4,089 research outputs found

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Comparative Analysis of Location Management Schemes in Wireless ATM Networks

    Get PDF
    Mobility is the cornerstone of wireless networks. Supporting mobility requires some form of tracking to locate mobile terminals within the network. In the wireline ATM network, the terminal is fixed and the terminal is located by identifying the terminal and following the routing information provided at each switch along the path. As terminals become mobile, the path to the mobile becomes dynamic; the terminal and the path are no longer synonymous. Signalling traffic incurred in tracking mobile users and delivering enhanced services causes an additional load in the Wireless ATM (WArM) network. Efficient database and location management schemes are needed to meet the challenges from high density and mobility of users, and various service scenarios. In this thesis the three "natural" Location Management Strategies, i.e., Timer-Based, Location Area Based and Movement Based are studied and analysed for a W ATM network. The model used for depicting user motion and call arrival is Brownian motion with drift process and Poisson arrival process, respectively. The Timer-Based location management strategy is one in which the user updates its location periodically after an "optimum" interval of time. This optimum interval of time is based upon the user's mobility and call arrival characteristics and is therefore best suited for that particular mobile. In the Adaptive Location Area Based strategy, the user updates its location on each LA boundary crossing. The size of the LA changes according to the user' s mobility characteristics. The objective is to minimise the combined average signalling cost of both paging and registration for each individual mobile user such that the overall system-wide signalling cost for location tracking can be minimised

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases

    Supporting protocol-independent adaptive QoS in wireless sensor networks

    Get PDF
    Next-generation wireless sensor networks will be used for many diverse applications in time-varying network/environment conditions and on heterogeneous sensor nodes. Although Quality of Service (QoS) has been ignored for a long time in the research on wireless sensor networks, it becomes inevitably important when we want to deliver an adequate service with minimal efforts under challenging network conditions. Until now, there exist no general-purpose QoS architectures for wireless sensor networks and the main QoS efforts were done in terms of individual protocol optimizations. In this paper we present a novel layerless QoS architecture that supports protocol-independent QoS and that can adapt itself to time-varying application, network and node conditions. We have implemented this QoS architecture in TinyOS on TmoteSky sensor nodes and we have shown that the system is able to support protocol-independent QoS in a real life office environment

    Protocols for packet switched communication and reliable multicasting in fully-dynamic multi-hop wireless networks

    Get PDF
    Designing protocols for a fully dynamic wireless packet switched networks pose unique challenges due to the constantly changing topology of the network. A set of protocols is presented that are capable of handling a fully dynamic wireless network in which switching centers and base stations are mobile as well as the end users. The protocols provide basic message delivery, network routing information updates, and support for reliable multicasting. There are four contributions of this work: (i) a hierarchical architecture for a fully dynamic wireless network, (ii) improved routing and update protocols with reduced control traffic, (iii) a method to provide reliable multicasting in a wireless environment that is near optimal in terms of the number of messages sent, and (iv) a set of load balancing algorithms that allow the network to autonomously and dynamically reconfigure the network topology to even out the load on the base stations. A detailed simulation of the protocols is developed and exercised to evaluate the performance of the protocols. For point to point delivery, the protocols successfully deliver all packets even when the rate of motion of the terminals causes more than 1/2 of them to be in a transitional state at any time. The results are similar for base station

    Next-Generation Mobile Satellite Networks

    Get PDF
    • 

    corecore