27 research outputs found

    Decompositions into spanning rainbow structures

    Get PDF
    A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. The study of rainbow subgraphs goes back more than two hundred years to the work of Euler on Latin squares and has been the focus of extensive research ever since. Euler posed a problem equivalent to finding properly n-edge-coloured complete bipartite graphs Kn,n which can be decomposed into rainbow perfect matchings. While there are proper edge-colourings of Kn,n without even a single rainbow perfect matching, the theme of this paper is to show that with some very weak additional constraints one can find many disjoint rainbow perfect matchings. In particular, we prove that if some fraction of the colour classes have at most (1−o(1))n edges then one can nearly-decompose the edges of Kn,n into edge-disjoint perfect rainbow matchings. As an application of this, we establish in a very strong form a conjecture of Akbari and Alipour and asymptotically prove a conjecture of Barat and Nagy. Both these conjectures concern rainbow perfect matchings in edge-colourings of Kn,n with quadratically many colours. Using our techniques, we also prove a number of results on near-decompositions of graphs into other rainbow structures like Hamiltonian cycles and spanning trees. Most notably, we prove that any properly coloured complete graph can be nearly-decomposed into spanning rainbow trees. This asymptotically proves the Brualdi-Hollingsworth and Kaneko-Kano-Suzuki conjectures which predict that a perfect decomposition should exist under the same assumptions

    Studies of equivalent fuzzy subgroups of finite abelian p-Groups of rank two and their subgroup lattices

    Get PDF
    We determine the number and nature of distinct equivalence classes of fuzzy subgroups of finite Abelian p-group G of rank two under a natural equivalence relation on fuzzy subgroups. Our discussions embrace the necessary theory from groups with special emphasis on finite p-groups as a step towards the classification of crisp subgroups as well as maximal chains of subgroups. Unique naming of subgroup generators as discussed in this work facilitates counting of subgroups and chains of subgroups from subgroup lattices of the groups. We cover aspects of fuzzy theory including fuzzy (homo-) isomorphism together with operations on fuzzy subgroups. The equivalence characterization as discussed here is finer than isomorphism. We introduce the theory of keychains with a view towards the enumeration of maximal chains as well as fuzzy subgroups under the equivalence relation mentioned above. We discuss a strategy to develop subgroup lattices of the groups used in the discussion, and give examples for specific cases of prime p and positive integers n,m. We derive formulas for both the number of maximal chains as well as the number of distinct equivalence classes of fuzzy subgroups. The results are in the form of polynomials in p (known in the literature as Hall polynomials) with combinatorial coefficients. Finally we give a brief investigation of the results from a graph-theoretic point of view. We view the subgroup lattices of these groups as simple, connected, symmetric graphs

    UNOmaha Problem of the Week (2021-2022 Edition)

    Get PDF
    The University of Omaha math department\u27s Problem of the Week was taken over in Fall 2019 from faculty by the authors. The structure: each semester (Fall and Spring), three problems are given per week for twelve weeks, with each problem worth ten points - mimicking the structure of arguably the most well-regarded university math competition around, the Putnam Competition, with prizes awarded to top-scorers at semester\u27s end. The weekly competition was halted midway through Spring 2020 due to COVID-19, but relaunched again in Fall 2021, with massive changes. Now there are three difficulty tiers to POW problems, roughly corresponding to easy/medium/hard difficulties, with each tier getting twelve problems per semester, and three problems (one of each tier) per week posted online and around campus. The tiers are named after the EPH classification of conic sections (which is connected to many other classifications in math), and in the present compilation they abide by the following color-coding: Cyan, Green, and Magenta. In practice, when creating the problem sets, we begin with a large enough pool of problem drafts and separate out the ones which are most obviously elliptic or hyperbolic, and then the remaining ones fall into parabolic. The tiers don\u27t necessarily reflect workload, though, only prerequisite mathematical background. Ideally, the solutions to elliptic problems, and any parts of solutions to parabolic and hyperbolic problems not covered in standard undergraduate courses, are meant to test participants\u27 creativity. Beware, though, many solutions also include additional commentary which varies wildly in the reader\u27s assumed mathematical maturity

    On the free energy of vector spin glasses with non-convex interactions

    Full text link
    The limit free energy of spin-glass models with convex interactions can be represented as a variational problem involving an explicit functional. Models with non-convex interactions are much less well-understood, and simple variational formulas involving the same functional are known to be invalid in general. We show here that a slightly weaker property of the limit free energy does extend to non-convex models. Indeed, under the assumption that the limit free energy exists, we show that this limit can always be represented as a critical value of the said functional. Up to a small perturbation of the parameters defining the model, we also show that any subsequential limit of the law of the overlap matrix is a critical point of this functional. We believe that these results capture the fundamental conclusions of the non-rigorous replica method.Comment: 72 page

    Aspects of graph vulnerability.

    Get PDF
    Thesis (Ph.D.)-University of Natal, 1994.This dissertation details the results of an investigation into, primarily, three aspects of graph vulnerability namely, l-connectivity, Steiner Distance hereditatiness and functional isolation. Following the introduction in Chapter one, Chapter two focusses on the l-connectivity of graphs and introduces the concept of the strong l-connectivity of digraphs. Bounds on this latter parameter are investigated and then the l-connectivity function of particular types of graphs, namely caterpillars and complete multipartite graphs as well as the strong l-connectivity function of digraphs, is explored. The chapter concludes with an examination of extremal graphs with a given l-connectivity. Chapter three investigates Steiner distance hereditary graphs. It is shown that if G is 2-Steiner distance hereditary, then G is k-Steiner distance hereditary for all k≥2. Further, it is shown that if G is k-Steiner distance hereditary (k≥ 3), then G need not be (k - l)-Steiner distance hereditary. An efficient algorithm for determining the Steiner distance of a set of k vertices in a k-Steiner distance hereditary graph is discussed and a characterization of 2-Steiner distance hereditary graphs is given which leads to an efficient algorithm for testing whether a graph is 2-Steiner distance hereditary. Some general properties about the cycle structure of k-Steiner distance hereditary graphs are established and are then used to characterize 3-Steiner distance hereditary graphs. Chapter four contains an investigation of functional isolation sequences of supply graphs. The concept of the Ranked supply graph is introduced and both necessary and sufficient conditions for a sequence of positive nondecreasing integers to be a functional isolation sequence of a ranked supply graph are determined
    corecore