49 research outputs found

    Thoughts on Barnette's Conjecture

    Full text link
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let GG be a planar triangulation. Then the dual G∗G^* is a cubic 3-connected planar graph, and G∗G^* is bipartite if and only if GG is Eulerian. We prove that if the vertices of GG are (improperly) coloured blue and red, such that the blue vertices cover the faces of GG, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then G∗G^* is Hamiltonian. This result implies the following special case of Barnette's Conjecture: if GG is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then G∗G^* is Hamiltonian. Our final result highlights the limitations of using a proper colouring of GG as a starting point for proving Barnette's Conjecture. We also explain related results on Barnette's Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published.Comment: 12 pages, 7 figure

    On the minimum leaf number of cubic graphs

    Full text link
    The \emph{minimum leaf number} ml(G)\hbox{ml} (G) of a connected graph GG is defined as the minimum number of leaves of the spanning trees of GG. We present new results concerning the minimum leaf number of cubic graphs: we show that if GG is a connected cubic graph of order nn, then ml(G)≤n6+13\mathrm{ml}(G) \leq \frac{n}6 + \frac13, improving on the best known result in [Inf. Process. Lett. 105 (2008) 164-169] and proving the conjecture in [Electron. J. Graph Theory and Applications 5 (2017) 207-211]. We further prove that if GG is also 2-connected, then ml(G)≤n6.53\mathrm{ml}(G) \leq \frac{n}{6.53}, improving on the best known bound in [Math. Program., Ser. A 144 (2014) 227-245]. We also present new conjectures concerning the minimum leaf number of several types of cubic graphs and examples showing that the bounds of the conjectures are best possible.Comment: 17 page

    Master index to volumes 251-260

    Get PDF

    Thoughts on Barnette's conjecture

    Get PDF
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let G be a planar triangulation. Then the dual G∗ is a cubic 3-connected planar graph, and G∗ is bipartite if and only if G is Eulerian. We prove that if the vertices of G are (improperly) coloured blue and red, such that the blue vertices cover the faces of G, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then G∗ is Hamiltonian. This result implies the following special case of Barnette’s Conjec- ture: if G is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then G∗ is Hamiltonian. Our final result highlights the limitations of using a proper colouring of G as a starting point for proving Barnette’s Conjecture. We also explain related results on Bar- nette’s Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published

    Master index of volumes 161–170

    Get PDF
    corecore