20,380 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    Finding Optimal Strategies in a Multi-Period Multi-Leader-Follower Stackelberg Game Using an Evolutionary Algorithm

    Full text link
    Stackelberg games are a classic example of bilevel optimization problems, which are often encountered in game theory and economics. These are complex problems with a hierarchical structure, where one optimization task is nested within the other. Despite a number of studies on handling bilevel optimization problems, these problems still remain a challenging territory, and existing methodologies are able to handle only simple problems with few variables under assumptions of continuity and differentiability. In this paper, we consider a special case of a multi-period multi-leader-follower Stackelberg competition model with non-linear cost and demand functions and discrete production variables. The model has potential applications, for instance in aircraft manufacturing industry, which is an oligopoly where a few giant firms enjoy a tremendous commitment power over the other smaller players. We solve cases with different number of leaders and followers, and show how the entrance or exit of a player affects the profits of the other players. In the presence of various model complexities, we use a computationally intensive nested evolutionary strategy to find an optimal solution for the model. The strategy is evaluated on a test-suite of bilevel problems, and it has been shown that the method is successful in handling difficult bilevel problems.Comment: To be published in Computers and Operations Researc

    Improving the multi-objective evolutionary optimization algorithm for hydropower reservoir operations in the California Oroville-Thermalito complex

    Get PDF
    This study demonstrates the application of an improved Evolutionary optimization Algorithm (EA), titled Multi-Objective Complex Evolution Global Optimization Method with Principal Component Analysis and Crowding Distance Operator (MOSPD), for the hydropower reservoir operation of the Oroville-Thermalito Complex (OTC) - a crucial head-water resource for the California State Water Project (SWP). In the OTC's water-hydropower joint management study, the nonlinearity of hydropower generation and the reservoir's water elevation-storage relationship are explicitly formulated by polynomial function in order to closely match realistic situations and reduce linearization approximation errors. Comparison among different curve-fitting methods is conducted to understand the impact of the simplification of reservoir topography. In the optimization algorithm development, techniques of crowding distance and principal component analysis are implemented to improve the diversity and convergence of the optimal solutions towards and along the Pareto optimal set in the objective space. A comparative evaluation among the new algorithm MOSPD, the original Multi-Objective Complex Evolution Global Optimization Method (MOCOM), the Multi-Objective Differential Evolution method (MODE), the Multi-Objective Genetic Algorithm (MOGA), the Multi-Objective Simulated Annealing approach (MOSA), and the Multi-Objective Particle Swarm Optimization scheme (MOPSO) is conducted using the benchmark functions. The results show that best the MOSPD algorithm demonstrated the best and most consistent performance when compared with other algorithms on the test problems. The newly developed algorithm (MOSPD) is further applied to the OTC reservoir releasing problem during the snow melting season in 1998 (wet year), 2000 (normal year) and 2001 (dry year), in which the more spreading and converged non-dominated solutions of MOSPD provide decision makers with better operational alternatives for effectively and efficiently managing the OTC reservoirs in response to the different climates, especially drought, which has become more and more severe and frequent in California
    corecore