3,791 research outputs found

    Archon Genomics X PRIZE Validation Protocol

    Get PDF
    This document is a collective assembly of techniques designed to test the quality and accuracy of 100 whole human genome sequences resulting from the $10 Million Archon Genomics X PRIZE (AGXP) competition. The purpose of this article is to enlist constructive criticism from the genomic and genetic community on the outlined approaches. The intent for the final version of this Validation Protocol is to become a useful standard by which to gauge the capabilities of whole genome sequencing technologies that emerge even after 2012

    Multi-platform discovery of haplotype-resolved structural variation in human genomes

    Get PDF

    Ultraaccurate genome sequencing and haplotyping of single human cells.

    Get PDF
    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10-8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs

    Accurate estimation of homologue-specific DNA concentration-ratios in cancer samples allows long-range haplotyping

    Get PDF
    Interpretation of allelic copy measurements at polymorphic markers in cancer samples presents distinctive challenges and opportunities. Due to frequent gross chromosomal alterations occurring in cancer (aneuploidy), many genomic regions are present at homologous-allele imbalance. Within such regions, the unequal contribution of alleles at heterozygous markers allows for direct phasing of the haplotype derived from each individual parent. In addition, genome-wide estimates of homologue specific copy- ratios (HSCRs) are important for interpretation of the cancer genome in terms of fixed integral copy-numbers. We describe HAPSEG, a probabilistic method to interpret bi- allelic marker data in cancer samples. HAPSEG operates by partitioning the genome into segments of distinct copy number and modeling the four distinct genotypes in each segment. We describe general methods for fitting these models to data which are suit- able for both SNP microarrays and massively parallel sequencing data. In addition, we demonstrate a specially tailored error-model for interpretation of systematic variations arising in microarray platforms. The ability to directly determine haplotypes from cancer samples represents an opportunity to expand reference panels of phased chromosomes, which may have general interest in various population genetic applications. In addition, this property may be exploited to interrogate the relationship between germline risk and cancer phenotype with greater sensitivity than is possible using unphased genotype. Finally, we exploit the statistical dependency of phased genotypes to enable the fitting of more elaborate sample-level error-model parameters, allowing more accurate estimation of HSCRs in cancer samples

    InPhaDel: integrative shotgun and proximity-ligation sequencing to phase deletions with single nucleotide polymorphisms.

    Get PDF
    Phasing of single nucleotide (SNV), and structural variations into chromosome-wide haplotypes in humans has been challenging, and required either trio sequencing or restricting phasing to population-based haplotypes. Selvaraj et al demonstrated single individual SNV phasing is possible with proximity ligated (HiC) sequencing. Here, we demonstrate HiC can phase structural variants into phased scaffolds of SNVs. Since HiC data is noisy, and SV calling is challenging, we applied a range of supervised classification techniques, including Support Vector Machines and Random Forest, to phase deletions. Our approach was demonstrated on deletion calls and phasings on the NA12878 human genome. We used three NA12878 chromosomes and simulated chromosomes to train model parameters. The remaining NA12878 chromosomes withheld from training were used to evaluate phasing accuracy. Random Forest had the highest accuracy and correctly phased 86% of the deletions with allele-specific read evidence. Allele-specific read evidence was found for 76% of the deletions. HiC provides significant read evidence for accurately phasing 33% of the deletions. Also, eight of eight top ranked deletions phased by only HiC were validated using long range polymerase chain reaction and Sanger. Thus, deletions from a single individual can be accurately phased using a combination of shotgun and proximity ligation sequencing. InPhaDel software is available at: http://l337x911.github.io/inphadel/

    A reference haplotype panel for genome-wide imputation of short tandem repeats.

    Get PDF
    Short tandem repeats (STRs) are involved in dozens of Mendelian disorders and have been implicated in complex traits. However, genotyping arrays used in genome-wide association studies focus on single nucleotide polymorphisms (SNPs) and do not readily allow identification of STR associations. We leverage next-generation sequencing (NGS) from 479 families to create a SNP + STR reference haplotype panel. Our panel enables imputing STR genotypes into SNP array data when NGS is not available for directly genotyping STRs. Imputed genotypes achieve mean concordance of 97% with observed genotypes in an external dataset compared to 71% expected under a naive model. Performance varies widely across STRs, with near perfect concordance at bi-allelic STRs vs. 70% at highly polymorphic repeats. Imputation increases power over individual SNPs to detect STR associations with gene expression. Imputing STRs into existing SNP datasets will enable the first large-scale STR association studies across a range of complex traits

    Noninvasive prenatal diagnosis of 21-Hydroxylase deficiency using target capture sequencing of maternal plasma DNA.

    Get PDF
    Here, we aimed to validate a noninvasive method using capture sequencing for prenatal diagnosis of congenital adrenal hyperplasia due to 21-Hydroxylase deficiency (21-OHD). Noninvasive prenatal diagnosis (NIPD) of 21-OHD was based on 14 plasma samples collected from 12 families, including four plasma sample collected during the first trimester. Targeted capture sequencing was performed using genomic DNA from the parents and child trios to determine the pathogenic and wild-type alleles associated with the haplotypes. Maternal plasma DNA was also sequenced to determine the fetal inheritance of the allele using hidden Markov model-based haplotype linkage analysis. The effect of fetal DNA fraction and sequencing depth on the accuracy of NIPD was investigated. The lower limit of fetal DNA fraction was 2% and the threshold mean sequence depth was 38, suggesting potential advantage if used in early gestation. The CYP21A2 genotype of the fetus was accurately determined in all the 14 plasma samples as early as day 1 and 8 weeks of gestation. Results suggest the accuracy and feasibility of NIPD of 21-OHD using a small target capture region with a low threshold for fetal DNA fraction and sequence depth. Our method is cost-effective and suggests diagnostic applications in clinical practice
    • …
    corecore