411 research outputs found

    Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

    Full text link
    Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixed-integer program with few (even constantly many) integer variables. This is in stark contrast to linear formulations, where recent breakthroughs in the field of extended formulations have shown that many polytopes associated to classical combinatorial optimization problems do not even admit approximate extended formulations of sub-exponential size. We provide a general framework for lifting inapproximability results of extended formulations to the setting of mixed-integer extended formulations, and obtain almost tight lower bounds on the number of integer variables needed to describe a variety of classical combinatorial optimization problems. Among the implications we obtain, we show that any mixed-integer extended formulation of sub-exponential size for the matching polytope, cut polytope, traveling salesman polytope or dominant of the odd-cut polytope, needs Ω(n/logn) \Omega(n/\log n) many integer variables, where n n is the number of vertices of the underlying graph. Conversely, the above-mentioned polyhedra admit polynomial-size mixed-integer formulations with only O(n) O(n) or O(nlogn) O(n \log n) (for the traveling salesman polytope) many integer variables. Our results build upon a new decomposition technique that, for any convex set C C , allows for approximating any mixed-integer description of C C by the intersection of C C with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201

    Every 4-connected graph with crossing number 2 is Hamiltonian

    Get PDF
    A seminal theorem of Tutte states that 4-connected planar graphs are Hamiltonian. Applying a result of Thomas and Yu, one can show that every 4-connected graph with crossing number 1 is Hamiltonian. In this paper, we continue along this path and prove the titular statement. We also discuss the traceability and Hamiltonicity of 3-connected graphs with small crossing number and few 3-cuts, and present applications of our results

    Shortness coefficient of cyclically 4-edge-connected cubic graphs

    Get PDF
    Grünbaum and Malkevitch proved that the shortness coefficient of cyclically 4-edge-connected cubic planar graphs is at most 76/77. Recently, this was improved to 359/366 (< 52/53) and the question was raised whether this can be strengthened to 41/42, a natural bound inferred from one of the Faulkner-Younger graphs. We prove that the shortness coefficient of cyclically 4-edge-connected cubic planar graphs is at most 37/38 and that we also get the same value for cyclically 4-edge-connected cubic graphs of genus g for any prescribed genus g ≥ 0. We also show that 45/46 is an upper bound for the shortness coefficient of cyclically 4-edge-connected cubic graphs of genus g with face lengths bounded above by some constant larger than 22 for any prescribed g ≥ 0

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Polyhedral techniques in combinatorial optimization

    Get PDF
    corecore