14,407 research outputs found

    CNN Based Posture-Free Hand Detection

    Full text link
    Although many studies suggest high performance hand detection methods, those methods are likely to be overfitting. Fortunately, the Convolution Neural Network (CNN) based approach provides a better way that is less sensitive to translation and hand poses. However the CNN approach is complex and can increase computational time, which at the end reduce its effectiveness on a system where the speed is essential.In this study we propose a shallow CNN network which is fast, and insensitive to translation and hand poses. It is tested on two different domains of hand datasets, and performs in relatively comparable performance and faster than the other state-of-the-art hand CNN-based hand detection method. Our evaluation shows that the proposed shallow CNN network performs at 93.9% accuracy and reaches much faster speed than its competitors.Comment: 4 pages, 5 figures, in The 10th International Conference on Information Technology and Electrical Engineering 2018, ISBN: 978-1-5386-4739-

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Linguistically-driven framework for computationally efficient and scalable sign recognition

    Full text link
    We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL)
    • …
    corecore