1,597 research outputs found

    Bilateralno upravljanje gibanjem za apstrakciju i reprodukciju stvarne sile

    Get PDF
    In recent years, skill preservation of an expert and skill education for young technical workers have been serious issues in medical and production fields. The best way which young technical workers learn the ripe skill is that an expert teaches them. However, unfortunately, experts have lessened in these years. So, if digital skill preservation like a haptic database is attained, it may become an innovative solution of the above problem. Thus, as the fundamental technology for development of the haptic database, this paper proposes abstraction and reproduction methods on bilateral control of real world force sensation, and reconstruction of real world environment as well. In the abstraction mode, a master-slave system is composed, and the action-reaction law is attained through bilateral control. Later, based on acceleration information, the force, position and velocity of both master and slave systems are estimated and obtained. In the reconstruction mode, an environmental model is reconstructed based on the obtained data from real-world. Next, by using reproduction mode on master side, the operator would feel the force sensation from the obtained environmental model. Here, the proposed system is able to store the bilateral real-world force sensation to a sensation database. Finally, the experimental results show the validity of the proposed method.Održavanje sposobnosti iskusnih operatera i uvježbavanje novih operatera postaje sve važnijim zadatkom u medicinskim i proizvodnim primjenama. Nove operatere najbolje uvježbavaju iskusni operateri, ali njih sve više nedostaje. Inovativno rješenje toga problema može biti pohranjivanje vještina iskusnih operatera u tzv. haptičku bazu podataka. U ovome se članku za razvoj haptičke baze podataka predlažu metode apstrakcije i reprodukcije stvarne sile u bilateralnom upravljanju te metoda rekonstrukcije udaljenoga stvarnoga prostora u kojemu djeluje prateći sustav. U apstrakcijskom načinu rada uspostavlja se bilateralno upravljanje između vodećeg i pratećeg sustava uz održavanje zakona akcije i reakcije između njih. Nakon toga estimiraju se sila, brzina i pozicija vodećeg i pratećeg sustava na temelju informacije o ubrzanju. U rekonstrukcijskom načinu rada rekonstruira se model udaljenoga stvarnoga prostora na osnovi podataka iz stvarnoga udaljenoga prostora. Na koncu, primjenom reprodukcijskog načina rada na strani vodećeg sustava operater bi trebao osjećati silu iz modela udaljenog prostora izgrađenog u rekonstrukcijskom načinu rada. Predloženi sustav omogućuje spremanje bilateralno prenošene sile u bazu podataka, što je potkrijepljeno eksperimentalnim rezultatima

    Experience-based virtual training system for knee arthroscopic inspection

    Get PDF

    Soft tissue structure modelling for use in orthopaedic applications and musculoskeletal biomechanics

    Get PDF
    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery

    A Numerical Exploration of the Crystalline Lens: from Presbyopia to Cataracts and Intraocular Lenses

    Get PDF
    Esta tesis aborda, de forma numérica, la resolución de tres problemas relacionados con el cristalino. En primer lugar, se ha construido un modelo de elementos finitos del cristalino humano para abordar la simulación de la acomodación, gracias a la incorporación de la contracción muscular del músculo ciliar. El modelo se ha validado con resultados experimentales comparando con Ramasubramanian & Glasser, 2015. Con el mismo modelo, se ha estudiado como afecta el cambio de las propiedades mecánicas de los tejidos del cristalino en la pérdida de amplitud de la acomodación con la edad para entender si la rigidización de los tejidos juega un papel importante en la presbicia. La conclusión principal del estudio numérico ha sido que las propiedades mecánicas y tensiones iniciales de la cápsula del cristalino proporciona la fuerza necesaria para acomodar, es decir, cambiar su curvatura para enfocar de cerca. Especificamente, el ratio de rígidez entre el núcleo y el cristalino gobierna cómo el cristalino cambia de forma. Con la edad, se produce una rigidización del núcleo, y el incremento de la relación entre ambas rigideces (núcleo y corteza) podría ser el principal responsable de la pérdida de la amplitud de acomodación con la edad. En segundo lugar, se ha estudiado la estabilidad biomecánica de diferentes diseños de lentes intraoculares (IOL). Las IOLs sustituyen las funciones del cristalino en pacientes con cataratas, es por ello necesario garantizar su estabilidad en el interior del saco para garantizar una visión adecuada. Entre los aspectos estudiados destaca la caracterización mecánica de los materiales acrílicos con los que se fabrican las lentes. Para ello, se han combinado ensayos uniaxiales con ensayos de indentación. Éstos últimos se han utilizado para caracterizar la respuesta visco-elástica del material. El definir la respuesta del material mediante modelos visco hiperelásticos es necesario para posteriormente analizar la estabilidad de la IOL mediante elementos finitos. Este análisis se ha defino a dos niveles, en un primer nivel se analiza la estabilidad de la IOL simulando el ensayo establecido en la norma ISO 11979-3:2012. Esta norma es de obligado cumplimiento para los fabricantes antes de introducir un nuevo diseño en el mercado. Se ha realizado un estudio estadístico para estudiar el efecto de la geometría de los hápticos tipo C-loop en la estabilidad mecánica de la IOL, obteniendo que el entronque, la unión entre el háptico y la lente, es el parámetro más influyente. Para validar la metodología numérica, se fabricaron varios diseños y se analizaron experimentalmente para comparar los resultados correspondientes con biomarcadores mecánicos (desplazamiento axial, rotación y la inclinación de la IOL) que están relacionados con la calidad visual resultante de la IOL. En un segundo nivel, se ha simulado la respuesta de la IOL en el interior del saco capsular, estudiando la influencia de diferentes parámetros del paciente, como geometría y propiedades mecánicas del saco. También se ha analizado la influencia de parámetros de la cirugía de la catarata, como es el diámetro y posición de la capsulorexis. En este último nivel, se ha estudiado tanto la respuesta instantánea, es decir, tras la cirugía, como a largo plazo, cuando sucede la huella de fusión (fusion footprint) entre la cápsula y la IOL. Para que los modelos computacionales sean de ayuda a los cirujanos o puedan servir en tiempo real, se ha planteado una metodología basada en inteligencia artificial. En este caso la base de datos de partida corresponde a modelos numéricos altamente fiables y con ellos, se genera datos con los que se entrena la red neuronal. En esta tesis, se estudia la estabilidad de la IOL en función del diámetro de compresión del paciente y la edad, que a su vez influye en las propiedades mecánicas del saco. Por último, se ha evaluado experimentalmente la influencia del material de la IOL (hidrófobo o hidrofílico) y su geometría durante la inyección de la IOL en el saco, registrando la fuerza de inyección que debe realizar el cirujano. De cara a evitar complicaciones (se dañe la IOL o el tejido corneal) durante la cirugía, es conveniente que la fuerza a ejercer sea baja. Se ha comprobado que su valor está fuertemente influenciado por el material de la lente.¿Por qué el cristalino es de vital importancia?El cristalino es el responsable tanto del cambio dinámico de la potencia refractiva del ojo a través del mecanismo de acomodación como de la corrección de las aberraciones de la córnea. El cambio óptico dinámico es consecuencia de un cambio geométrico del cristalino. Sin embargo, a medida que el cristalino envejece, disminuye este cambio óptico dinámico y se opacifica, lo que da lugar a las dos patologías comúnmente asociadas al envejecimiento como es, la presbicia y las cataratas. Por este motivo, en esta tesis doctoral se ha profundizado en el estudio mecánico del cristalino y tras su sustitución mediante una lente intraocular artificial durante la cirugía de catarata. La metodología establecida pueden ayudar en un futuro tanto al diseño de nuevos implantes como a los oftalmólogos a seleccionar la IOL adecuada a cada paciente para mejora su calidad visual.This thesis addresses three different case studies related to the crystalline lens. Firstly, the mechanical causes of the loss of accommodation amplitude with age, called presbyopia, were analysed through the finite element method. A high-fidelity simulation of the mechanism of accommodation including the contraction of the ciliary muscle was developed. This allowed us to analyse accommodation in depth, showing that although the lens capsule provides the force to accommodate, the stiffness ratio between the lens cortex and lens nucleus could have a higher effect on how the lens changes its shape. Secondly, the biomechanical stability of intraocular lenses (IOLs) was analysed. IOLs are essential for post-cataract patients as they substitute the functions of the crystalline lens. In this thesis, a wide variety of solutions were addressed: from the visco- and hyper-elasticity characterisation of IOL acrylic materials from depth sensing indentation and uniaxial tests to the simulation of the IOL biomechanical stability inside the capsular bag. We also performed a high-fidelity simulation of the IOL compression standards tests required by the IOLs to be commercialised and the results obtained were compared with clinical data. Lastly, we developed a patient-specific methodology to customise the IOL haptic design. Most of the numerical methology developed is intended to be used in the IOL pre-design phase to avoid costs and time. Thirdly, the IOL delivery during cataract surgery according to haptic and material design and injector characteristics was experimentally studied to avoid any possibility of IOL and eye damage. Apart from the injector size, the IOL material was the most influential parameter in the force exerted in IOL delivery. Why is the crystalline lens of vital importance? The crystalline lens is the responsible for both the dynamic change of the refractive power of the eye through the mechanism of accommodation and the correction of cornea aberrations. The dynamic optical change is consequence of change of the lens shape. However, as the lens ages over time, it decreases this dynamic optical change and becomes cloudy, what leads to the two most common lens-related pathologies, presbyopia and cataracts. Therefore, it is of utmost importance to study the lens mechanics and all issues related to the artificial intraocular lens that substitutes the lens during cataract surgery.<br /

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room
    corecore