12 research outputs found

    Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges

    Get PDF
    5G networks are expected to be able to satisfy users' different QoS requirements. Network slicing is a promising technology for 5G networks to provide services tailored for users' specific QoS demands. Driven by the increased massive wireless data traffic from different application scenarios, efficient resource allocation schemes should be exploited to improve the flexibility of network resource allocation and capacity of 5G networks based on network slicing. Due to the diversity of 5G application scenarios, new mobility management schemes are greatly needed to guarantee seamless handover in network-slicing-based 5G systems. In this article, we introduce a logical architecture for network-slicing-based 5G systems, and present a scheme for managing mobility between different access networks, as well as a joint power and subchannel allocation scheme in spectrum-sharing two-tier systems based on network slicing, where both the co-tier interference and cross-tier interference are taken into account. Simulation results demonstrate that the proposed resource allocation scheme can flexibly allocate network resources between different slices in 5G systems. Finally, several open issues and challenges in network-slicing-based 5G networks are discussed, including network reconstruction, network slicing management, and cooperation with other 5G technologies

    Beyond cellular green generation: Potential and challenges of the network separation

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article introduces the ideas investigated in the BCG2 project of the GreenTouch consortium. The basic concept is to separate signaling and data in the wireless access network. Transmitting the signaling information separately maintains coverage even when the whole data network is adapted to the current load situation. Such network-wide adaptation can power down base stations when no data transmission is needed and, thus, promises a tremendous increase in energy efficiency. We highlight the advantages of the separation approach and discuss technical challenges opening new research directions. Moreover, we propose two analytical models to assess the potential energy efficiency improvement of the BCG2 approach

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks

    Full text link
    The millimeter wave (mmWave) bands offer the possibility of orders of magnitude greater throughput for fifth generation (5G) cellular systems. However, since mmWave signals are highly susceptible to blockage, channel quality on any one mmWave link can be extremely intermittent. This paper implements a novel dual connectivity protocol that enables mobile user equipment (UE) devices to maintain physical layer connections to 4G and 5G cells simultaneously. A novel uplink control signaling system combined with a local coordinator enables rapid path switching in the event of failures on any one link. This paper provides the first comprehensive end-to-end evaluation of handover mechanisms in mmWave cellular systems. The simulation framework includes detailed measurement-based channel models to realistically capture spatial dynamics of blocking events, as well as the full details of MAC, RLC and transport protocols. Compared to conventional handover mechanisms, the study reveals significant benefits of the proposed method under several metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Network

    Analytical Review and Study on Various Vertical Handover Management Technologies in 5G Heterogeneous Network

    Get PDF
    In recent mobile networks, due to the huge number of subscribers, the traffic may occur rapidly; therefore, it is complex to guarantee the accurate operation of the network. On the other hand, the Fifth generation (5G) network plays a vital role in the handover mechanism. Handover management is a prominent issue in 5G heterogeneous networks. Therefore, the Handover approach relocates the connection between the user equipment and the consequent terminal from one network to another. Furthermore, the handover approaches manage each active connection for the user equipment. This survey offers an extensive analysis of 50 research papers based on existing handover approaches in the 5G heterogeneous network. Finally, existing methods considering conventional vertical handover management strategies are elaborated to improve devising effective vertical handover management strategies. Moreover, the possible future research directions in attaining efficient vertical handover management in a 5G heterogeneous network are elaborated
    corecore