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Abstract

Interpretation of allelic copy measurements at polymorphic markers in cancer samples

presents distinctive challenges and opportunities. Due to frequent gross chromoso-

mal alterations occurring in cancer (aneuploidy), many genomic regions are present

at homologus-allele imbalance. Within such regions, the unequal contribution of al-

leles at heterozygous markers allows for direct phasing of the haplotype derived from

each individual parent. In addition, genome-wide estimates of homologue specific copy-

ratios (HSCRs) are important for interpretation of the cancer genome in terms of fixed

integral copy-numbers. We describe HAPSEG, a probabilistic method to interpret bi-

allelic marker data in cancer samples. HAPSEG operates by partitioning the genome

into segments of distinct copy number and modeling the four distinct genotypes in each

segment. We describe general methods for fitting these models to data which are suit-

able for both SNP microarrays and massively parallel sequencing data. In addition, we

demonstrate a specially tailored error-model for interpretation of systematic variations

arising in microarray platforms. The ability to directly determine haplotypes from

cancer samples represents an opportunity to expand reference panels of phased chro-

mosomes, which may have general interest in various population genetic applications.

In addition, this property may be exploited to interrogate the relationship between

germline risk and cancer phenotype with greater sensitivity than is possible using un-

phased genotype. Finally, we exploit the statistical dependency of phased genotypes

to enable the fitting of more elaborate sample-level error-model parameters, allowing

more accurate estimation of HSCRs in cancer samples.

Author Summary

The human genome typically exists in two copies of each chromosome, with one copy, or homologue

derived from either parent. One of the most fundamental hallmarks of human cancers is their

tendency to have aneuploid genomes, that is, unbalanced copy-number alterations in the genetic

material at various blocks of the normal human genome. This often results in unequal contributions

of the homologues derived from either parent to the genomes of cancer cells. Estimation of the

precise contribution of each homologue in a DNA sample obtained from cancer tissue is crucial

to understand the genetic alterations occurring specifically in the cancer cells. Such estimation

requires the identification and interpretation of alterations in the genetic sequence of each homologue,

such as they appear in the cancer sample, which contains a mixture of DNA derived from both
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cancerous and normal cells. We have developed a statistical method to accurately model the resulting

data, producing summarizations of the information from hundreds of thousands of data points into

hundreds of segments, describing the concentration of both homologues for large genomic regions

of equal copy-number. In addition, we show that the tendency of cancer samples to be aneuploid

may be exploited to attribute contiguous chromosomal blocks of genetic variation to one or the

other homologue, representing the contribution of a single parent. Because they can help reduce the

dimensionality of the data, such summarizations will be useful to further understand the interaction

between inherited genetic variation and cancer development.

Introduction

The genomes of human cancer cells frequently harbor copy-number alterations, ranging from focal

gain and loss of small regions to widespread chromosomal aneuploidy [1], [2], in many cases exacer-

bated by DNA ploidy increases followed by predominant attrition of the fixed DNA in the evolving

somatic clone [3]. Allelic analysis of cancer genomes offers several advantages in analysis of cancer

genomes [4], [5]. Detection of genomic regions with fixed somatic loss of heterozygosity - (LOH)

helps identify recessively inactivated tumor suppressors, carrying mutations on the retained allele

[6]. In particular, allelic measurements are required for detection of copy-neutral LOH, which may

occur either due to compensatory gain of the retained alleles, or by homologous recombination. Fi-

nally, genome-wide HSCR estimates provide the foundation for inference of tumor-nuclei percentage,

cancer-genome ploidy, and integral allelic copy-numbers [7], [8], [9], [3].

Human genomes are normally diploid, with one haploid genome inherited from each parent

(although tetraploid cells are also involved in physiological processes [10].) As a result of widespread

chromosomal aneuploidy, many genomic regions are in homologos-allele imbalance, with the two

homologues fixed at unequal copy-numbers within the somatic clone [3]. Methods for genotyping

diploid samples are unsuitable for analysis of aneuploid cancer samples. For example, discovery of

both germline and somatic point-mutations in cancer samples using massively paralell sequencing

typically requires analysis of paired cancer-normal DNAs [11], [12]. For SNP microarrays, probes for

each SNP allele are calibrated using diploid control samples [13], making genotype calls unreliable

in aneuploid samples [14].

Accurate estimation of homologue-specific DNA concentrations in tumor samples is challenging

due to substantial marker-level noise occurring on a background of complex biases related to the

genotypes, sequence context, allelic copy-numbers at which loci are observed. The particular mani-

festation of these factors in the resulting data depends on physical properties of the technology used.

Development of explicit generative models describing these effects in particular samples can provide

greater sensitivity to detect true alterations in the underlying cancer genome. We extend previous

physically grounded error models for gene expression microarrays [15], [16] for use with Affymetrix

SNP arrays, facilitating our ability to estimate HSCRs in multiple cancer-derived datasets.

Early work with SNP microarrays demonstrated the feasibility of allelic cancer-genome analysis

[17, 18, 4], setting the stage for development of methods to detect allele-specific amplification [19],

and LOH in unpaired samples [20]. Development of high-resolution Affymetrix SNP6.0 microarrays

was enabled by the development of a method to accurately calibrate allelic probes, allowing for

highly accurate genotyping without the need for mismatch probes [13]. These calibrations became
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the basis for modern cancer total copy-ratio analysis using these arrays [21], [22], [23].

The development of methods for allelic analysis in cancer samples has been further pursued to

identify genomic regions of LOH [24], and as part of solutions to the tumor purity/ploidy problem

using Illumina bead-arrays [7], [8], and in Affymetrix SNP6.0 microarrays [25], [14], [9]. Our view

is that this problem is best treated separately, allowing for detailed treatment of the HSCR problem

and facilitating comparison of various methods specifically addressing this problem [26], [27], [28].

We present a novel computational method, HAPSEG, for accurate estimation of haplotype-

specific DNA copy-ratios (HSCRs), offering several specific advantages over existing methods: (i)

implementation of an advanced error model tailored to the basic physics of Affymetrix SNP microar-

ray measurements; (ii) Internal recomputation of genomic segmentation using error-model fit; (iii)

utilization of LD information from phased haplotype panels [29], improving inference of genotypes

by exploiting statistical dependencies between the genotypes of adjacent markers, and improving

HSCR estimation.

We present a novel demonstration of direct haplotype phasing using allelic imbalances in cancer-

tissue samples. These are of interest to further characterize the influence of germline risk in cancer

development. In addition, this capability may be used to generate densley typed reference panels of

phased chromosomes for use with imputation of rare alleles in whole exome sequencing

Results

Method overview

Consider a defined set of polymorphic bi-allelic markers (SNPs), for which data proportional to the

concentration of each allele (channels a and b) has been generated. For microarray data, the set

of SNPs is fixed by the array design. We define the copy-ratio as the ratio of allelic concentration

in a cancer-derived DNA sample to that of the haploid locus concentration in an equivalent DNA

aliquot derived from diploid cells. The copy-ratio of a given allele depends on both the (germline)

genotype and on the concentration in the cancer-derived DNA of the homologue on which it resides

(the location).

Calibration is the process by which SNP measurements are standardized to copy-ratios. The

specific manner in which calibration is performed depends upon the measurement technology being

considered (e.g. microarray or sequencing). After calibration, the expected a and b values for a SNP

in a diploid sample (at a region of 2 copies) are (0,2), (1,1), or (2,0), corresponding to genotypes BB,

AB/BA, and AA, respectively. These values are observed with substantial noise, the distribution of

which depends upon the measurement platform being used.

Because DNA copy-number is expected to be locally constant along the genome, superior HSCR

estimates can be obtained by pooling datapoints within segments of constant total copy-ratio. For

the purpose of initializing such a segmentation, calibrated signal from the a and b channels is added

together genome-wide to produce copy-ratio estimates independently of marker genotypes. These

values are input to the a segmentation algorithm, (e.g. CBS [30]), which fits a piecewise constant

regression function to these values with respect to their location along the reference genome.

Figure 1 shows an example of HAPSEG on a cancer sample with pervasive allelic imbalance.

Calibrated allelic copy-ratio estimates for each marker (fig. 1a) were modeled using HAPSEG,
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which performed haploid genotyping and segmentation (fig. 1b). The resulting HSCR estimates

are summarized at segmental level (fig 1c), revealing discrete levels occurring at regular copy-ratio

intervals, consistent with fixed SCNAs in the cancer clone (fig 1d). These estimates formed the basis

of a large-scale inference of absolute copy-numbers in cancer [3].

We assume that, within such a segment, the copy-ratios of both haplotypes will nearly always

remain constant. Violations from this assumption would correspond to coincident breakpoints,

with compensatory changes in the homologous copy numbers such that the total is unchanged.

We note that such cases are theoretically possible (homologous recombination), and have been

previously reported using related methods [28]; we leave the treatment of such alterations to future

development.

A maximum of two distinct homologous copy-ratios can exist in a given segment, and the sum

of A and B alleles at (germline) heterozygous sites must equal the number of A and B alleles at

homozygous AA and BB sites, respectively. The allelic concentration ratios therefore generally corre-

spond to four clusters the possible phased genotype of each SNP. The locations of these components,

denoted µAAi ,µABi ,µBAi ,µBBi , are specified by two free parameters: the total copy-ratio τi, and

the difference of homologous copy-ratios, denoted δi. The locations of the homozygous components

are then:

µAAi = (0, τi) , µBBi = (τi, 0) . (1)

The locations of the heterozygous components are:

µABi =

(
τi − δi

2
,
τi + δi

2

)
, µBAi =

(
τi + δi

2
,
τi − δi

2

)
. (2)

As segments approach allelic-balance (δi → 0), the two heterozygous clusters become superimposed,

with the natural corollary that no information is provided regarding the phase of SNPs in that

segment (as when genotyping diploid samples). To model observed allelic data, we represent the

four possible phased genotypes using a mixture model with components for each genotype {AA, AB,

BA, BB}. Figure 2 demonstrates HSCR estimation on 3 example segments (from a single sample,)

at differing homologous copy-numbers (fig 2a,b). The relationship between homologous imbalance

and phased genotyping is demonstrated (fig 2c-h).

The calibrated data for M measured markers, X, are a 2 × M matrix of bi-allelic (haploid)

copy-ratio point estimates. Segmentations of X are denoted by S, which specify partitions of X

into N successive matrices X1...N . For each segment i, Xi has dimension 2 ×Mi, where Mi refers

to the number of SNPs in the segment. The model parameter C represents the 4 phased genotypes

of SNPs X. Denote by Xij the a and b channels for SNP j in segment i, and by Cij the genotype

of SNP j. Prior information about the genotype of each SNP may be available from population

allele-frequencies, from the analysis of a paired-normal sample, or from phased haplotype panels,

and is represented as G.

The conditional distribution of X, representing the mapping from segment locations µi to proba-

bility densities over observed Xi, is denoted P (Xi|µi,Θ), where Θ represents the set of sample-level

parameters representing specific sources of experimental fluctuation. Estimation of Θ at the sample-

level increases our power to fit realistically complex error-models without the risk of over-fitting small

segments. The function P and parameters Θ are specific to the measurement platform in use. We

developed a novel error-model for Affymetrix SNP microarrays (Methods) and applied it throughout.
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We specify the probability density of an observed point, conditional on g as:

P (Xij |Cij = g, δi, τi,Θ) ≡ P
(
Xij |µig,Θ

)
. (3)

The complete likelihood of segment i is therefore:

Li (Xi|δi, τi,Θ,G) =

Mi∏
j=1

Zij , (4)

where Zij denotes the complete likelihood of SNP j:

Zij =

4∑
g=1

P (Xij |Cij = g, δi, τi,Θ)P (Cij = g|G) . (5)

The full sample-likelihood is:

Lf (X|δ, τ ,Θ,S,G) =
∏
i∈S
Li (Xi|δi, τi,Θ,S,G) . (6)

We implemented model-fitting using general numerical optimizations which are independent of the

specific likelihood; support for alternate measurement platforms may be added by implementing

an appropriate density for P (Xi|µi,Θ). We describe an general algorithm for joint estimation of

sample-level error-model parameters Θ and segmental allelic copy-ratios δ, τ , denoted C*, allowing

updates of these parameters based on {X, Ŝ,G}: {Θ̂, δ̂, τ̂} = C*
(
Θ̂(n)|X, Ŝ,G

)
.

We use the C*algorithm to iteratively update the genomic segmentation S, genotype probabilities

G, sample error-model parameters Θ , and HSCR locations δ, τ .

Method HAPSEG:

1. Initialize: Compute Ŝ(1) from X. Set Θ(0), δ(0), τ (0),G(0).

2. Fit error-model / segment-locations: {Θ̂(1), δ̂
(1)
, τ̂ (1)} = C*

(
Θ(0)|X, Ŝ(1),G(0)

)
.

3. Refine segmentation: Compute Ŝ(2) from {Θ̂(1), δ̂
(1)
, τ̂ (1)} Estimation of Θ̂(1) allows for

more sensitive and specific evaluation of proposed segmental breakpoints. Consider a pair of

adjacent segments in the reference genome. Because the initial segmentation Ŝ(1) may have

introduced a spurious breakpoint, we develop a probabilistic criterion for their merger using

Bayesian model comparison (Methods).

4. Update: {Θ̂(2), δ̂
(2)
, τ̂ (2)} = C*

(
Θ̂(1)|X, Ŝ(2),G(0)

)
.

5. Haploid genotype estimation: compute Ĉ(1) from P (C|X, Θ̂, δ̂, τ̂ ,G(0)). For a segment i,

posterior distributions Ĉi are computed for each SNP j as follows:

Ĉij =
1

Zij
P
(
Xij |Cij = g, δ̂i, τ̂i, Θ̂

)
P
(
g|G(0)

)
, (7)

where Zij is computed as in (5). Ĉ(1) contains the probability distribution of the haploid

genotypes, with the phase information provided by homologous copy-imbalance in the somatic

clone.
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6. Reconciliation of phased genotype estimates with reference panels: compute Ĝ(1)

from Ĉ(1), D, m.

This procedure examines the evidence for the phased genotypes in a given segment in a panel

of phased reference chromosomes characterizing population diversity of haplotypes Consor-

tium:2010en. This is accomplished using the statistical program BEAGLE [31] to phase diploid

genotypes estimates computed from Ĉ(1). This procedure utilizes phased panels D, and an

estimate of the genetic recombination rate m to compute a maximum-likelihood estimate of

phase. HAPSEG then identifies and corrects ’switch-errors’ in this phasing by reconciling the

estimates with those based on homologous imbalance (Ĉ(1)). The phasing ability of HAPSEG

was validated by examining the local concordance with maximum likelihood phase estimates

produced via BEAGLE [31], a statistical method based on a population reference-panel of

phased chromosomes (fig 3). We demonstrate that phase estimates produced by BEAGLE are

locally concordant with those implied by HAPSEG, but that switch-errors tend to occur at

regions of high recombination rate (fig 3a,b).

7. Final estimates:

{Θ̂, δ̂, τ̂} = C*
(
Θ̂(2)|X, Ŝ(2), Ĝ(1)

)
(8)

Ĉ(2) = P
(
Cijk|Xij , δ̂i, τ̂i, Θ̂,G(1)

)
(9)

8. Standard error of location estimates. With the Hessian Ai as in eq.(14), standard errors

on the segment locations are:

σδi =
√∣∣A−1i11 ∣∣, στi =

√∣∣A−1i22 ∣∣.
This approximation is valid given that the posterior distribution of δ and τ is multivariate

normal.

Affymetrix error model. Following a classic microarray error-model [15] we consider the

observed calibrated signal X to be distributed according to:

X = µeη + ε, (10)

η ∼ N (0, ση), ε ∼ N (0, σε),

where µ represents the true copy-ratio, η and ε represent multiplicative and additive errors, respec-

tively. Importantly, this allows for specifying cluster variance as a function of the mean, without

the need to fit additional segment-level variance parameters, as in [28].

We generalized this error model to the two-dimensional case appropriate for fitting two-channel

microarray data (Methods, eq. (17)). Because an explicit formula for likelihood calculations could

not be obtained, we used an approximation whereby a transformation is applied to the data, after

which its distribution becomes approximately bi-variate Gaussian. Specifically, we extended the

variance stabilization technique described for the one-dimensional case [32] to the 2D error model,

accounting for additional observed correlations in heterozygous SNP clusters, which were presumed

to arise from the PCR amplification. Additional parameters are included in Θ taking into account

attenuation and background fluctuation (Methods). The quality of the model-fit to the marker-
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level data is shown in figure 4, demonstrating that much of the variation in the data is accurately

captured.

Discussion

We have demonstrated the ability of HAPSEG to accurately estimate haplotype-specific DNA con-

centrations in tumor samples, including those for which no patient-matched normal sample exists.

We demonstrated the utility of HSCR estimates from HAPSEG to estimate tumor purity, ploidy,

and absolute copy-numbers using ABSOLUTE [3]. By factorizing general inference methods from

platform-specific error models, greater generality was achieved, allowing us to easily adapt HAPSEG

to the analysis of massively parallel sequencing data. Although promising results have been obtained

from whole-exome hybrid capture sequencing (WES)[33] data (not shown), further development is

needed to derive calibrated copy-estimates from multiplexed WES using bar-coded reads.

In addition to providing accurate estimates of haplotype-specific copy-ratios, HAPSEG can pro-

duce partially phased haplotypes by exploiting the widespread allelic-imbalance common in aneuploid

cancer genomes, without the need for methods based on phased reference panels. This will have

several applications in cancer genetics, such as establishing compound heterozygosity of germline

alleles. In addition, when used with sequencing data, long-range haplotyping using HAPSEG will

aid reconstruction of complete somatic karyotype and history of aberrations transforming from the

diploid state[34]. Furthermore, these methods may aid detection of specific SCNAs subject to allelic

bias in cancer [35, 36, 8].

The availability of partially phased genotypes will allow improvements in panel-based imputa-

tion methods, which attempt to model observed diploid genotypes as a mosaic of phased reference

haplotypes [37], [38], [39], [40], [31], (reviewed[41]). Optimal exploitation of will require extension

of these methods to handle partially phased genotype data containing variable gaps (due to somatic

allele-balance.)

Similar considerations apply to admixture mapping, whereby long-range phasing may be inferred

by differences in parental allele-frequency along the genome, due to recent mixing of outbred pop-

ulations [42], [43]. The phased homologues provided by HAPSEG, each of which is derived from

a single parent, will allow for more sensitive detection of recent admixture, possibly supporting

mapping with less divergent populations than permitted in the purely diploid case. Since admixture

inferences allow for inter-chromosomal phasing of homologues, they may be of interest in the analysis

of germline risk loci.

Long-range haplotyping has utility to uncover interactions between germline and somatic genetics

in cancer. Examples include variants at the 8q24 locus, affecting inherited risk of development of

multiple cancer types [42], and later shown to interact with MYC [44]. Furthermore, these methods

may facilitate identification of additional germline alleles mechanistically predisposed to somatic

alteration in cancer, such as JAK2 in myeloproliferative neoplasms [45]. In contrast, to the above

examples, the genetic basis by which EGFR mutations in lung adenocarcinoma occur predominately

in female non-smoking patients of East Asian ethnicity [46] remains unclear.

As whole-genome sequencing of aneuploid cancer samples becomes increasingly routine, directed

long-range haplotyping using HAPSEG will increase the available panels of densely genotyped chro-

mosomes, without the need for genotyping parent-child trios. This resembles the precedent of geno-
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typing uniparental-disomic samples derived from complete hydatidiform moles [47], which formed

an important component of the phased Japanese HAPMAP panel [48]. HAPSEG generalizes this

requirement to allow direct phasing from homologous imbalance, extending the samples on which it

may be applied to tens of thousands of cancer samples [49].

Long-range haplotyping is an important technique for human population genetics, with wide

ranging applications including understanding haplotype diversity and genetic recombination rates

[29], illuminating recent positive selection in the human lineage [50] and human history [51].

Partially phased genotyping by analysis of cancer-derived DNA using HAPSEG represents a novel

technique to obtain such data. This may be particularly useful in the study of poorly characterized

populations, for which phased reference panels do not exist, and for which parent-child trio data

may be impossible to obtain. In such cases, this strategy may present a cost-effective alternative to

recently described molecular methods for long-range haplotyping [52], [53].

Methods

Algorithm C*

C* uses the data, segmentation S, and genotype priors G to update estimates of the sample error-

model Θ and segment locations {δ, τ}. This is accomplished by iterating two conditional updates

until convergence of Lf :

1. Conditional update of locations {δ, τ}:

∀i,
{
δ
(t+1)
i , τ

(t+1)
i

}
= argmax
{δi,τi}

logLi
(
Xi|δi, τi,Θ(t), Ŝ,G

)
(11)

2. Conditional update of sample error-model Θ. Θ is a vector of platform-specific param-

eters upon which conditional updates are performed serially. We found that the results are

insensitive to ordering, and suppress indexing:

Θ(t+1) = argmax
Θ

logLf
(
X|δ(t), τ (t),Θ, Ŝ,G

)
P (Θ). (12)

Note the superscripts (t) above denote the internal iterations of the C*algorithm.

3. Stop if the full likelihood Lf does not change significantly.

Probabilistic segment merging

Let H0 and H1 denote the seperate and merged segment hypotheses. In order to compare the

evidence supporting each model, we compute an approximation to the Bayesian evidence (Laplace)

by approximating the normalizing constant of the posterior distribution P (δi, τi|Xi, Θ̂). If the

posterior is multivariate Gaussian, the normalization constant may be calculated from the likelihood

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
49

4.
1 

: P
os

te
d 

5 
O

ct
 2

01
1



and curvature at the mode:

Ev(Xi) =

∫
δi

∫
τi

Li(Xi|δi, τi, Θ̂,G(0)) (13)

' L̂i ×
∣∣∣∣det Ai

2π

∣∣∣∣−1/2 × (5/2)−2, (14)

where L̂i denotes the maximum likelihood (at δ̂i, τ̂i), and Ai = −∇∇ logLi(Xi|δi, τi, Θ̂) denote the

Hessian matrix around the mode of a segment location: {δ̂i, τ̂i}. We verified the accuracy of the

approximation using quadrature on a subset of segments (not shown).

The constant third term gives the volume of the domain: δi × τi. Note that the first and

second-two terms correspond to the ’Best fit likelihood’ × ’Occam factor’ formulation of Evidence,

as described in [54].

Following Bayes’ rule: P (H|Xi) ∝ P (Xi|H)P (H), we compute the Bayes factor BF(H0):

P (H0|X1,2)

P (H1|X12)
=

Ev(X1)Ev(X2)

Ev(X12)
. (15)

Our experience suggests that the cancer genome is often heavily over-segmented using the initial

segmentation Ŝ(1) described above. Adjacent segments are therefore merged if BF(H0) < 1×10−10.

BF(H0) is computed for all breakpoints in Ŝ(1) and segments are merged greedily by joining the

adjactent pair with the lowest BF(H0) value. The merge-probability for any breakpoints adjacent

to the resulting combined segment are computed at each step. The procedure is finished when no

pairs exist with BF(H0) below the threshold, resulting in a refined segmentation Ŝ(2). We note

that the Bayes factor defined above could equivalently be applied to accept or reject novel proposed

breakpoints in S. We leave the development of an efficient method to identify valid breakpoints to

the future.

Reconciliation of phased genotype estimates with reference panels

1. Compute diploid genotype estimates d̂ from haploid estimates Ĉ(1) by collapsing (marginaliz-

ing) the two heterozygous clusters.

2. Compute the maximum likelihood statsitical phasing of d using BEAGLE [31]:

Ĉ(B) = BEAGLE(d̂,D,m)

If evidence exists for the haploytype configurations Ĉ(1) as a mosaic of phased chromosomes

in D with recombination rate m, then these configurations will be present in Ĉ(B), up to

occasional spurious phase reversals (switch-errors), which are expected to occur at frequency

related to m.

3. Reconcile haploid estimates from allelic-imbalance Ĉ(1) with Ĉ(B) by allowing for occasional

switch-errors:

Ĝ(1) = Viterbi(Ĉ(1), Ĉ(B),Φm)

This is accomplished using the Viterbi algorithm, which finds the best path through adjacent-

marker phased-genotype probabilities Ĉ(1) such that they are concordant with Ĉ(B), with
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occasional switches to the phase-reversed Ĉ(−B) (obtained by swapping of the AB and BA

genotype probabilities). Switching dynamics are governed by the transition-probability matrix

Φm:

Φm =

(
0.9 0.1

0.1 0.9

)
.

Thus, switches between Ĉ(B) and Ĉ(−B) are expected to occur with marginal probability 0.1. We

note the adjusting the switch-error probability according to the recombination rate m would likely

be more sensitive, however these values appear to work well on our data (fig. 3). Upon termination,

Ĝ(1) contains updated knowledge about haploid genotypes C. If no phase information is implied in

Ĉ(1) (due to allelic balance), Ĝ(1) = Ĉ(B), since the phase of either configuration in Ĉ(1) will be

equally probable. Likewise, if Ĉ(1) reflects a spurious phasing from over-fitting the locations of a

given segment, then the switch probability 0.1 is not adequate to form a path with expected switches

at every other marker. In such cases, the locations will be corrected by recomputing the segment

HSCRs using Ĝ(1) = Ĉ(B).

Calibration

(Note: The remaining sections describe methods specific to SNP microarrays)

Calibration of Affymetrix SNP-array measurements was accomplished using the Birdseed algo-

rithm [13], which combines population allele-frequency estimates with location estimates on training

samples with known genotypes. These prior estimates are adjusted by Birdseed to fit data from

batches of samples. These adjusted location estimates are then used to define the three diploid

genotype hybridization-intensity clusters, with locations denoted IAA, IAB , IBB . A large amount

of measurement error is thought to arise from variability in the conditions under which the PCR

reaction is run. We therefore define batches of PCR (eg., 96-well plates for which the reactions

were run in parallel.) Calibrations are performed independently for each of such batches. Genotype

locations are estimated using only the normal (non-cancer) samples in the batch, which need not

be paired to the cancer samples. Because Birdseed jointly determines the genotypes of the normal

samples along with the locations of the genotype clusters for the batch, it is not necessary to use

controls with known genotypes. Because normal samples are essential for calibration, we generally

recommend that at least 10 such samples be included in each batch.

With the intensity of the 3 genotype-clusters determined by Birdseed, background and scale

parameters for the a and b channels of each probe-set can be obtained. The background for each

channel is estimated as the observed intensity corresponding to zero copies of that allele:

I0a = IBBa , I0b = IAAb .

The scale for each channel is estimated as the difference in observed intensities corresponding to one

and zero copies of that allele:

d1a = IABa − IBBa , d1b = IABb − IAAb .
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Calibrations of observed intensities in cancer samples are then computed as:

Xa =
Ia − I0a
d1a

, Xb =
Ib − I0b
d1b

. (16)

The calibrated signals may therefore be interpreted as ratios of the locus-concentration in the tumor-

sample to the concentration corresponding to 1 copy in a sample derived from diploid cells.

The above calibration procedure is strictly valid given linear responses throughout the domain

of locus-concentration. In fact, attenuation effects are observed for many probe-responses at locus-

concentrations corresponding to 2-copies / diploid cell, and become more pronounced with increasing

concentration. By performing calibration using only locus concentrations corresponding to 0 and 1

copy, we have sought to base our estimates on values from the linear response range in karyotypically

normal samples. Attenuation effects occurring in tumor samples are dealt with in a subsequent

section.

Following the procedure described above, we perform an additional probe-set level calibration

step designed to remove spurious correlation between the a and b channels arising due to cross-

hybridization. This procedure is described in a subsequent section.

Error model

Modern SNP microarrays measure on the order of 100-1000K polymorphic sites present in an input

DNA aliquot. Specifically, these arrays allow for the measurement of hybridization occurring be-

tween input DNA and substrate-bound oligonucleotides corresponding to each of two forms for each

polymorphic locus interrogated (an a and a b channel for each SNP). In ideal cases, the experimental

conditions under which the array is run result in hybridization proportional to the concentration

of the specific locus being interrogated, plus some unknown background (presumed to arise from

non-specific hybridization.)

The motivation for the model in eq. (10) stems from the consideration of two major noise sources

inherent in the measurement procedure. A molecule with concentration proportional to µ is subjected

to n rounds of PCR amplification, to yield 2n molecules. Assume n ∼ N (m,σm), then log(µ) ∼ N .

Hybridization of species to the microarray then results in measured signal X ∼ N (µeη, σε). The

distribution of X is therefore the convolution of a normal and a log-normal distribution, representing

the measurement of a process subject to multiplicative noise using a process (hybridization) subject

to additive noise.

Although the error-model of eq. 10 fits the observed data reasonably well, consistent positive

correlation is observed between the a and b channels of the heterozygous clusters AB and BA.

Furthermore, the magnitude of this correlation is directly proportional to σ̂η (not shown). Noting

that the two alleles of any given SNP lie on restriction fragments that typically differ by a single

base, we surmise that any variations in PCR efficiency arising due to sequence composition are likely

to be shared. This phenomenon affects only the heterozygous clusters because, by definition, one

allele is absent for any homozygous SNP, and is not subject to PCR amplification. We therefore

generalize the error-model of equation 10 to the 2-dimensional case as follows:[
Xa

Xb

]
= α+

[
µae

ηa

µbe
ηb

]
+

[
εa

εb

]
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[
ηa

ηb

]
∼ N (0,Ση) ; Ση =

[
ση ρση

ρση ση

]
(17)

[
εa

εb

]
∼ N (0,Σε) ; Σε =

[
σε 0

0 σε

]
Note that the assumption of diagonal additive covariance (Σε) in the above equation is reasonable

only because of the calibration procedure which removes cross-hybridization signal prior to fitting

the model. This procedure is described in a subsequent section.

Attenuation

The heterozygous segment locations are overdetermined with respect to δ and τ (2). For each seg-

ment, 8 genotype-cluster coordinates are determined by two free parameters. Observed discrepancies

from these dependencies can be exploited for improved estimates of microarray attenuation.

As in [55], we adopt the Langmuir isothermal adsorption model [56] to deal with attenuation

effects observed as the concentration of a given hybridized species increases:

θ =
φC

1 + φC
,

where θ indicates the proportion of bound species (presumed to be equivalent to the observed

hybridization signal), C indicates the concentration of a particular species, and φ is a constant

related to the binding affinity of the species to the oligonucleotide probes targeting it. This model

has been previously shown to accurately model the attenuation characteristics of microarray probes

[16].

Due to the calibration procedure described in eq (16), the observed copy-ratio X is actually the

ratio of two isotherms:

X =
φCT

1 + φCT
/

φCN
1 + φCN

,

where CT and CN are proportional to concentration in the tumor and normal sample, respectively.

Let CR = CT /CN . Because CN is defined to be the hybridization intensity corresponding to 1 copy

for a given probe-set, we can rewrite the above equation as:

X =
CR(1 + φ)

(1 + CRφ)
.

We can then define a transformation of genotype-cluster coordinates:

g(µ) =
µ(1 + φ)

(1 + µφ)
(18)

This transformation is applied to the locations of the 4 genotype-clusters defined in equations 1, 2.

This ensures that the physical constraints defined by the model are compatible with the observed

data.

Noting that

lim
CR→∞

CR(1 + φ)

(1 + CRφ)
=

1 + φ

φ
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corresponds to the asymptotic saturation copy-ratio, m, gives a direct physical interpretation for

the value of φ; φ = 1
m−1 .

Variance-stabilizing transformation

Following [32], we make use of a variance-stabilizing transformation h, such that

h(x) ' h(µ) + εh; εh ∼ N (0, σh), (19)

where σh is constant over the domain of X. Writing the variance of X as a function of the mean µ :

var(X) = v(µ), a general form for h can be expressed as [57]:

h(x) =

∫ x 1√
v(u)

du.

The specific form of h(x) for use with the error-model defined by eq. (10) is derived in [32]:

h(x) = log
(
bx+

√
1 + bx2

)
(20)

= sinh−1(bx).

The transformation has a parameter b that is calculated from ση and σε as follows:

b =

√
eσ

2
η − 1

σε
. (21)

The transformed data, denoted X′, will have variance, denoted σ2
h, approximately independent of

X, with

σh = σε
d

dx
h(x)|x=0 (22)

= σεb.

Using simulated data, we verified that the approximation in eq. 19 is accurate for values of ση and

σε within the range of typical estimates (data not shown).

Likelihood calculation

We construct an approximation to the model defined in eq. (17) based on application of the variance-

stabilizing transformation (eq. 20) applied to both data channels. We use the scaled bivariate t-

distribution on the transformed data X′, which has an additional parameter ν ∈ Θ allowing excess

density in the tails.

P (Xij |µik,Θ) ≡ P (Xij |µik, ν,Σi)

=
1

2π|Σi|1/2
(

1 + ν
(
X′ij − µ′ik

)T
Σ−1i (X′ij − µ′ik)

)−(ν/2+1)

|Jij |, (23)

where

X′ij = h(Xij),
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and

µ′ik = h(g(µik)),

with g and h given by eqns. 18 and 20, respectively. Define

X′ij =

[
X ′a

X ′b

]
,

The Jacobian of the transformation h is:

|Jij | =

∣∣∣∣∣∣
∂h(X′

a)
∂X′

a

∂h(X′
a)

∂X′
b

∂h(X′
b)

∂X′
a

∂h(X′
b)

∂X′
b

∣∣∣∣∣∣
=
∂h(X ′a)

∂X ′a

∂h(X ′b)

∂X ′b

=
b√

1 + (bX ′a)2
b√

1 + (bX ′b)
2

,

where b and σh may be calculated from ση and σε via equations (21) and (22), respectively.

Introducing a sample-level parameter 0 < ρh <
3
4σ

2
h ∈ Θ, we approximate the covariance-matrix

of the transformed data in a given segment i as:

Σi =

[
σ2
h sρh

sρh σ2
h

]
, with s =

µikaµikb if µikaµikb < 1

1 otherwise.

Thus, the covariance is spherical for the homozygous clusters. The scaling of ρh by s provides a

consistent approximation to the covariance implied by eq. (17) for heterozygous clusters.

Substitution of eq. (23) into the generic form for P (Xij |µik,Θ) in eq. (3) completes the

specification of our HSCR estimation based on SNP microarray data. The sample-level error model

parameters which must be estimated from the data are: Θ = {σε, ση, ρh, ν, φ}.

Calibration of cross-hybridization effects

We develop a calibration step to remove allelic-crosstalk from copy-ratio data X in a SNP-specific

manner as follows. Starting with large collection of normal samples, genotyped using Birdseed

[13], we compute the cluster-centers for each genotype for each SNP. We attempt to estimate the

covariance matrix for each SNP, denoted Σi. We make use of the factorization Σ = SRS, where

R =

(
1 rAB

rAB 1

)
, S =

(
σ2 0

0 σ0

)
,

with rAB denoting the correlation between the A and B allele. σ0 and σ2 denote the standard-

deviation of genotype-cluster axes corresponding to 0 and 2 copies, respectively.

Because we are attempting to estimate a large number of parameters from data which may

be limited, we make use of a Bayesian regularization technique. Population priors describing the

distribution of scales and correlations are estimated from all SNPs, and these are then used to

compute the most probable (MP) estimates for each SNP. This follows standard use of a hierarchical
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model, as in [58].

We use scaled-inverse-χ2 prior distributions for σ0 and σ2, defined as follows:

Let X ∼ χ2(ν) and Y =
σ2ν

X
, then Y ∼ Scale-inv-χ2(ν, σ2).

We use a normal distribution for the Fisher-transform of rAB , zAB = 1
2 log

(
1+r
1−r

)
. We denote the

standard error of z as zσ = 1√
N−3 . We define population-level distributions on the SNP covariance

parameters as:

zAB ∼ N (πµz , πσz )

σ2
0 ∼ Scaled-Inverse-χ2(πs0 , πν0)

σ2
2 ∼ Scaled-Inverse-χ2(πs2 , πν2)

πµz and πσz are estimated via maximum likelihood from the calculated SNP correlation-coefficients.

The MP estimate of z is the mode of the posterior (Gaussian) distribution:

ẑMP =

πµz
π2
zσ

+ ẑML

z2σ
1
π2
zσ

+ 1
z2σ

The MP estimate of r is the inverse of the Fisher transform on ẑMP:

r̂MP =
e2ẑMP − 1

e2ẑMP + 1

The posterior distribution for the scales σ0 and σ2 is:

σ2
0 |X ∼ Scaled-Inverse-χ2 (θσ, θν) ,

with

θ2σ =
πν0π

2
s0 +Nσ̂2

0ML

πν0 +N
, θν = πν0 +N

The posterior mode is therefore

σ̂0MP =

√
θνθ2σ
θν + 2

.

σ̂2MP is computed in a similar fashion.

We then construct the MP covariance matrix for each SNP:

Σ̂MP =

(
σ̂2MP 0

0 σ̂0MP

)(
1 r̂MP

r̂MP 1

)(
σ̂2MP 0

0 σ̂0MP

)
.

Denote the slope of the 1st eigen-vector of Σ̂MP as M̂BB . We construct an affine transformation

as follows:

T =

(
1 −M̂BB

0 1

)(
1 0

−M̂BB 1

)
.

The corrected data is then:

X’ = TX.
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a

d

b

c

Figure 1

Figure 1. Overview of analysis with HAPSEG a., Input data from an Affymetrix SNP
microarray hybridization. The calibrated allelic copy-ratios of A and B channels is shown for each
SNP vs. its genomic location. b., The data in (a), after processing with HAPSEG. SNPs are
colored according to their phased genotype: grey homozygous, red/blue heterozygous (phased),
purple heterozygous (unphased). The HSCR segmentation is indicated by green horizontal lines. c.,
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Summary of the data in (b), where the individual SNPs have been removed and each HSCR segment
is colored by the average phasability of the heterozygous SNPs from which it was estimated. d.,
A histogram summarizing the data in (c), by marginalizing over the genome. Although the HSCR
locations are independent between segments, only four discrete levels are apparent in the histogram.
These corresponding to fixed SCNAs fixed in the tumor sample, and are the basis for analysis with
ABSOLUTE [3].
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Figure 2

Figure 2. Examples of segmental HSCR inference by HAPSEG a., A tumor sample
with genome-wide HSCRs as inferred by HAPSEG, as in fig. 1c. b., Summary histogram of estimated
HSCR values, as in fig. 1d. c., e., g., Plots of calibrated A vs. B-allele copy-ratios for SNPs in three
genomic locations indicated in (a) (arrows). SNPs are colored by inferred (haploid) genotype, as in
fig. 1b. Contours denote the error-model fit for each genotype cluster: black - homozygous, green -
heterozygous. d.,f.,h., Plots of A and B-allele copy-ratios vs. genomic position for the segments in
(c,e,g). SNPs are colored as in (c,e,g). Horizontal lines denote genotype cluster locations, colored
as in (c,e,g) The heterozygous locations (HSCRs) correspond to the allelic copy-ratios in (a). c.,d.,
A segment (chr 7) at allelic balance, with equal copy-numbers of both homologues. No phase
information is available for heterozygous SNPs in this segment. e.,f., A segment (chr 2) at allelic
imbalance, with unequal homologous copy-numbers. Note that the SCNA affecting this segment
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was predicted to be subclonal by ABSOLUTE [3]. g.,h., A segment (chr 6) at more extreme allelic
imbalance. Note that the lower HSCR here corresponds to LOH in this tumor sample [3]; the DNA
contributing to the heterozygous alleles is derived from normal contaminating cells.
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Figure 3. Demonstration of direct haplotyping by homologous imbalance a.,b., Com-
parison of HAPSEG and BEAGLE phase in example segments. Top - Allelic copy-ratios of heterozy-
gous SNPs are shown at their genomic coordinates. Color indicates phase as estimated by HAPSEG
(Ĉ(2)), eq. (9). Grey horizontal lines indicate the HSCR estimates for the segment, estimated by
HAPSEG, eq. (8). Middle - The genetic recombination rate is plotted vs. the genome. Bottom - As
in (a), but replacing the HAPSEG phase estimates by those obtained using the statistical phasing
program BEAGLE [31]. Switch errors in the BEAGLE phasing, detected by HAPSEG, are indicated
by dotted vertical lines.
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Figure 4. Demonstration of error-model for Affymetrix SNP microarrays. a-d., The
fit of the error-model to marker-level data is shown in a single example segment. a., The histogram
summarizes the A and B channels for assayed markers within the genomic segment. The marginal
fit of the A/B marker copy-ratios is denoted by the green (het) and coral (het+hom) curves. b.,
Marker copy-ratios in (a) are shown separately for the A vs. B channel. Contours denote fit of
the error model to the 4 modeled genotype clusters, eq. (1), (2) (green - het, black - hom). c,d.,
as in a,b., but using the variance stabilizing transformation, eq. (20). Likelyhood calculations are
performed in this space using a bi-variate t distribution, eq. (23). Positive covariance of the A/B
channels is modeled in the heterozygous clusters (green), this aspect of the fit cannot be dispalyed
in one dimension, as in (a,c). Contours show the fit of this density to the data, as in (b), which were
derived by inverting the variance stabalizing transformation. We note that the covariance matrix
Σi in the density used here is fully determined by the segment HSCR locations, conditional on error
model parameters Θ, which are fit at the sample level, eq. (12). Only two degrees of freedom are
fit to the data specifically shown here, eq. (2). e-h., an additional example segment is shown, as in
a-d.
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