/s 

has been here assumed by referring to common operating conditions. Analyzing the 

obtained results, one can note that the SIR values associated to TP1 are larger than the 

others. Accordingly the first tested pose represents a safer configuration. On the other 

hand, the poses TP2, TP3 and TP4 have similar safety behaviors.  

Table 5. Computed SIR values along three directions, for a constant speed of 2 m/s. 

SIR TP1 TP2 TP3 TP4 

SIRX 0.28 0.12 0.12 0.15 

SIRY 0.27 0.13 0.14 0.12 

SIRZ 0.23 0.16 0.13 0.19 

4 Experimental validation 

A specific test rig has been developed for measuring the compliant displacements 

of a R-CUBE prototype, also by considering previous experiences as reported in [14-

17]. The proposed test rig includes a 3D printed R-CUBE prototype, mechanic stops 

to fix the structure in the desired pose, a laser sensor for measuring the compliant 

displacements, a set of pulleys and weights to apply a desired loading condition at a 

desired pose, a NI6009 USB National Instruments data acquisition board, and a dedi-

cated LabView Virtual Instrument for data acquisition and processing. It is worth 

noting that the model of R-CUBE haptic device has been built with the same material 



 

 

 

 

 

that has been considered in the FEM analyses. Single components have been experi-

mentally checked to verify that the material properties match with FEM. The pro-

posed test rig can apply a specific load aligned along X-, Y- and Z- directions. The 

used laser sensor measures the corresponding compliant displacement along the direc-

tion of the applied load. The applied load is obtained by using cables and pulleys with 

calibrated weights of known mass. Namely, a mass of 185 grams is used to apply a 

force of 1.8 N. Results are reported in Table 6. 

The comparison of experimental and numerical results shows that the stiffness per-

formance is significantly affected by the pose and loading conditions. Among the 

analyzed poses, TP1 shows the stiffest behavior. Also the safety performance (based 

on SIR index) shows TP1 as the most performing pose. On the other hand, TP4 shows 

the best performance in terms of modal shapes, since it has the biggest value of max-

imum natural frequency. The effect of the structural weight is negligible along X- and 

Y- directions while it shows a maximum contribution of 18% along Z- direction as 

compared with the effect of a load of 1.81 N. Comparing numerical and experimental 

results in Table 2 and 6, one notes that the structural stiffness is not the most signifi-

cant source of compliance with compliant displacements due to structural stiffness 

being even more than 95% lower than overall measured compliant displacements. The 

above effects prove that joint stiffness and clearance, as well as loading conditions 

and pose play the key role in the overall stiffness and safety performance.  

Table 6. Experimental results of compliant displacements at the selected testing poses. 

 TP1 TP2 

 Force + Gravity Force + Gravity 

x [mm] 0.340 

0.450 

0.230 

1.020 

0.930 

1.700 

y [mm] 

z [mm] 
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5 Conclusions 

This paper addresses the significance of structural properties on stiffness and safety of 

a R-CUBE Haptic Device. Namely, FEM analysis is used to compute indices of the 

performance of a R-CUBE prototype such as maximum compliant displacements, the 

minimum eigenvalues, and safety index SIR at four test poses. Results are also com-

pared with evidences from experimental tests. This gives the possibility to highlight 

the contribution of structural properties on overall stiffness and safety performance as 

well as the significance of loading conditions, pose, and joint stiffness/clearance. 
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