7 research outputs found

    Dimensions of Partial Completion of Activities in Workflow Management

    Get PDF
    Process and workflow management have become well accepted methods for helping to increase efficiency in companies. However the experience has been that highly structured workflows need to be more flexible to meet the requirements of dynamic businesses today. Recently Lin and Orlowska [2005] have addressed this topic by introducing partially complete-able activities. In contrast to classic workflows the activities do not show an all- or-nothing behaviour (they are fully completed or not) but can be completed on different levels. The decision as to whether or not the process can be continued is then the responsibility of the process owner. In our paper we extend this concept by the introduction of fuzzy and probably complete-able activities. Moreover we show that a process memory can further increase the flexibility of the workflow

    A constraint specification approach to building flexible workflows

    Get PDF
    Process support systems, such as workflows, are being used in a variety of domains. However, most areas of application have focused on traditional production-style processes, which are characterised by predictability and repetitiveness. Application in non-traditional domains with highly flexible process is still largely unexplored. Such flexible processes are characterised by lack of ability to completely predefine and/or an explosive number of alternatives. Accordingly we define flexibility as the ability of the process to execute on the basis of a partially defined model where the full specification is made at runtime and may be unique to each instance. In this paper, we will present an approach to building workflow models for such processes. We will present our approach in the context of a non-traditional domain for workflow, deployment, which is, degree programs in tertiary institutes. The primary motivation behind our approach is to provide the ability to model flexible processes without introducing non-standard modelling constructs. This ensures that the correctness and verification of the language is preserved. We propose to build workflow schemas from a standard set of modelling constructs and given process constraints. We identify the fundamental requirements for constraint specification and classify them into selection, termination and build constraints. We will detail the specification of these constraints in a relational model. Finally, we will demonstrate the dynamic building of instance specific workflow models on the basis of these constraints

    Supporting effective unexpected exception handling in workflow management systems within organizaional contexts

    Get PDF
    Tese de doutoramento em Informática (Engenharia Informática), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008Workflow Management Systems (WfMS) support the execution of organizational processes within organizations. Processes are modelled using high level languages specifying the sequence of tasks the organization has to perform. However, organizational processes do not have always a smooth flow conforming to any possible designed model and exceptions to the rule happen often. Organizations require flexibility to react to situations not predicted in the model. The required flexibility should be complemented with robustness to guarantee system reliability even in extreme situations. In our work, we have introduced the concept of WfMS resilience that comprises these two facets: robustness and flexibility. The main objective of our work is to increase resilience in WfMSs. From the events demanding for WfMS resilience, we focused on ad hoc effective unexpected exceptions as those for which no previous knowledge exist is the organization to derive the handling procedure and no plan can be a priori established. These exceptions usually require human intervention and problem solving activities, since the concrete situation may not be entirely understood before humans start reacting to the event. After discussing existing approaches to increase WfMS resilience, we have identified five levels of conformity. The fifth level, being the most demanding one, requires unrestricted humanistic interventions to workflow execution. In this thesis, we propose a system to support unrestricted users' interventions to the WfMS and we characterize the interventions as unstructured activities. The system has two modes of operation: it usually works under model control and changes to unstructured activities support when an exception is detected. The exception handling activities are carried out until the system is placed back into a coherent mode, where work may proceed undermodel execution control

    Autonom rekonfigurierbare Workflows

    Get PDF
    Prozesse, seien es Geschäfts- oder Produktionsprozesse, sind ständigen Änderungen unterworfen. Für Unternehmen gilt es, sich im Rahmen von Geschäftsprozessen immer wieder neuen Marktgegebenheiten, Gesetzen oder Kunden anzupassen. Auch Produktionsprozesse müssen bspw. für die Verarbeitung neuer Materialien zugeschnitten werden. Die vorliegende Arbeit beschreibt deshalb, einen umfassenden Ansatz für den Umgang mit Änderungen bzw. Rekonfigurationen von Workflows zu entwickeln. Dieser zeichnet sich durch zwei Schwerpunkte aus: (1) Vollständige Rekonfiguration aller Workflowperspektiven und (2) eine reflexive autonome Steuerung der Rekonfigurationen

    Descriptive business process models at run-time

    Get PDF
    Today's competitive markets require organisations to react proactively to changes in their environment if financial and legal consequences are to be avoided. Since business processes are elementary parts of modern organisations they are also required to efficiently adapt to these changes in quick and flexible ways. This requirement demands a more dynamic handling of business processes, i.e. treating business processes as run-time artefacts rather than design-time artefacts. One general approach to address this problem is provided by the community of [email protected], which promotes methodologies concerned with self-adaptive systems where models reflect the system's current state at any point in time and allow immediate reasoning and adaptation mechanisms. However, in contrast to common self-adaptive systems the domain of business processes features two additional challenges: (i) a bigger than usual abstraction gap between the business process models and the actual run-time information of the enterprise system and (ii) the possibility of run-time deviations from the planned models. Developing an understanding of such processes is a crucial necessity in order to optimise business processes and dynamically adapt to changing demands. This thesis explores the potential of adopting and enhancing principles and mechanisms from the [email protected] domain to the business process domain for the purpose of run-time reasoning, i.e. investigating the potential role of Descriptive Business Process Models at Run-time (DBPMRTs) in the business process management domain. The DBPMRT is a model describing the enterprise system at run-time and thus enabling higher-level reasoning on the as-is state. Along with the specification of the DBPMRT, algorithms and an overall framework are proposed to establish and maintain a causal link from the enterprise system to the DBPMRT at run-time. Furthermore, it is shown that proactive higher-level reasoning on a DBPMRT in the form of performance prediction allows for more accurate results. By taking these steps the thesis addresses general challenges of business process management, e.g. dealing with frequently changing processes and shortening the business process life cycle. At the same time this thesis contributes to research in [email protected] by providing a complex real-world use case as well as a reference approach for dealing with volatile [email protected] of a higher abstraction level

    Handling dynamic schema change in process models

    No full text
    Workflow technology has emerged as an appropriate platform for consolidating the distributed information resources of an enterprise, promoting interoperability across cross-platform systems and for providing a global view and understanding of business process models. However, the business processes that workflows represent, are dynamic by nature, that is, they encounter frequent and unavoidable changes. It is through this dynamism that organizations maintain their competitive edge. Workflow technology to date does not provide sufficient support for dynamically changing processes. Managing schema change of workflow processes with multiple active instances is a complex issue. In this paper, we present an analysis of workflow changes in relation to business process change, and present a classification of workflow changes that dictate the scope of the problem. Based on this classification we lay the foundation for a generic framework to support dynamically changing workflow processes
    corecore