30,507 research outputs found

    Extrinisic Calibration of a Camera-Arm System Through Rotation Identification

    Get PDF
    Determining extrinsic calibration parameters is a necessity in any robotic system composed of actuators and cameras. Once a system is outside the lab environment, parameters must be determined without relying on outside artifacts such as calibration targets. We propose a method that relies on structured motion of an observed arm to recover extrinsic calibration parameters. Our method combines known arm kinematics with observations of conics in the image plane to calculate maximum-likelihood estimates for calibration extrinsics. This method is validated in simulation and tested against a real-world model, yielding results consistent with ruler-based estimates. Our method shows promise for estimating the pose of a camera relative to an articulated arm's end effector without requiring tedious measurements or external artifacts. Index Terms: robotics, hand-eye problem, self-calibration, structure from motio

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment

    Get PDF
    Nowadays, the increasing computation power of commercial grade processors has actively led to a vast spreading of image-based reconstruction software as well as its application in different disciplines. As a result, new frontiers regarding the use of photogrammetry in a vast range of investigation activities are being explored. This paper investigates the implementation of fisheye lenses in non-classical survey activities along with the related problematics. Fisheye lenses are outstanding because of their large field of view. This characteristic alone can be a game changer in reducing the amount of data required, thus speeding up the photogrammetric process when needed. Although they come at a cost, field of view (FOV), speed and manoeuvrability are key to the success of those optics as shown by two of the presented case studies: the survey of a very narrow spiral staircase located in the Duomo di Milano and the survey of a very narrow hypogea structure in Rome. A third case study, which deals with low-cost sensors, shows the metric evaluation of a commercial spherical camera equipped with fisheye lenses

    Robust hand-eye calibration of 2D laser sensors using a single-plane calibration artefact

    Get PDF
    When a vision sensor is used in conjunction with a robot, hand-eye calibration is necessary to determine the accurate position of the sensor relative to the robot. This is necessary to allow data from the vision sensor to be defined in the robot's global coordinate system. For 2D laser line sensors hand-eye calibration is a challenging process because they only collect data in two dimensions. This leads to the use of complex calibration artefacts and requires multiple measurements be collected, using a range of robot positions. This paper presents a simple and robust hand-eye calibration strategy that requires minimal user interaction and makes use of a single planar calibration artefact. A significant benefit of the strategy is that it uses a low-cost, simple and easily manufactured artefact; however, the lower complexity can lead to lower variation in calibration data. In order to achieve a robust hand-eye calibration using this artefact, the impact of robot positioning strategies is considered to maintain variation. A theoretical basis for the necessary sources of input variation is defined by a mathematical analysis of the system of equations for the calibration process. From this, a novel strategy is specified to maximize data variation by using a circular array of target scan lines to define a full set of required robot positions. A simulation approach is used to further investigate and optimise the impact of robot position on the calibration process, and the resulting optimal robot positions are then experimentally validated for a real robot mounted laser line sensor. Using the proposed optimum method, a semi-automatic calibration process, which requires only four manually scanned lines, is defined and experimentally demonstrated

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    A regularization-patching dual quaternion optimization method for solving the hand-eye calibration problem

    Full text link
    The hand-eye calibration problem is an important application problem in robot research. Based on the 2-norm of dual quaternion vectors, we propose a new dual quaternion optimization method for the hand-eye calibration problem. The dual quaternion optimization problem is decomposed to two quaternion optimization subproblems. The first quaternion optimization subproblem governs the rotation of the robot hand. It can be solved efficiently by the eigenvalue decomposition or singular value decomposition. If the optimal value of the first quaternion optimization subproblem is zero, then the system is rotationwise noiseless, i.e., there exists a ``perfect'' robot hand motion which meets all the testing poses rotationwise exactly. In this case, we apply the regularization technique for solving the second subproblem to minimize the distance of the translation. Otherwise we apply the patching technique to solve the second quaternion optimization subproblem. Then solving the second quaternion optimization subproblem turns out to be solving a quadratically constrained quadratic program. In this way, we give a complete description for the solution set of hand-eye calibration problems. This is new in the hand-eye calibration literature. The numerical results are also presented to show the efficiency of the proposed method
    • …
    corecore