61 research outputs found

    Dynamic Hand Gesture Classification Based on Radar Micro-Doppler Signatures

    Get PDF
    Dynamic hand gesture recognition is of great importance for human-computer interaction. In this paper, we present a method to discriminate the four kinds of dynamic hand gestures, snapping fingers, flipping fingers, hand rotation and calling, using a radar micro-Doppler sensor. Two micro-Doppler features are extracted from the time-frequency spectrum and the support vector machine is used to classify these four kinds of gestures. The experimental results on measured data demonstrate that the proposed method can produce a classification accuracy higher than 88.56%

    Transformation invariance in hand shape recognition

    Get PDF
    In hand shape recognition, transformation invariance is key for successful recognition. We propose a system that is invariant to small scale, translation and shape variations. This is achieved by using a-priori knowledge to create a transformation subspace for each hand shape. Transformation subspaces are created by performing principal component analysis (PCA) on images produced using computer animation. A method to increase the efficiency of the system is outlined. This is achieved using a technique of grouping subspaces based on their origin and then organising them into a hierarchical decision tree. We compare the accuracy of this technique with that of the tangent distance technique and display the result

    Automatic Railway track Inspection for early warning using Real time image Processing with GPS

    Get PDF
    Railroad assessment assumes an indispensable part for the correct working of the rail line frameworks; in the past its done manual investigation yet has a few ambiguities. Modified vision based audit systems are engaged to look at the stipulation of rail track. Thusly system fabricates the capability of audit, reduces the required time and giving a more exact and ceaseless information of the railroad track. To give the continuous screens and assistant condition for railroad track using "vision based" and "vibration based" strategy for wellbeing reason. Thusly we can bolster exactness, adequacy and steadfastness. PC vision frameworks have been especially made to be used with the model. The structure delineated in this suggestion makes use of different standard and balanced picture get ready systems, not simply to facilitate the necessities for manual examinations, furthermore to allow steady checking and taking after of any blemishes or varieties from the standard in a rail track. Hereafter to keep up a vital separation from deferments, our propose structure will thusly survey the railroad track by using vision based and vibration based technique. The system gives continuous watching and essential condition for railroad track using vision based procedure and change in accordance with look for the inadequacy range on the track. An examination join perceiving disfigurements on tracks, missing shocks, stay, tie plate and fastens et cetera

    Effect of sparsity-aware time–frequency analysis on dynamic hand gesture classification with radar micro-Doppler signatures

    Get PDF
    Dynamic hand gesture recognition is of great importance in human-computer interaction. In this study, the authors investigate the effect of sparsity-driven time-frequency analysis on hand gesture classification. The time-frequency spectrogram is first obtained by sparsity-driven time-frequency analysis. Then three empirical micro-Doppler features are extracted from the time-frequency spectrogram and a support vector machine is used to classify six kinds of dynamic hand gestures. The experimental results on measured data demonstrate that, compared to traditional time-frequency analysis techniques, sparsity-driven time-frequency analysis provides improved accuracy and robustness in dynamic hand gesture classification

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste

    Vision-based gesture recognition system for human-computer interaction

    Get PDF
    Hand gesture recognition, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. This work intends to study and implement a solution, generic enough, able to interpret user commands, composed of a set of dynamic and static gestures, and use those solutions to build an application able to work in a realtime human-computer interaction systems. The proposed solution is composed of two modules controlled by a FSM (Finite State Machine): a real time hand tracking and feature extraction system, supported by a SVM (Support Vector Machine) model for static hand posture classification and a set of HMMs (Hidden Markov Models) for dynamic single stroke hand gesture recognition. The experimental results showed that the system works very reliably, being able to recognize the set of defined commands in real-time. The SVM model for hand posture classification, trained with the selected hand features, achieved an accuracy of 99,2%. The proposed solution as the advantage of being computationally simple to train and use, and at the same time generic enough, allowing its application in any robot/system command interface
    • 

    corecore