2,361 research outputs found

    Long path and cycle decompositions of even hypercubes

    Get PDF
    We consider edge decompositions of the nn-dimensional hypercube QnQ_n into isomorphic copies of a given graph HH. While a number of results are known about decomposing QnQ_n into graphs from various classes, the simplest cases of paths and cycles of a given length are far from being understood. A conjecture of Erde asserts that if nn is even, â„“<2n\ell < 2^n and â„“\ell divides the number of edges of QnQ_n, then the path of length â„“\ell decomposes QnQ_n. Tapadia et al.\ proved that any path of length 2mn2^mn, where 2m<n2^m<n, satisfying these conditions decomposes QnQ_n. Here, we make progress toward resolving Erde's conjecture by showing that cycles of certain lengths up to 2n+1/n2^{n+1}/n decompose QnQ_n. As a consequence, we show that QnQ_n can be decomposed into copies of any path of length at most 2n/n2^{n}/n dividing the number of edges of QnQ_n, thereby settling Erde's conjecture up to a linear factor

    The Weinstein Conjecture for Hamiltonian Fibrations

    Full text link
    In this note we extend to non trivial Hamiltonian fibrations over symplectically uniruled manifolds a result of Lu's, \cite{Lu}, stating that any trivial symplectic product of two closed symplectic manifolds with one of them being symplectically uniruled verifies the Weinstein Conjecture for closed separating hypersurfaces of contact type, under certain technical conditions. The proof is based on the product formula for Gromov-Witten invariants (GWGW-invariant) of Hamiltonian fibrations derived in \cite{H}.Comment: 15 page

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure

    Non-Hermitian dynamics of slowly-varying Hamiltonians

    Full text link
    We develop a theoretical description of non-Hermitian time evolution that accounts for the break- down of the adiabatic theorem. We obtain closed-form expressions for the time-dependent state amplitudes, involving the complex eigen-energies as well as inter-band Berry connections calculated using basis sets from appropriately-chosen Schur decompositions. Using a two-level system as an example, we show that our theory accurately captures the phenomenon of "sudden transitions", where the system state abruptly jumps from one eigenstate to another.Comment: 12 pages, 4 figure

    Decomposing 8-regular graphs into paths of length 4

    Full text link
    A TT-decomposition of a graph GG is a set of edge-disjoint copies of TT in GG that cover the edge set of GG. Graham and H\"aggkvist (1989) conjectured that any 2â„“2\ell-regular graph GG admits a TT-decomposition if TT is a tree with â„“\ell edges. Kouider and Lonc (1999) conjectured that, in the special case where TT is the path with â„“\ell edges, GG admits a TT-decomposition D\mathcal{D} where every vertex of GG is the end-vertex of exactly two paths of D\mathcal{D}, and proved that this statement holds when GG has girth at least (â„“+3)/2(\ell+3)/2. In this paper we verify Kouider and Lonc's Conjecture for paths of length 44
    • …
    corecore