276,094 research outputs found

    Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    Get PDF
    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform modelling scheme in which to specify a formal model of the system, its failing behaviour and possibly its fault-recovering procedures. Once a formal model is provided into our scheme, fault tolerance - with respect to a given property - can be formalized as an equational Āµ-calculus formula. This formula expresses in a logic formalism, all the fault scenarios satisfying that fault tolerance property. Such a characterisation understands the analysis of fault tolerance as a form of analysis of open systems and thank to partial model checking strategies, it can be made independent on any particular fault assumption. Moreover this logical characterisation makes possible the fault-tolerance verification problem be expressed as a general Āµ-calculus validation problem, for solving which many theorem proof techniques and tools are available. We present several analysis methods showing the flexibility of our approach

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques

    Who watches the watchers: Validating the ProB Validation Tool

    Full text link
    Over the years, ProB has moved from a tool that complemented proving, to a development environment that is now sometimes used instead of proving for applications, such as exhaustive model checking or data validation. This has led to much more stringent requirements on the integrity of ProB. In this paper we present a summary of our validation efforts for ProB, in particular within the context of the norm EN 50128 and safety critical applications in the railway domain.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Advancing Dynamic Fault Tree Analysis

    Full text link
    This paper presents a new state space generation approach for dynamic fault trees (DFTs) together with a technique to synthesise failures rates in DFTs. Our state space generation technique aggressively exploits the DFT structure --- detecting symmetries, spurious non-determinism, and don't cares. Benchmarks show a gain of more than two orders of magnitude in terms of state space generation and analysis time. Our approach supports DFTs with symbolic failure rates and is complemented by parameter synthesis. This enables determining the maximal tolerable failure rate of a system component while ensuring that the mean time of failure stays below a threshold
    • ā€¦
    corecore