7 research outputs found

    Intelligent network intrusion detection using an evolutionary computation approach

    Get PDF
    With the enormous growth of users\u27 reliance on the Internet, the need for secure and reliable computer networks also increases. Availability of effective automatic tools for carrying out different types of network attacks raises the need for effective intrusion detection systems. Generally, a comprehensive defence mechanism consists of three phases, namely, preparation, detection and reaction. In the preparation phase, network administrators aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable computer systems or firewalls), that can be exploited to launch attacks. Although the preparation phase increases the level of security in a network, this will never completely remove the threat of network attacks. A good security mechanism requires an Intrusion Detection System (IDS) in order to monitor security breaches when the prevention schemes in the preparation phase are bypassed. To be able to react to network attacks as fast as possible, an automatic detection system is of paramount importance. The later an attack is detected, the less time network administrators have to update their signatures and reconfigure their detection and remediation systems. An IDS is a tool for monitoring the system with the aim of detecting and alerting intrusive activities in networks. These tools are classified into two major categories of signature-based and anomaly-based. A signature-based IDS stores the signature of known attacks in a database and discovers occurrences of attacks by monitoring and comparing each communication in the network against the database of signatures. On the other hand, mechanisms that deploy anomaly detection have a model of normal behaviour of system and any significant deviation from this model is reported as anomaly. This thesis aims at addressing the major issues in the process of developing signature based IDSs. These are: i) their dependency on experts to create signatures, ii) the complexity of their models, iii) the inflexibility of their models, and iv) their inability to adapt to the changes in the real environment and detect new attacks. To meet the requirements of a good IDS, computational intelligence methods have attracted considerable interest from the research community. This thesis explores a solution to automatically generate compact rulesets for network intrusion detection utilising evolutionary computation techniques. The proposed framework is called ESR-NID (Evolving Statistical Rulesets for Network Intrusion Detection). Using an interval-based structure, this method can be deployed for any continuous-valued input data. Therefore, by choosing appropriate statistical measures (i.e. continuous-valued features) of network trafc as the input to ESRNID, it can effectively detect varied types of attacks since it is not dependent on the signatures of network packets. In ESR-NID, several innovations in the genetic algorithm were developed to keep the ruleset small. A two-stage evaluation component in the evolutionary process takes the cooperation of rules into consideration and results into very compact, easily understood rulesets. The effectiveness of this approach is evaluated against several sources of data for both detection of normal and abnormal behaviour. The results are found to be comparable to those achieved using other machine learning methods from both categories of GA-based and non-GA-based methods. One of the significant advantages of ESR-NIS is that it can be tailored to specific problem domains and the characteristics of the dataset by the use of different fitness and performance functions. This makes the system a more flexible model compared to other learning techniques. Additionally, an IDS must adapt itself to the changing environment with the least amount of configurations. ESR-NID uses an incremental learning approach as new flow of traffic become available. The incremental learning approach benefits from less required storage because it only keeps the generated rules in its database. This is in contrast to the infinitely growing size of repository of raw training data required for traditional learning

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g
    corecore