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Preface

The University of Omaha math department’s Problem of the Week was
taken over in Fall 2019 from faculty by the authors. The structure: each
semester (Fall and Spring), three problems are given per week for twelve
weeks, with each problem worth ten points - mimicking the structure of ar-
guably the most well-regarded university math competition around, the Put-
nam Competition, with prizes awarded to top-scorers at semester’s end. The
weekly competition was halted midway through Spring 2020 due to COVID-
19, but relaunched again in Fall 2021, with massive changes.

Now there are three difficulty tiers to POW problems, roughly correspond-
ing to easy/medium/hard difficulties, with each tier getting twelve problems
per semester, and three problems (one of each tier) per week posted online
and around campus. The tiers are named after the EPH classification of conic
sections (which is connected to many other classifications in math), and in
the present compilation they abide by the following color-coding:

■ ELLIPTIC: Puzzles for the non-math types.
■ PARABOLIC: Exercises for the math types.
■ HYPERBOLIC: Challenges for the best at math.
■ OLDER: Problems made before the tiers were.

In practice, when creating the problem sets, we begin with a large enough
pool of problem drafts and separate out the ones which are most obviously
elliptic or hyperbolic, and then the remaining ones fall into parabolic. The
tiers don’t necessarily reflect workload, though, only prerequisite mathemat-
ical background. Ideally, the solutions to elliptic problems, and any parts of
solutions to parabolic and hyperbolic problems not covered in standard under-
graduate courses, are meant to test participants’ creativity. Beware, though,
many solutions also include additional commentary which varies wildly in the
reader’s assumed mathematical maturity.

The first author’s favorite things make frequent appearances in the prob-
lems, like the number twenty-four. (Any guesses why twenty-four? After
reading this book, can you guess more favorite things?) A few problems
(Finitessimal Accretion, Arts and Crafts, Joker’s Wild) were suggested by a

i
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friend, Brad Tuttle. While variety is always sought after during the design
phase, ultimately the problems we come up with are limited to the interest
and familiarity of the authors.

The problems have all kinds of inspirations. Some recycle typical math
contest fare; some bring attention to niche gems; some bring attention to
already-iconic ideas within mathematical areas that could use some more at-
tention anyway; some touch on random explorations of the authors; some are
flimsy excuses to soapbox about cool stuff; some highlight recreational, “pop-
math” from memes and mainstream media; some cover math with historical
and cultural significance across time and space.

ii
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Finitessimal Accretion 1

Problem: Find the sum of the smallest element of every subset of

{
1,

1

2
,
1

4
,
1

8
, ... ,

1

22021

}
.

(Ignore the empty subset which has no elements. A number will generally be
added multiple times, once for each subset it is the smallest member of.)

1
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Rhopalocera 2

Problem: How many ways are there to trace this butterfly?

Assume you cannot lift your pen and must start from the left antenna.

2
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Sākuru 3

Problem: Find the ratio of longer to shorter side of the rectangle above.

3
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Transitive Property 4

Problem: An acquaintance shows you three fair 3-sided dice (colored cyan,
lime, magenta) and asks if you want to play a game: each of you rolls one die,
and whoever has the higher wins. You examine the strange shapes’ faces:

Cyan: 1, 6, 8; Lime: 2, 4, 9; Magenta: 3, 5, 7.

The acquaintance offers to let you pick your die to roll first. Should you
accept the offer? Why or why not? Explain your answer.

4
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Prime Generation 5

Define the potential of a whole number n to be the proportion of integers x
in the interval [−n, n] for which x2 + x+ n is a prime number.

Problem. Find and rank the top five highest potential numbers in [1, 50].

Hint: Try out a Computer Algebra System!

5
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Synchronicity 6

Problem: To the nearest minute, what time is the last time before midnight
that the minute hand is a right angle clockwise from the hour hand?

6
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Not Yet Ready 7

352

117

176

88

4422

29 58

116

7 28

56 112

9

Problem: Determine the five missing numbers above.

7
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Cyclic Sieving 8

Problem. How many ways are there to triangulate a regular heptagon?

A triangulation of a polygon is a way of drawing nonintersecting line segments
between vertices which partitions its interior into triangles. Assume that
rotating a triangulation does not count as a different triangulation.

8
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Unequal Booty 9

Four pirates and their monkey split a chest of gold coins.

First, the captain makes three equal piles, giving a single leftover coin to the
monkey. He takes one of the piles for himself and pours the other two piles
back in the treasure chest. The second-in-command does the exact same,
followed by the second-to-last and then the swabbie. Finally, the last of the
gold in the chest is split equally between the four pirates.

Problem: How few coins could have been in the chest?

9
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Child’s Play 10

Problem. Find a different way to arrange these tiles and get a square.

(Any rotation or reflection of an arrangement will not be considered a different
one. More subtly, merely swapping identically-shaped pieces or groups of
pieces, even of different colors, counts as an equivalent arrangement too.)

10
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First Fold 11

The upper left corner of a 1× 1 square is folded down to its base:

Problem: Find the sides of triangle △ABC in terms of x = OA.

Hint : Use the Pythagorean theorem and similar triangles.

11
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Killer Triangle Problem 12

Problem: Prove any triangle △ABC satisfies the inequality

aA+ bB + cC

a + b + c
≤ 90◦.

Hint : A triangle’s interior angles sum to 180◦.

12
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Trees and Wreaths 13

Every vertex not at the bottom of the binary tree below has two identical,
left and right, subtrees below it. The bottom eight vertices are labelled 1-8.

Problem. Find how many permutations of 1 2 3 4 5 6 7 8 are attainable by
swapping the left and right sides below any vertex (multiple swaps allowed)?

13
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Arithmetic Jenga 14

A composite number is a nonzero number which is divisible by a whole num-
ber other than 1 and itself. (There are three kinds of noncomposite whole
numbers: prime numbers 2, 3, 5, 7, · · · , the unit 1, and zero 0.)

Problem. Find all whole numbers n with the property that, for all positive
divisors d (aka factors) of n the number d− 1 is noncomposite.

For a nonexample, consider 5. The number 5 does not have this property,
because for the divisor d = 5 of 5, the number d− 1 = 4 is composite.

14
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Cutting Sticks 15

Two sticks of (whole number) lengths a, b ≥ n have total length

a+ b = 1 + 2 + · · ·+ n.

Problem. Show the two sticks may be cut into lengths 1, 2, · · · , n.

The pictures below illustrate the particular case n = 7 and a, b = 14.

15



UNOmaha Problem of the Week

Heat of Battle 16

In a one-player game of mini-battle ship, the computer places one 3-tile ship
and one 2-tile ship on a 4× 4 grid. (Each configuration is equally likely.)

Problem. Rank the tiles by their relative likelihood of being occupied.

Hint. Symmetry can reduce the computational load. But ultimately math
isn’t all clever tricks; sometimes it’s just work.

16
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Odd One Out 17

Suppose a sum of rational numbers is zero:

a

x
+

b

y
+

c

z
= 0.

(Assume each fraction a
x ,

b
y ,

c
z is nonzero and expressed in lowest terms.)

Problem. Explain why a prime power cannot evenly divide only one of the
denominators; in other words, it must divide none or more than one of them.

A prime number has only two positive factors: 1 and itself. For instance
2, 3, 5, 7, 11, · · · are prime but 1, 4, 6, 8, 9, 10, · · · are not. A prime power is
any prime number raised to a positive power. A prime factorization is a way
of writing a number as a product of prime powers (and possibly ±1).

Solutions may assume the Fundamental Theorem of Arithmetic, which says
all (nonzero) integers have unique prime factorizations.

17
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Working Backwards 18

A friend proposes a game to decide who picks up the next tab. There are
six marbles of three colors - one, two, and three of each color. You and your
friend take turns removing any number of marbles of the same color (except
zero; at least one marble must be removed per turn), and whoever removes
the last marble wins. Your friend offers to let you go first.

Problem. Should you accept the offer? Explain.

18
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Forty Two 19

Problem. Explain how the equation below describes the picture above:

3(12 + 22 + 32) = (1 + 2 + 3)(1 + 2× 3)

This is the n = 3 instance of a more general identity. Providing the general
identity, or even the n = 4 instance, is acceptable in lieu of an explanation.

Hint. Each triangle has six positions. Between the three triangles, the sum
of all three numbers in a given position doesn’t depend on the position.

19
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Kaleidoscopic Diamonds 20

Problem. Pick a pair of diagrams above and show it is possible to turn one
into the other using the following three kinds of moves:

• Swapping a pair of rows,

• Swapping a pair of columns,

• Swapping a pair of blocks.

(The blocks are the 2× 2 quadrants in the four corners. In fact, it is possible
to convert between any of the three pictures using these moves.)

Try online here: http://finitegeometry.org/sc/16/kal/index.html

20
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Vexing Vexillology 21

Problem. Solve for x.

Hint. Drop altitudes.

21
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Fenced In 22

Problem. Determine the number of grid points (that is, points whose coor-
dinates are integers) which lie strictly within the interior of the parallelogram.

Hint. What about the same question for rectangles or right triangles (with
horizontal bases)? How are these related to this parallelogram?

22



UNOmaha Problem of the Week

Thinking Outside the Box 23

Any rhombic tiling of a hexagon may be interpreted as a pile of cubes:

Problem. Explain why, in any such rhombic tiling, there are an equal num-
ber of tiles of each of the three possible orientations.

23
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Orange Stack 24

Three layers of oranges (identical spheres) are laid down. The top and bottom
layers are not aligned (their centers do not overlap in the 2D projection).

A central orange in the middle layer has many neighboring spheres surround-
ing it; connecting the centers of touching oranges’ centers forms a polyhedron.

Problem. How many vertices, edges and faces does this polyhedron have?

24
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Icosian Palette 1

Problem: How many ways are there to paint the faces of a dodecahedron
with six colors - say, the primary/secondary colors shown above - so that
every face and its five neighbors exhibit all six colors? Assume that rotated
colorings are considered equivalent, i.e. do not count as distinct colorings.

25
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Rolling Spheres 2

Two spheres are in contact side-by-side, depicted below. While the left sphere
remains fixed, the right sphere is rolled (without slipping) along the top-right
fore octant of the left sphere - that is, from the left sphere’s x-axis pole, to
its y-axis pole, up to its z-axis pole, and then back to its x-axis pole.

Problem: What effect does this have on the right sphere’s orientation? That
is, describe what kind of rotation it has undergone overall.

26
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Equational Sudoku 3

A number system is a set, whose elements are called “numbers,” with two
binary operations called addition + and multiplication ×, satisfying identities

• Commutativity: a+ b = b+ a and a× b = b× a

• Associativity: (a+ b) + c = a+ (b+ c) and (a× b)× c = a× (b× c)

• Distributivity: a× (b+ c) = (a× b) + (a× c)

and the existence (and uniqueness) of certain elements,

• Absorption: An element called 0 satisfying the identity 0× a = 0

• Identities: Elements 0 and 1 satisfying the identities 0 + a = a and
1× a = a (note this 0 is the same as the aforementioned element)

• Inverses: For any a there is an element “−a” satisfying a+ (−a) = 0,
and if a is nonzero there is an element “a−1” satisfying a× a−1 = 1

Problem: Consider a number system with exactly four distinct elements,
say {0, 1, ⋆,$}. Complete the addition and multiplication tables:

+ 0 1 ⋆ $
0 0 1 ⋆ $
1 1
⋆ ⋆
$ $

× 0 1 ⋆ $
0 0 0 0 0
1 0 1 ⋆ $
⋆ 0 ⋆
$ 0 $

Justify all answers with elementary algebra and logic.

Hint : Find ⋆×$ first, then ⋆×⋆ and $×$ or 1+⋆ and 1+$, then the rest;
make sure to use process of elimination and the fact 0, 1, ⋆,$ are distinct!

27
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Totally Tubular 4

Two loops on a surface are called equivalent if one can be slid across the
surface until it becomes the other. (Imagine rubber bands.) A loop is called
separating if cutting the surface along the loop results in more than one piece.

(McKay et al., 2015)

Problem: Draw six inequivalent, non-separating loops on a double torus.

28
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Favorite Angle 5

Problem. Show any three 3D vectors at 120◦ with each other are coplanar.

29
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Orloj Cog 6

Problem. Explain how the periodic sequence 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2 · · ·
(which bounces back and forth between 1 and 4) may be segmented, and the
terms in each segment added together, to get the sequence 1, 2, 3, 4, 5, 6, 7, · · · .

For instance, 1 | 2 | 3 | 4 | 3 2 | 1 2 3 | 4 3 | 2 1 2 3 | 4 3 2 | 1 2 3 4 with
its segments summed yields 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10. How to continue?

Use the periodicity of the 1, 2, 3, 4, · · · sequence to conclude it suffices to
check the pattern up to a certain point, then actually perform this check.

30
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Like an Egyptian 7

Problem: How close can 1
a + 1

b +
1
c be to 1 while still being less than it?

(Assume a, b, c are distinct whole numbers.)

31
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Pinching an Impulse 8

Suppose f1(x), f2(x), f3(x), · · · and f(x)
def
= lim

n→∞
fn(x) are all bounded func-

tions defined on the interval [0, 1] with maximums mn
def
= max

0≤x≤1
fn(x).

Problem: Give an example where m1,m2,m3, · · · is unbounded.

Hint : Consider piecewise-linear functions known as triangular functions.

32
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Categorical Imperative 9

A set S has two binary operations, ◦ and •, satisfying the relation

(a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) for all a, b, c, d.

Just as addition has 0 and multiplication has 1, these operations have their
own identity elements, call them ♢ and ♦. That is, we have the relations{

♢ ◦ s = s = s ◦ ♢
♦ • s = s = s • ♦

for all s.

Problem. Prove ♢ = ♦ are the same element of S, ◦ = • (they are the same
operation!), and indeed it is a commutative operation.

Hint. The identity has an unambiguous “two-dimensional” interpretation:
the following expression may be evaluated row-wise or column-wise first.

a ◦ b
• •
c ◦ d

33
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Arts and Crafts 10

(cmglee, 2013)

For all t in the interval 0 ≤ t ≤ 1, a thread is pinned from the point (0, t) on
the y-axis to the corresponding point (1− t, 0) on the x-axis.

Problem. What curve do the threads lie under?

34
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Folding Point 11

Problem. Which of the sheets above can be folded - alternating between
into and out of the page - along the marked rays to get a figure that rests flat?

Hint. As the regions are alternately folded down and flattened, the angles all
lay down flat too and can be seen zig-zagging back-and-forth.

(Note the angles are not drawn accurately in the pictures. Even if they were,
the numbers are close enough a hands-on experiment probably won’t help.)
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Tale of Two Tangents 12

Compass and straightedge construction is a way of creating geometric
figures using a handful of specific moves. The modern set of moves:

• Generic Points: a random point may be drawn in any region or on
any line or arc. (If you’re looking to construct a specific point, you
cannot assume the random point is the one you want - that’s cheating!)

• Intersections: Any point of intersection (between two lines, two cir-
cles, or between a circle and a line) is considered constructed.

• Lines: A line may be drawn between any two constructed points. (This
is considered using the “straightedge” tool.)

• Circles: A circle may be drawn with any constructed point as its center
through another point. (This is considered using the “compass” tool.)

Problem. Two unknown circles have two tangent lines meeting them in four
points. Show how to construct the circles given three of the four points.

Check out the Euclidea app (https://www.euclidea.xyz) for practice.
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Pair of Pairs 13

The binomial coefficient
(
n
k

)
denotes the number of ways to draw k distinct

elements from a set of size n. For example,
(
4
2

)
= 6 since there are six pairs

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {2, 4}.

Problem. Explain why

((n
2

)
2

)
= 3

(
n

3

)
+ 3

(
n

4

)
.

Hint.
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Alfred’s Ansatz 14

Problem. Find an intermediate-size factor of 262 + 1 by hand.

Any factor other than 1 and 5 (which also means other than 262 + 1 itself
and the quotient (262 + 1)/5) is acceptable. Any submitted calculation that
isn’t obviously by hand may not count for credit. Your answer may be an
arithmetic expression that is left unevaluated (not simplified).

Hint. Write 262 = 4x4.
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Twenty Four 15

The card game 24 is played with a standard deck as follows: players draw
four cards, and the player who finds a way to represent 24 using the four face
values (in the range 1-13, using J for 11, Q for 12, and K for 13), the four
arithmetic operations (+, −, ×, ÷), and parentheses wins the round.

Problem. How many solutions of the following form are there?

A/ (B − C /D) = 24

Hint. Try your hand at some programming!
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Anharmonic Asymmetry 16

A probability distribution on a finite set S is effectively a way of assign-
ing a value between 0 and 1 (called a probability) to each element of the set
(and these probabilities must sum to 1). If all the probabilities are the same,
the distribution is called uniform. For instance, a single die roll has set of
outcomes S = {1, 2, 3, 4, 5, 6} with uniform probability distribution.

A permutation is a function on a setX for which there is an inverse function.
Let S3 denote the set of all six permutations of the set X = {1, 2, 3}.

Problem. Is there a non-uniform probability distribution on S3 for which
the probability a permutation sends i 7→ j is nonetheless equally likely for all
nine pairs (i, j)? If so, give an example. If not, give a proof there isn’t.

(In some contexts S3 is called the anharmonic group for unrelated reasons.)
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Twisted Clothesline 17

Suppose a function F of two variables has the double series expansion

F (x, y) =
∑
m,n

fm,n x
myn.

(The double series may cover both positive and negative values of m,n, but
assume the coefficients decrease rapidly enough convergence is a non-issue.)

Problem. Express the following double series in terms of F :∑
m,n

fm+n,2m+3n x
myn =?

Hint. Gotta reindex!
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Joker’s Wild 18

A game is played with a small deck of eleven cards: the numbers one (ace)
through ten and a Joker. Each turn the player chooses to either draw a card
or quit. If a number is drawn then it is added to the current score (which
starts at zero), but if a Joker is drawn then the player’s score drops to zero
and the game ends. Assume the player aims for a target score of S, i.e. they
will draw another card if their current score is below S, or quit otherwise.

• • •

Problem. What target S would maximize the expected value of their score?

Hint. The next card’s expected value is a function of the current score.
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Interesting Asymptotic 19

The constant e is often defined by the interest formula e
def
= lim

n→∞

(
1 + 1

n

)n
.

Problem. What values of a and b make 1+ a
n +

b
n2 the best possible approx-

imation to 1
e(1 +

1
n)

n as n→∞? We may define a for instance by

a = lim
n→∞

n

[
1

e

(
1 +

1

n

)n
− 1

]
.

Hint. Consider the Newton-Mercator series for ln(1 + 1
n). (Look it up!)
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Noncommutative Calculus 20

The exponential function is often given by the infinite power series formula

expX =
∞∑
n=0

Xn

n!
= 1 +X +

1

2
X2 +

1

6
X3 +

1

24
X4 + · · ·

It satisfies exp(X + Y ) = exp(X) exp(Y ) when X and Y commute (meaning
XY = Y X) but generally not otherwise, e.g. for matrices it is usually false.

But even for noncommuting X and Y there is an infinite series for which

exp(tX) exp(tY ) = exp
(
tZ1 + t2Z2 + t3Z3 + · · ·

)
where each Zk is a degree k noncommutative polynomial of X and Y (and we
assume t commutes with everything). In particular, for matrices the Z-series
can be evaluated for scalar values t small enough relative to X and Y .

For example, Z1 = X + Y (unsurprisingly) and Z2 =
1
2(XY − Y X).

Problem. Find the noncommutative polynomial Z3(X, Y ).
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Versorial Validation 21

A quaternion is a pretend-sum a + u of a real number a and a 3D vector
u (called the scalar part and vector part respectively) which does not simplify.

The sum of quaternions is (a + u) + (b + v) = (a + b) + (u + v). The
product of two vectors has scalar and vector parts given by dot product and
cross product: uv = (−u · v) + (u × v). To multiply two generic quater-
nions, i.e. (a+u)(b+v), we would use the distributive property (or “FOIL”).

The squared norm is |a+ u|2 := |a|2 + ∥u∥2 where ∥u∥ is the vector norm.

Problem. Show |xy| = |x||y| (multiplicativity) for all quaternions x and y
using identities for dot products, cross products and vector norms.
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Projector Junction 22

For a line ℓ, the projector pℓ sends any point x to the nearest one pℓ(x) on ℓ:

The composition pkpℓ of two projectors (as functions) is generally not a pro-
jector. However, the symmetrization 1

2(pkpℓ + pℓpk) is a sum of orthogonal
projectors, corresponding to the two bisectors m and n of k and ℓ:

Problem. Express a(θ) and b(θ) in terms of trigonometric functions of θ:

1
2(pkpℓ + pℓpk) = a(θ)pm + b(θ)pn
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Perspective Shift 23

A graph (collection of vertices and edges) can be drawn in many ways. It
is often not possible to illustrate all of a graph’s symmetry in a single drawing.

To compensate, we can use multiple different drawings to illustrate different
kinds of symmetry of the same graph. For instance, the Peterson graph can
be drawn to illustrate either fivefold or threefold symmetry:

Problem. Redraw the graph below to illustrate fourfold symmetry:

(Currently, of course, this picture illustrates threefold symmetry.)

Hint. Instead of drawing a simple two-dimensional figure, lift some pieces off
the page (or out of the screen) and imagine a three-dimensional figure!
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Quadratic Pythagorean Triples 1

Call (a(x), b(x), c(x)) a primitive quadratic Pythagorean triple if

a(x)2 + b(x)2 = c(x)2

and a(x), b(x), c(x) are quadratic polynomials with no common root.

Call ∆ = B2 − 4AC the discriminant of a quadratic Ax2 +Bx+ C.

Problem. Explain how the three discriminants ∆1,∆2,∆3 of a primitive
quadratic Pythagorean triple (f1, f2, f3) are related.

Hint. How are integer Pythagorean triples parametrized? (Look it up!) This
parametrization works for polynomials just as it does for integers.
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Bipolarity 2

Let σ be the angle between d1 and d2 above, and τ = ln(d1/d2).

Problem. Find x and y in terms of σ and τ .

Hints. Express d1d2 cosσ and d1d2 sinσ in terms of x, y, r using trig, and
ratios f(τ)/g(σ) between hyperbolic and standard trig functions.
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Ensemble Cast 3

H is a symmetric matrix-valued random variable with probability density

H =

(
x+ y z
z x− y

)
, ρH(x, y, z) = π−3/2e−(x

2+y2+z2).

Problem. Find the joint probability density of its eigenvalues λ1 ≤ λ2.

(In other words, integrate the density ρH over the space of all the symmetric
matrices H with given eigenvalues λ1, λ2 in order to get a function of λ1, λ2.)
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Good Fibrations 4

Three-dimensional space is filled in by gluing 120 dodecahedra face-to-face
in a particularly symmetric fashion. A bundle is a way of partitioning these
dodecahedra into a dozen rings, each consisting of ten dodecahedra. Every
neighboring pair of dodecahedra can be extended to a unique ring, and every
ring can be extended to a unique bundle.

(apgoucher, 2021)

Five rings of one bundle are shown above. (Inevitably, one or more dodeca-
hedra will be “inside out” and infinitely large, but this will not be an issue.)

Problem. How many bundles are possible?
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Lazy Spline 5

The degree n Bèzier curve which interpolates a polygonal path with vertices
v0,v1, · · · ,vn (in order) is parametrized from 0 to 1 by the formula

B(t) =
n∑

k=0

(
n

k

)
tk(1− t)n−kvk.

The energy of a curve x(t) is the average square of its speed:

E =

ˆ 1

0

∥x′(t)∥2 dt.

Problem. Suppose a polygonal path connects five points, the first edge
from a to b and the last edge from c to d. What central vertex (in terms of
a,b, c,d) minimizes the energy of the corresponding quartic Bèzier curve?

Hint. Remember, a scalar function E is extremized when ∇E = 0.

Using software (e.g. Wolfram|Alpha) to aid calculations is recommended.
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Blinding Sphere 6

The light intensity from a point source to another point in space is 1/r2,
where r is the distance between the two points. This ensures that as light
travels outward from a point in an expanding sphere the total light intensity
is constant, because the sphere’s area grows proportional to r2.

Problem: If every point on a unit sphere is a light source, find the average
intensity experienced by a point which is p units from the center.
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Sample Energy 7

A first candidate for defining the “distance” between the distributions of
random variables X and Y is the expected value of their absolute difference,
E|X − Y |. However, this would be nonzero if the variables had the same
distribution yet were independent. It turns out, though, this can be fixed by
subtracting from E|X − Y | the average of E|X −X ′| and E|Y − Y ′| (where
X ′, Y ′ are distributed identically to but independent of X, Y respectively).

Thus the energy distance between X and Y is defined by the relation

d(X, Y )2 = E|X − Y | − 1
2

(
E|X −X ′|+ E|Y − Y ′|

)
.

Using the cumulative distribution functions, it is also given by the formula

d(X, Y )2 =

ˆ ∞
−∞

(
FX(t)− FY (t)

)2
dt.

Problem. What three values 0 < u < v < w < 1 minimize the energy
distance between the discrete uniform distribution on the set {u, v, w} and
the continuous uniform distribution on the interval [0, 1]?
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Gyration Conjugation 8

Problem. Two of the sixty rotational symmetries of an icosahedron are cho-
sen at random; what are the chances they satisfy the commutative property

AB = BA,

i.e. applying the rotations A and B in either order achieves the same effect?
Here, the phrase “by symmetry” used in submissions will be accepted as an
explanation whenever valid. Partial credit available for (i) explaining why
there are sixty rotational symmetries, (ii) classifying them into types by axes
and angles, and (iii) finding how many there are of each type you define.

A couple facts may or may not help in your calculations:

Conjugation Lemma. We call ABA−1 the “conjugation of B by A”: this
conjugate is a rotation by the same angle as B, but its (directed) axis of
rotation is obtained by applying the rotation A to B’s axis of rotation.

Rectangle Lemma. Every edge is contained in a unique inscribed com-
pound of three perpendicular golden rectangles.
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Halving Harmonics 9

Problem. Show, with explanation, there exists a rearrangement a1, a2, a3, · · ·
of the natural numbers 1, 2, 3, · · · , a constant c < 1, and bound N for which(

1

a1
+

1

a2
+

1

a3
+ · · ·+ 1

an

)
< c

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
for all n ≥ N .

Note. Defining the nth harmonic number Hn = 1+ 1
2 + · · ·+

1
n , you may use

the fact that the inequality 0 < Hn − lnn < 1 is true for all n > 1.
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Factorial Frenzy 10

The binomial theorem tells us how to expand a power of a binomial:

(1 + x)n =
n∑

k=0

(
n

k

)
xk, where

(
n

k

)
=

n!

k!(n− k)!
.

After expanding both sides of (1 + x)2m(1 + x)2n = (1 + x)2m+2n with the
binomial theorem, then multiplying and collecting like terms, and equating
the coefficient of xm+n on both sides, we get the following:∑

k

(
2m

m+ k

)(
2n

n− k

)
=

(
2m+ 2n

m+ n

)
,

an instance of the Vandermonde convolution identity.

(Every xm+n term that arises from expanding (1 + x)2m(1 + x)2n originates
from multiplying a xm+k term from (1+x)2m with a xn−k term from (1+x)2n

for some k. Note k is allowed to range over both positive and negative inte-
gers - only finitely many summands are nonzero, though, since if the bottom
number in a binomial coefficient is out of range then it evaluates to 0.)

Problem. Express the following sum in terms of binomial coefficients:∑
k

(−1)k
(

2m

m+ k

)(
2n

n− k

)
by examining the x2m coefficient of (1 + x)m+n(1− x)m+n = (1− x2)m+n.
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Yoga of π 11

Problem. Transform one of the integrals below into the other,
ˆˆ

x2+y2≤1

dx dy ←→
ˆ

−1≤u≤1

2 du

u2 + 1
,

using the following three techniques:

• Linearity of Integrals - any integral may be turned into a sum of
integrals if the integrand is a sum or the domain is split up,

• Fundamental Theorem of Calculus to (un)evaluate integrals,

• Change of Variables (for 2D integrals, need Jacobian determinant),

and subject to the following rule:

• Algebraicity: at all times, integrands must be rational functions and
domains must be characterized by polynomial inequalities.

In particular, transcendental functions such as exponentials, logarithms, and
trigonometric functions are not allowed to appear, nor is the constant π.
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Synthematics 12

Six points are arranged as vertices of a hexagon, and all
(
6
2

)
= 15 possible line

segments are drawn between them. A synthematic is created by coloring
these line segments with 5 colors so that there are 3 of each color and no
two segments share both a vertex and a color. Permuting the colors does not
count as a different synthematic, but rotating or reflecting one can.

Problem. How many synthematics are possible? Explain.

Partial credit for how many triples of line segments share no vertices.
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Buckminsterfullerene 13

Problem. Suppose a convex polyhedron has P pentagonal and H hexagonal
faces (for instance, P = 12 and H = 20 for a soccer ball). Show how to find
the number of space diagonals S it must have in terms of P and H.

(Any line segment joining two vertices is either an edge, a face diagonal, or
a space diagonal through the interior, and these are mutually exclusive.)
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abcs in the Margin 14

Some polynomial-related terminology:

• The degree deg f of a polynomial f(t) is the highest power that appears
in it, for instance a quadratic like t2 + 1 has degree two.

• A polynomial that cannot be factored (into nonconstant polynomials
of smaller degree), like t2 + 1, is called irreducible. Every polynomial
factors as a product of irreducible factors (ignoring scalar factors).

• Two polynomials are called coprime if they share no common (non-
constant) factor. For example t2 + 1 and t2 − 1 are coprime.

• The radical rad f of a polynomial f(t) is the product of its irreducible
factors, for example rad

[
t(t− 1)2(t+ 1)3

]
= t(t− 1)(t+ 1).

The abc theorem says if a(t), b(t), c(t) are coprime nonconstant polynomials
and a(t) + b(t) = c(t) then their product’s radical has larger degree:

deg a(t), deg b(t), deg c(t) < deg rad
[
a(t)b(t)c(t)

]
.

Problem. Use the abc theorem to show that if n > 2 then there are no
nonconstant coprime polynomials a(t), b(t), c(t) for which a(t)n+b(t)n = c(t)n.
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Rational Corollary 15

Problem. Justify the following identity for 2× 2 matrices A and B:

(I + A) (I −BA)−1 (I +B) = (I +B) (I − AB)−1 (I + A).

(You may assume A and B are close to [ 0 0
0 0 ] if you think it might help.)
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UNOmaha Problem of the Week

Heisenberg 16

Invertible matrices with matrix multiplication, and permutations with func-
tion composition, are both examples of noncommutative groups.

A group G is a set with an associative binary operation, a unique identity
element e, and inverses. Elements x and y are said to commute if xy = yx.

• For whole numbers, the power gn is gg · · · g (n times), with special cases
g1 = g and g0 = e. Negative powers g−n may be defined by either (g−1)n

or (gn)−1. Exponent rules like (am)n = amn and aman = am+n apply.

• The socks-and-shoes rule says (xy)−1 = y−1x−1 for any pair of group
elements x and y, which is illustrated in the fact that we put on socks
before shoes but take them off in the reverse order.

• Equations are often manipulated by left-multiplying or right-multiplying
by inverses, for example x = y is equivalent to y−1x = e and xy−1 = e.

• Substitution is also often useful, for example if g3 = e then g2 = g−1,
which means g−1 and g2 are interchangeable in any expression.

Suppose a and b are elements of a group in which g3 = e for all elements g.

Problem. Do one of the following:

• Show the elements ab−1 and b−1a commute.

• Show aba−1b−1 commutes with one of a or b.
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Slope-Intercept Coordinates 17

Suppose the graph y = f(x) of a function f is smooth: at every point (x, y)
there is a tangent line y = mx+b. Suppose further we plot the corresponding
points (m, b) in a separate mb-plane, one for each tangent line of f ’s graph,
and the result is the graph of a function b = g(m) in this separate plane.

Problem. Show the derivatives f ′ and −g′ are inverse functions.

Top left is the graph of y = f(x) for
the exponential function. Top right
is the graph of the function b = g(m).

Below that is the graph of its deriva-
tive db/dm, displayed upside-down
to show it is the mirror reflection of
y = f(x) across the diagonal (em-
blematic of inverse functions).
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Pentagonal Peculiarity 18

Consider diagrams which depict dots in a series of (left-aligned) rows, with
each row having strictly less dots than the one above. The number of such
diagrams with n dots and an even number of rows let’s denote E, and the
number of those with an odd number of rows let’s denote O.

Problem. Explain why E and O differ by at most 1 (for any n).

• • • • •
• • •
• • ⇐⇒

• • • •
• • •
• •
•

• • • •
• • •
• •

⇐⇒ • • • • •
• • • •

Hint. Above is an illustration of how a diagram with an odd number of rows
can be converted into one with an even number of rows, or vice versa: by
pouring the right diagonal into the last row, or conversely scooping the last
row into the right diagonal (depending on which has more dots). But this
procedure doesn’t always work though... Try lots of examples to see! (Note
the term “pentagonal” is not a hint and does not refer to diagram shapes.)
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Washers in Balance 19

A sphere of volume Cn (where C is a constant to be determined) is sliced
(along parallel horizontal planes) into n pieces of equal height.

Let Pn be the product of their volumes.

Problem. What value of C is necessary for lim
n→∞

Pn to exist (and ̸= 0)?
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Cusp of Crying 20

Problem. Find the angle at the top corner of the teardrop curve defined by
the equation r = ey−1 (written with the polar coordinate r =

√
x2 + y2).
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Polarization 21

Suppose ϕ(a,b, c,d) is a real-valued function of four 3D vectors satisfying:

• Multilinearity. If any three of the arguments are held fixed then ϕ is a
linear function of the fourth argument, for example

ϕ(a1 + a2,b, c,d) = ϕ(a1,b, c,d) + ϕ(a2,b, c,d)

• Antisymmetry. Swapping the first or second pair changes the sign:

ϕ(b, a, c,d) = −ϕ(a,b, c,d) = ϕ(a,b,d, c)

• Symmetry. Swapping the first pair with the second doesn’t change it:

ϕ(c,d, a,b) = ϕ(a,b, c,d)

• Vanishing. If the first pair equals the second pair, the result is zero:

ϕ(a,b, a,b) = 0

Problem. Show ϕ(a,b, c,d) = 0 for all a, b, c, d.
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Sporadic Twists 22

Twelve unit spheres are situated around a central unit ball with wiggle room
between them. Each sphere is surrounded by a ring of five other spheres,
followed by another ring of five beyond that, and then one final sphere on
the opposite side. (In other words, arranged as an icosahedron.)

A twist consists of simultaneously rotating one such ring of five spheres one
direction and the adjacent ring of five spheres the other direction (equally).

Problem. Show it is possible to move any pair of spheres to (the current
positions of) any other pair of spheres with a sequence of twists.
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Striking Gold 23

(Patel, 2018)

Problem. Find a spherical triangulation whose chromatic polynomial has a
root x within 0.1 of the value 2.6. (Try out some small triangulations!)

The chromatic polynomial P (x) of a graph (such as a triangulation) counts
the number of ways to color the vertices of the graph so that no adjacent ver-
tices are the same color, with x colors available to choose from. It is always
a polynomial, so non-whole values of x can be plugged into it.

Look up how to calculate chromatic polynomials. Or, if you know a specific
triangulation by name, you may look up its chromatic polynomial...
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Celestial Shifting 24

Circle inversions swap the inside and outside of circles by flipping points
across them: a point A and its image A′ lie on a ray at reciprocal lengths
(scaled with the circle’s size) from the center. In this context, lines are con-
sidered infinitely large circles, and inversions across lines are just reflections.

Look up “inversive geometry” for more information on inversions.

Problem. Show that for any two pairs of points, there is a sequence of inver-
sions which transforms the first pair of points into the second pair of points.

Hint. What happens if we compose inversions across two concentric circles,
or across two lines (whether parallel or intersecting)?
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Conical Conversions 1

Problem. Show the following are inverse functions:

S(t) =

ˆ t

0

dτ

cosh τ
, T (s) =

ˆ s

0

dσ

cosσ
.

Note hyperbolic cosine is given by cosh τ = (eτ + e−τ)/2.
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Homogenization 2

Problem. Suppose a function f(x) is defined by

f(x) =
∞∑
n=0

anx
n.

Find a closed-form expression for

∞∑
k=0

∞∑
ℓ=0

∞∑
m=0

∞∑
n=0

ak+ℓ+m+nw
kxℓymzn.

in terms of w, x, y, z and f . Assume w, x, y, z are all distinct.

Justify your answer. Ignore issues of convergence.

Hint : Consider a two-variable version first.
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Dynamical Billiards 3

Problem. A point particle bounces around inside of the unit square. The
particle has a constant speed of one unit per second, and begins in the corner
(0, 0) at an angle of π/12 radians from the base. Where will the particle be
in exactly one minute? Give an exact answer.

Bonus Credit : Explain how to do the same problem for an equilateral triangle
with all sides one unit in length.
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Cyberpunk 4

Problem. Express n in binary, where n is the number of trailing zeros in
the binary representation of 11 · 22 · 33 · · · 20492049. No electronic calculations
of any kind will count for credit, only hand calculations.

76



UNOmaha Problem of the Week

Hyperdiamond 5

In four dimensions, R4, pick 24 points a distance of 1 from (0, 0, 0, 0): the
permutations of (±1, 0, 0, 0) and 1

2(±1,±1,±1,±1). “Draw” an edge between
any two of these points which are 1 unit apart, as per the distance formula
(generalized from two and three dimensions). It may help to draw five 3D
cross-sections of this figure, corresponding to what the first coordinate is, and
then somehow record which points are connected to which.

Problem. For increasing levels of credit:

(a) Give an example of a regular hexagon in this picture: list six of the
vertices that are the correct distance of 1 and angle of 60◦ apart.

(b) Find the number of these regular hexagons, with explanation.

(c) Call a bundle any set of four of these regular hexagons which share no
vertices or edges. Give an example of a bundle.

(Bonus Credit.) Find the number of bundles, with explanation.

Hints. Angles may be computed with the dot product just as they can in
three dimensions. The most efficient calculations and readable explanations
will use the phrase “by symmetry” multiple times! No symmetry argument
will need justification, only correct usage.
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Regularization 6

Problem. Find, with explanation, meaningful values for:

(a) 1 + 2 + 3 + 4 + · · ·

(b) 12 + 22 + 32 + 42 + · · ·

(c) 13 + 23 + 33 + 43 + · · ·

Solutions ought to use ideas described in the appendix section.
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■ Regularization: Addendum

Addition is not at first defined for infinitely many summands, it is eventually
defined as a limit of partial sums. On this interpretation, there are series
which don’t have values (i.e. the limits don’t exist), and these series are
said to diverge. There many kinds of divergence, or even strange kinds of
convergence. Consider the following examples:

• 1 + 2 + 3 + 4 + · · · : diverges to +∞, as do the individual terms.

• 1−2+3−4+ · · · : diverges, but not to +∞ or −∞; both the individual
terms and the partial sums are unbounded but oscillate sign.

• 1 + 1 + 1 + 1 + · · · : diverges to +∞, but the terms are bounded.

• 1−1+1−1+· · · : diverges, but the terms and partial sums are bounded,
and if regrouped to (1− 1) + (1− 1) + · · · it converges.

• 1 + 1
2 +

1
3 +

1
4 + · · · diverges to +∞, but slowly: the terms tend to 0

while nth partial sum is approximately lnn.

• 1− 1
2 +

1
3 −

1
4 + · · · converges conditionally to ln 2; permuting infinitely

many terms can cause it to converge to potentially any other real num-
ber (this follows from the Riemann rearrangement theorem).

• 1+ 1
22 +

1
32 +

1
42 + · · · converges to

π2

6 (the solution to the Basel problem);
it is an example of a p-series and is a particular value of the Riemann
zeta function ζ(s) =

∑∞
n=1 n

−s.

If S denotes the set of all infinite sequences of real numbers and C the set
of all sequences whose corresponding series converges, then S is a real vector
space and C is a subspace of S. The summation operator Σ which outputs
the limit of partial sums of a sequence is a linear map C → R.

An extension of Σ to a linear map V → R on a larger subspace V of S
is called a summability method, it allows us to assign finite values to
divergent series. The axiom of choice implies summability methods exist,
but it doesn’t guarantee they’re anything but arbitrary number assignments.
Fortunately, there are methods of interest.
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Summability methods are a subset of a broader process of regularization,
which resolves infinities out of calculations - not just sums, but also products,
functional integrals (called Feynman path integrals in quantum theory), or
other expressions to get meaningful results, even bridging the gap between
theoretical calculations and physical observations, as in the Casimir effect.

The summability method we will describe let’s call baby-zeta regularization.
The grownup-zeta regularization would require exploring Dirichlet series,
which we will substitute with Taylor series for simplicity. When grownup-
zeta and baby-zeta regularization both work, they give the same result, but
baby-zeta won’t work as often and grownup-zeta won’t behave as nicely.

Suppose
∑∞

n=1 an is an infinite series for which f(x) =
∑∞

n=1 anx
n is true

near x = 1 within a positive radius of convergence for some nice (i.e. ana-
lytic) function f(x). Then f(1), if it exists, is called the baby-zeta regularized
value of the series. For example, consider the geometric series

x

1 + x
= x− x2 + x3 − x4 + · · ·

While this power series only converges for |x| < 1, the function on the left is
defined for all values except x = −1, so setting x = 1 gives

1

2
= 1− 1 + 1− 1 + · · ·

Heuristically, if we split it into (1 + 0 + 1 + 0 + · · · )− (0 + 1 + 0 + 1 + · · · ),
then delete the 0s to get (1+1+1+1+ · · · )− (1+1+1+1+ · · · ) we should
expect 0, which is a contradiction. This may resolved two different ways:

• Grown-up zeta does assign 1+1+ · · · the value −1
2 , but does not allow

infinitely many 0s to be introduced or discarded.

• Baby zeta allows introducing/discarding 0s arbitrarily, but does not
assign 1 + 1 + · · · any value so there is no contradiction.
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This unlocks new tools to define the zeta regularization besides simply ana-
lyzing f(x) directly. Both grown-up and baby zeta regularization are linear:

∞∑
n=1

(an + bn) =

( ∞∑
n=1

an

)
+

( ∞∑
n=1

bn

)
,

∞∑
n=1

can = c
∞∑
n=1

an.

Introducing 0s between terms does not affect a baby zeta value, even infinitely
many 0s. This means even if f(x) =

∑∞
n=1 anx

n does not have f(1) defined,∑∞
n=1 an may still potentially possess a zeta regularized value after all.

Integrating or differentiating the aforementioned geometric series gives

ln

(
1

1 + x

)
= x− x2

2
+

x3

3
− x4

4
+ · · ·

x

(1 + x)2
= x− 2x2 + 3x3 − 4x4 + · · ·

These are altered versions of the Mercator series and Newton-binomial series,
respectively. Plugging x = 1 into the first gives the aforementioned series for
ln 2, although that one is already convergent. Might the second be of use?
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Squared Cubic Roots 7

Problem. Find the polynomial whose roots are the squares of the roots of
T 3 + aT 2 + bT + c (counted with multiplicity if necessary) in terms of a, b, c.
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Sphere Gears 8

Suppose two balls are rotating against each other without slipping. The line
segment joining their centers makes acute angles θ1 and θ2 with their axes of
rotation. Their angular velocities are ω1 and ω2.

(Angular velocities could be in e.g. revolutions or radians per time; units
won’t matter. Do not assume the balls have equal radii.)

Problem. Show the axes of rotation intersect at a point, and moreover
if that point lies in the unique plane separating the two balls then

ω1 cos θ1 = ω2 cos θ2.
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Circular Cocycle 9

Problem. Find, with explanation, a third order differential equation whose
general solution on any open interval is y = (ax+ b)/(cx+ d), where a, b, c, d
are constants (and −d/c, if defined, is not in the interval).
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Local Linear Fraction 10

Problem. Find, with explanation, the function of the form (ax+ b)/(cx+d)
which best approximates an arbitrary twice-differentiable function f(x) near
a point x = w. For example, you may express a, b, c, d in terms of the values
f(w), f ′(w), f ′′(w). Your function does not need to be written precisely in
the given form, though it must be equivalent.

(For comparison, the best function of the form ax + b is the first two terms
f(w) + f ′(w)(x− w) of f ’s Taylor series around x = w.)
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Lattice Chasing 11

Problem. What is the maximum number of distinct sets that can be created
using unions, intersections, and three sets A, B, C? (So for instance, A, A∪B,
and (A ∪B) ∩ C are all counted.) Explain.
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Involutive Units 12

Call a whole number n tight if it is a factor of x2− 1 for all integers x which
are relatively prime to n (meaning, share no factor with n other than ±1).
For example, 2 is a factor of x2 − 1 for all odd numbers x, so 2 is tight.

Problem. Find, with proof, all tight numbers.

Suggestion. (i) Consider the smallest prime which is not a factor of n, and
(ii) prove the lemma p1p2 · · · pk > p2k+1 (for sufficiently large k, where pk is
the kth prime) by induction using Bertrand’s postulate.

(The postulate states there is always a prime between m and 2m.)
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Golden Architecture 13

In 2D, figures may be constructed using the abstract tools of compass and
straightedge. The compass allows one to draw a circle around any known
center through any known point, and the straightedge allows one to draw
a line between any two known points. Intersection points which arise from
lines and circles automatically become known. Points may also be chosen
arbitrarily in space or on a line or circle, but one cannot assume anything
else about such points when choosing them.

In 3D, figures shall be constructed using astrolabe and flatedge. The as-
trolabe allows us to construct a sphere around any known center through a
given point, and the flatedge allows us construct the plane through any three
noncollinear points, or the line between any two.

Problem. Explain how to construct a regular icosahedron.

Hint : the icosahedron inscribes three orthogonal golden rectangles.

Partial credit available for constructing (a) three perpendicular lines through
a known point or (b) a golden rectangle with a known center.
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Isoepiareal Ratio 14

The isoperimetric quotient of a simple closed loop in the plane is the ratio
A/P 2, where A is the area enclosed and P the perimeter. It is maximized
only when the loop is as symmetric as possible, i.e. a perfect circle. Among
rectangles, squares have maximal quotient.

Consider the isoepiareal ratio V 2/S3 for closed surfaces in three dimen-
sions, where V is the volume enclosed and S the surface area.

Problem. Prove cubes have maximal isoepiareal ratio among cuboids.

(A cuboid is a right rectangular prism, i.e. ... a box.)
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Superexponential 15

Define the k-times iterated logarithm lnk x =

k︷ ︸︸ ︷
ln · · · lnx.

Problem. Prove or disprove the claim that there exist sequences (an)
∞
n=1

and (bn)
∞
n=1 such that lim

n→∞

[
lnk an − lnk bn

]
= +∞ for all k.

90



UNOmaha Problem of the Week

Quadric Query 16

Define pij to be one of the six minors of a matrix M :

M =

[
x1 x2 x3 x4
y1 y2 y3 y4

]
, pij = det

[
xi xj
yi yj

]
.

Problem. Find a (nontrivial) polynomial equation valid for all M :

Q(p12, p13, p14, p23, p34, p24) = 0.

Hint. The expression Q involves each pij exactly once.
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Blade Angle 17

Suppose two planes (in 3D space) intersect at an acute angle ϕ and are
spanned by pairs of vectors a,b and c,d respectively.

Problem. Show cosϕ may be expressed in terms of the ten possible dot
products between the four vectors a,b,b,d.

Hint. Consider dot and cross product identities.
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■ abcs in the Margin: Solution

Note that the degree is multiplicative: if f(t) and g(t) are polynomials, then

deg
[
f(t)g(t)

]
= deg f(t) + deg g(t).

This means if f(t) is a factor of g(t) then deg f(t) ≤ deg g(t).

Assume for the sake of contradiction a(t)n + b(t)n = c(t)n for nonconstant
coprime polynomials a(t), b(t), c(t). (If they weren’t coprime, we could divide
the equation to reduce to the case where they are coprime or constant.) The
powers a(t)n, b(t)n, c(t)n must then also be coprime.

Then the abc theorem applies to the polynomials a(t)n, b(t)n, c(t)n:

max{deg a(t)n, deg b(t)n, deg c(t)n} < deg rad
[
a(t)nb(t)nc(t)n

]
.

Since f(t)n has the same irreducible factors as f(t), the radical on the right-
hand side is unaffected by the power n. By multiplicativity, however, the
left-hand side is affected, since deg f(t)n = n deg f(t) for each polynomial:

nmax{deg a(t), deg b(t), deg c(t)} < deg rad
[
a(t)b(t)c(t)

]
The assumption n > 2 implies

nmax{deg a(t), deg b(t), deg c(t)}
≥ 3max{deg a(t), deg b(t), deg c(t)}
≥ deg a(t) + deg b(t) + deg c(t)

= deg
[
a(t)b(t)c(t)

]
.

But putting this inequality together with the last one yields

deg
[
a(t)b(t)c(t)

]
< deg rad

[
a(t)b(t)c(t)

]
,

which is impossible because rad
[
a(t)b(t)c(t)

]
is a factor of a(t)b(t)c(t).
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The abc conjecture is actually about integers, not polynomials. It says,
effectively, that for positive coprime integers (a, b, c) satisfying a+ b = c, the
value c rarely exceeds the radical rad abc by much. (The radical of an integer
is the product of its prime factors, for example rad 24 = 6.) More precisely,
it says no matter how small ε > 0 is, there are only finitely many exceptions
to the inequality c < (rad abc)1+ε. The version of abc for polynomials instead
of integers is called the Mason-Stothers theorem and has a quick, (relatively)
simple proof using Wronskians.

The abc conjecture has numerous implications in number theory, one being
an alternate proof Fermat’s Last Theorem, which says for n > 2 there are
no nontrivial integer solutions (a, b, c) to an + bn = cn. This was written by
Fermat (found by his son in the margin of his copy of Arithmetic, a 3rd cen-
tury book by Diophantus about exactly these kinds of equations, now called
Diophantine equations), famously adding “I have a truly marvelous demon-
stration of this proposition which this margin is too narrow to contain.”

While it’s doubtful Fermat really had a proof, nonetheless, the mathemat-
ical community’s subsequent quest for a proof is oft-touted as the birth of
algebraic number theory. The first valid proof appeared three-and-a-half
centuries later in the mid-90s by Andrew Wiles, by linking it to and then
proving (a narrow version of) the Taniyama-Shimura conjecture, now called
the modularity theorem, which asserts a rational correspondence between
rational elliptic curves and classical modular curves.

This problem highlights similarities between integers and polynomials. Both
admit factorizations into primes/irreducibles. Long division with quotients
and remainders is possible for both. Relative size can be measured by abso-
lute value or degrees. Even partial fraction decompositions are possible for
rational numbers just as they are for rational functions. And as we’ve seen,
both contexts have versions of the abc theorem, Fermat’s Last Theorem, and
many other theorems. When we use finite fields for polynomial coefficients
this observation is called the function field analogy.
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■ Alfred’s Ansatz: Solution

Rewrite 262 + 1 as 4x4 + 1 with x = 215. The polynomial 4x4 + 1 has no real
root, since x4 is can’t be negative, so it cannot have a linear factor, and thus
instead must have only quadratic factors (if it factors at all). Indeed, it must
be a product of two quadratics. Their leading terms are either both 2x2 or
else one is x2 and the other is 4x2. Let’s look at the first case and if that
doesn’t pan out explore the second. Write out the factorization

4x4 + 1 = (2x2 + ax+ b)(2x2 + cx+ d).

When expanded out and like terms collected, the right-hand side becomes

4x4 + 2(a+ c)x3 + (2b+ 2d+ ac)x2 + (ad+ bc)x+ bd.

The coefficient of x3 must be 0, so c = −a. The constant coefficient must be
1, so b and d are either both 1 or both −1 (in particular, b = d). We can
now substitute −a for c and b for d so there are only two unknowns. The
coefficient of x becomes ab−ba which is automatically 0. The coefficient of x2

is now 4b− a2, which must be 0, so a2 = 4b. This forces b to be nonnegative,
so b = 1 and a = ±2. Putting this all together we get the factorizations

4x4 + 1 = (2x2 + 2x+ 1)(2x2 − 2x+ 1),

262 + 1 = (231 + 216 + 1)(231 − 216 + 1).

Each of the two factors above would work.

In general, the polynomial xn− 1 (and by extension, xn + 1) can be factored
into the irreducible cyclotomic polynomials Φn(x). These can be “factored”
further in a different sort of way as Φ(x) = U(x)2 ±#V (x)2 for polynomials
U(x), V (x) and monomial # depending on n (due to Lucas, Gauss, Schinzel).

This allows us to factor Φn(x) as an integer for particular values of x, which
Aurifeuille (pseudonym Alfred de Caston) did in the case of

22(2n+1) + 1 = (22n+1 + 1)2 − (2n+1)2

= (22n+1 + 2n+1 + 1)(22n+1 − 2n+1 + 1).

for n = 14 (our case being n = 15).
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■ Anharmonic Asymmetry: Solution

In cycle notation, (a1a2 · · · ak) represents the permutation which cycles the
elements a1, · · · , ak of a set (in that order). For example, for a set {1, 2, 3, 4},
the permutation (123) is the function ρ defined by the input/output pairs

ρ(1) = 2, ρ(2) = 3, ρ(3) = 1, ρ(4) = 4.

(Any element x not listed in the cycle notation is fixed, i.e. f(x) = x.)

There are six permutations of {1, 2, 3}, listed below with probabilities:

(1) (23) (31) (12) (321) (123)
Z A B C X Y

When drawing a permutation from S3, the probability it sends i 7→ j is the
sum of the probabilities associated with every permutation that sends i 7→ j.
This gives us a 3× 3 table of probabilities:

↗ 1 2 3
1 A+ Z C + Y B +X
2 C +X B + Z A+ Y
3 B + Y A+X C + Z

The ij entry is the probability of i 7→ j. Since there is a 100% chance 1 is
sent to one of 1, 2, 3 we may conclude the first row sums to 1; similarly there
is a 100% chance one of 1, 2, 3 is sent to 1 so the first column also sums to 1.
The same is true for all rows and columns, so the table is a so-called doubly
stochastic matrix. In particular, all its entries ought to be 1/3.

Setting the entries equal to each other results in many of the variables be-
ing equal. For instance A + X = A + Y = A + Z implies X = Y = Z
and A + X = B + X = C + X implies A = B = C. Conversely, so long
as A,B,C are equal and X, Y, Z are equal, the table’s entries are all the same.

Thus, to get a nonuniform distribution on S3 for which i 7→ j is equally
likely for all pairs i, j it suffices to pick any solution of A+X = 1

3 for which
A,X ≥ 0 and A ̸= X, so such a distribution is possible.

96



UNOmaha Problem of the Week

■ Arithmetic Jenga: Solution

Suppose n has the desired property. This means, in particular, for every
prime factor p of n, the number p − 1 must be noncomposite. This is true
for p = 2, but for p > 2 the number p − 1 is even, so unless p − 1 = 2 that
would mean p − 1 is composite, a contradiction. Therefore, the only primes
that may appear in n’s prime factorization are 2 and 3.

Write n = 2a3b. Each of 2− 1, 22 − 1, · · · , 2a − 1 must be noncomposite. We
can check that 2 − 1, 22 − 1, 23 − 1 are noncomposite but 24 − 1 = 3 · 5 is
composite, so a ≤ 3. Similarly, 3−1 is noncomposite but 32−1 is composite,
so b ≤ 1. The largest candidate is n = 23 · 3 = 24. We can check:

d 24 12 8 6 4 3 2 1

d− 1 23 11 7 5 3 2 1 0

By inspection we find that for every positive divisor d of 24, the number d−1
is noncomposite, so n = 24 has the desired property. Similarly, every other
number of the form n = 2a3b with a ≤ 3 and b ≤ 1 has the property as well,
and these are precisely all the divisors of 24 listed above.
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■ Arts and Crafts: Solution

For a given thread (associated to a value t), we may calculate its slope

m =
y − t

x− 0
=

0− t

(1− t)− 0

Solving for y yields the formula

y = t− tx

t− 1
= t+ x+

x

t− 1
.

Using Algebra. We may see for which points (x, y) (in the unit square,
0 ≤ x, y ≤ 1) there exists a solution t (in the interval 0 ≤ t ≤ 1). Multiplying
by (t− 1) and rearranging gives t2 + (x− y + 1)t+ y = 0, with solution

t =
(y − x+ 1)±

√
(y − x+ 1)2 − 4y

2

Denote b = y − x + 1 and ∆ = b2 − 4y. Since 0 ≤ x, y ≤ 1, we know b ≥ 0.
Suppose ∆ ≥ 0. Then, since ∆ ≤ b2, we know

√
∆ ≤ b, and therefore

0 ≤ b−
√
∆

2
≤ b

2
≤ 1− 0 + 1

2
= 1.

That is, as long as 0 ≤ x, y ≤ 1 and ∆ ≥ 0, there is a solution t = (b−
√
∆)/2

in the interval 0 ≤ t ≤ 1. In other words, the point (x, y) is on or below some
thread. Thus, the curve is defined by the boundary of this inequality, ∆ = 0.

Square rooting b2 = 4y yields y − x + 1 = 2
√
y, then subtracting 2

√
y and

adding x, we can factor as (
√
y − 1)2 = x. Since y ≤ 1, square rooting again

yields
√
y− 1 = −

√
x. In conclusion, the curve is the so-called superellipse

√
x+
√
y = 1.

Parabola. The curve opens up diagonally, so we ought to see what happens
if we rotate our coordinate system by 45◦. Let’s introduce

u =
x− y√

2
, v =

x+ y√
2

,
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The equation (y− x+1)2 = 4y becomes (1−
√
2u)2 = 2

√
2(v− u), and then

completing the square gets us
√
2v = 1

2 + u2. Thus, the curve is a parabola.

With Calculus. Calculate the derivative of y with respect to t:

dy

dt
= 1− x

(t− 1)2
.

The critical point (where the y coordinate is maximized, which is on the
curve) occurs where dy/dt = 0, or in other words (t−1)2 = x. Since we want
0 ≤ t ≤ 1, this yields the solution t = 1−

√
x, and substituting back in and

factoring yields y = (1−
√
x)2, or once again

√
x+
√
y = 1.
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■ Bipolarity: Solution

Law of Cosines says 22 = d21 + d22 − 2d1d2 cosσ.

Law of Sines says
sinσ

2
=

(y/d1)

d2
=

(y/d2)

d1
.

Therefore d1d2 cosσ = r2 − 1 and d1d2 sinσ = 2y. Plus, we have{
d21 = (x+ 1)2 + y2

d22 = (x− 1)2 + y2
=⇒

{
d21 + d22 = 2(r2 + 1)

d21 − d22 = 4x

Now compute f(τ)/g(σ) as follows:

cosh τ

cosσ
=

(
d1
d2

+
d2
d1

)
2 cosσ

=
d21 + d22

2d1d2 cosσ
=

r2 + 1

r2 − 1
,

sinh τ

cosσ
=

(
d1
d2
− d2

d1

)
2 cosσ

=
d21 − d22

2d1d2 cosσ
=

2x

r2 − 1
,

cosh τ

sinσ
=

(
d1
d2

+
d2
d1

)
2 sinσ

=
d21 + d22

2d1d2 sinσ
=

r2 + 1

2y
,

sinh τ

sinσ
=

(
d1
d2
− d2

d1

)
2 sinσ

=
d21 − d22

2d1d2 sinσ
=

x

y
.

We also get tan σ =
2y

r2 − 1
and tanh τ =

2x

r2 + 1
from these. Now

cosh τ

sinh τ
− cosσ

sinh τ
=

r2 + 1

2x
− r2 − 1

2x
=

1

x

cosh τ

sinσ
− cosσ

sinσ
=

r2 + 1

2y
− r2 − 1

2y
=

1

y

Therefore, (x, y) =

(
sinh τ

cosh τ − cosσ
,

sinσ

cosh τ − cosσ

)
.
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This gives rise to bipolar coordinates as follows.

First complete the square from the formulas for tanσ and tanh τ :

tanσ =
2y

r2 − 1
tanh τ =

2x

r2 + 1

x2 + y2 − 2(cotσ)y = 1 x2 − 2(coth τ)x+ y2 = −1

x2 + (y − cotσ)2 = csc2 σ (x− coth τ)2 + y2 = csch2 τ

The circles of constant σ (whose centers are along the x-axis) and the circles
of constant τ (whose centers are along the y-axis) are below:

This is what we get when we stereographically project longitude and latitude
coordinates from the sphere to a plane from a point on the equator!

These are circles of Apollonius. The two kinds of circles are orthogonal
families of circles, and every circle of constant σ is the locus of points with a
constant ratio of distances to the two foci (aka poles), namely d1/d2 = exp τ .
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■ Blade Angle: Solution

For comparison, recall the dot product satisfies n1 · n2 = ∥n1∥∥n2∥ cos θ,
where θ is the angle between two vectors, so cos θ may be expressed as:

cos θ =
n1 · n2√

(n1 · n1)(n2 · n2)

Now suppose two planes Π1 and Π2 (spanned by pairs a,b and c,d respec-
tively) intersect in a line perpendicular to a third plane Π. The so-called
dihedral angle between Π1 and Π2 is ϕ (chosen to not be obtuse).

In the 2D plane Π we can see the two normal vectors n1 and n2 of the
first two planes Π1 and Π2 intersecting at an angle of either ϕ or else its
supplement, depending on which normal vectors are chosen. This choice will
only affect the sign of cosϕ, so we may as well use any choice of normal vec-
tors and take the absolute value.

To this end, normalize the cross products a × b, c × d for n1, n2 in the
formula cosϕ = n1 · n2, and also use the Binet-Cauchy identity:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

and special case ∥a× b∥2 = ∥a∥2∥b∥2 − (a · b)2 (Lagrange’s Identity).

This gives us the answer∣∣∣∣ a× b

∥a× b∥
· c× d

∥c× d∥

∣∣∣∣ = |(a× b) · (c× d)|√
∥a× b∥2∥c× d∥2

=
|(a · c)(b · d)− (a · d)(b · c)|√(

(a · a)(b · b)− (a · b)2
)(
(c · c)(d · d)− (c · d)2

) .
All ten possible dot products of a,b, c,d make an appearance.
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■ Blinding Sphere: Solution

We wish to integrate the light intensity ∥r−p∥−2 as r varies over the surface
of the unit sphere (centered at 0). Spherical coordinates are given by

r(ϕ, θ) =

cos θ sinϕsin θ sinϕ
cosϕ


This is the math convention, with ϕ the polar angle and θ the azimuthal angle;
the physics convention is reversed. By symmetry, we can pick p = (0, 0, p).

For the integral, our surface area element is given by∥∥∥∥∂r∂ϕ × ∂r

∂θ

∥∥∥∥ = sinϕ.

Chugging through the calculations we journey forth:

1

area(S)

‹
S

dA

∥r− p∥2
=

1

4π

ˆ 2π

0

ˆ π

0

sinϕ dϕ dθ

(cosϕ− p)2 + sin2 ϕ

=
2π

4π

ˆ π

0

−d(cosϕ)
(cosϕ− p)2 + 1− cos2 ϕ

=
1

2

ˆ 1

−1

dt

(t− p)2 + 1− t2

=
1

2

ˆ 1

−1

dt

(1 + p2)− (2p)t
=

1

2

[
− 1

2p
ln
(
(1 + p2)− (2p)t

)]1
−1

= − 1

4p
ln

(
1 + p2 − 2p

1 + p2 + 2p

)
=

1

2p
ln

∣∣∣∣1 + p

1− p

∣∣∣∣ = 1

2p
ln

∣∣∣∣coth(12 ln p)
∣∣∣∣ .

The last two expressions are both valid answers, whether 0 < p < 1 or p > 1.
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■ Buckminsterfullerene: Solution

Suppose a polyhedron has P pentagonal and H hexagonal faces. Let V,E, F
denote the numbers of vertices, edges and faces it has.

Equation One. Euler’s formula says that for convex polyhedra,

V − E + F = 2. (1)

Equation Two. Every pentagonal face has 5 edges, and every hexagonal
face has 6 edges, for a total of 5P + 6H edges. However, this double-counts
the edges, since there are two faces on either side of each edge, so

E = 1
2(5P + 6H). (2)

Equation Three. Each face is either a pentagon or hexagon, so

F = P +H. (3)

Note equations (1), (2), (3) allow us to solve for V,E, F :
F = P +H,

E = 5
2P + 3H,

V = 3
2P + 2H + 2.

(Substitute (2) and (3) into (1) to solve for V above.)

Equation Four. Finally, let S be how many space diagonals there are.

The number of line segments joining distinct vertices is the combination VC2,
called “V choose 2,” also denoted

(
V
2

)
. These segments come in three kinds:

edges, face diagonals, and space diagonals. Counting by hand, there are 5
face diagonals per pentagon and 9 per hexagon, so 5P + 9H face diagonals.

So the fourth equation, from which we can solve for S by substituting, is(
V

2

)
= E + (5P + 9H) + S. (4)
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■ Campus Dash: Solution

Dijkstra’s algorithm builds, piece by piece, the quickest paths from BRB
to all other buildings. During each pass of the algorithm, each node will have:
(i) a minimum-known time from BRB, and (ii) the name of the previous node
in a quickest-known path from BRB to it (if applicable).

The first pass of the algorithm sets all minimum-known times to ∞, except
BRB’s minimum-known time is set to 0. Every pass after “visits” a new
node N , examining all of its unvisited neighbors U - the pass compares (the
current minimum-known time from BRB to U) to (the minimum time from
BRB to N plus the time from N to U): if U ’s current minimum-known time
is larger it is replaced and the previous node is updated to N .

Pass MBSC COC EAB AH RH ASH HK
2 - - - - - 106 BRB 260 BRB
3 - - - 199 ASH 131 ASH
4 - - 174 RH
5 283 EAB -
6 230 AH 203 AH

Above is how the first so many passes deal with the buildings closest to BRB.
The dashes represent ∞, and whenever a minimum-time is found the rest of
the column is left blank. The next passes where updates happen are below:

Pass DSC CL WC WFAB HMC CEC
7 - - - - - 213 COC
8 - 275 CEC - 281 CEC 239 CEC
12 359 CL -
13 317 WFAB 332 WFAB
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■ Categorical Imperative: Solution

First, we can set a, d = ♦ and c, d = ♢. In our 2D representation, we can
either evaluate the expression row-wise to get ♦ • ♦ (which simplifies to ♦),
or evaluate the expression column-wise to get ♢ ◦ ♢ (which simplifies to ♢):

♦ ◦ ♢ ♦
• • → •
♢ ◦ ♦ ♦

↓
♢ ◦ ♢

To emphasize ♢ and ♦ are the same element, and an identity element for
both operations ◦ and •, we will simply call it ♦. Next, we can evaluate

a ◦ ♦
• •
♦ ◦ b

either row-wise to get a • b or column-wise to get a ◦ b. Thus, a • b = a ◦ b
are the same operation! For this reason, we will now use • instead of ◦ or •.

Finally, we can evaluate one last expression

♦ • a
• •
b • ♦

either row-wise to get a • b or column-wise to get b • a. Thus, a • b = b • a,
meaning the operation is commutative.

This line of reasoning, called the Eckman-Hilton argument, is a style of
2D diagrammatic proof which can be used, for example, to show higher homo-
topy groups are trivial. An approximately accurate version of this statement
in plainer, albeit vaguer, language might read: conjoining together higher-
dimensional holes in topological spaces is a commutative operation.
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The interchange law (a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) shows up naturally
in the context of monoidal 2-categories. But what is a category?

A category is a collection of objects and composable arrows. The most well-
known example is the category of sets: the objects are just sets, the arrows
are functions. There are categories of topological spaces with continuous
functions, lattices with monotone functions, groups with homomorphisms,
and categories for numerous other kinds of mathematical objects.

Categories are monoidal when they have an operation to combine objects
together (which in turn combines arrows together). A 2-category has not
only objects and composable arrows between objects, but composable arrows
between those arrows! For instance, a path on a surface may be considered
an arrow between endpoints, and then there are homotopies - ways of sliding
paths across the surface to turn them into other paths.

Beyond this, there are n-categories, or
even ∞-categories. One of the more
popular math blogs, the n-Category
Cafè, is named after them. Emily
Riehl is a co-host of the cafè and
has worked on the foundations of ∞-
categories (which are hard to define).
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■ Celestial Shifting: Solution

Concentric
Circles

Parallel
Lines

Intersecting
Lines
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Following the hint, we summarize our investigation thusly:

Concentric circles. If the distance of a point from a radius r circle’s center
is denoted x, the effect of circle inversion is x 7→ r2/x. Thus, if we com-
pose a circle inversion (radius r) followed by another circle inversion (radius
R, concentric), the combined effect is x 7→ R2/(r2/x), or simply x 7→ (R/r)2x.

In effect, we can stretch space from any point by any multiplicative factor (or
shrink it towards any point, if we use a factor smaller than 1) if we compose
inversions across concentric circles with the appropriate radii.

Parallel lines. Composing inversions across two parallel lines has the effect
of sliding all points in a direction perpendicular to the lines by twice the
distance between the lines.

Intersecting lines. A similar geometric argument shows composing inver-
sions across two intersecting lines has the effect of rotating all points around
the point of intersection by twice the angle between the lines.

To turn any (distinct) pair of points A and B into any other pair C and D:

• First, apply an expansion or compression (from any central point), using
two concentric circles, so the distance AB matches CD.

• Second, apply a translation using two parallel lines, slide until A = C.

• Third, apply a rotation using two intersecting lines, to rotate around
A (which is now also C) until B = D too.

These three transformations (scale, translate, rotate) can be taken in pretty
much any order to achieve the same effect, not just this particular order.

These dilations, translations, and rotations are special cases of Möbius
transformations, which are complex-valued functions of the form az+b

cz+d .
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A particular inversion of interest is stereographic projection:

Usually this projection is a one-to-one correspondence between points on a
line and on a circle (not counting one point on the circle). It is set up by
drawing lines through a point on the circle (called the pole) and recording the
intersections with the circle and a line (which must be parallel to the circle’s
tangent line at the pole). This is always just the restriction of an inversion!

More generally, inversions preserve angles (they are conformal) and they also
turn circles or lines into other circles or lines. Stereographically projecting
the plane onto a sphere (itself a spherical inversion) gives us the perspective
of the Riemann sphere - here, lines become circles on the sphere through the
pole. It is from this perspective we see lines should be thought of as circles.

In astronomy this may be called the celestial sphere. The Möbius transfor-
mations (transported to the sphere from the plane) describe how the apparent
night sky changes appearance if Earth were to travel through space at dif-
ferent speeds. For more serious changes to its appearance, speeds on the
order of magnitude of the speed of light are necessary. The celestial sphere is
the projectivized lightcone of special relativity, and Möbius transformations
extend to linear Lorentz transformations of Minkowski spacetime.

The Cartan-Dieudonnè theorem for Euclidean space says every rotation
is a composition of an even number of reflections across linear hyperplanes;
here we’ve encountered a generalization of this theorem from Euclidean space
to Minkowski spacetime: every Möbius transformation is a composition of an
even number of inversions.
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A group of transformations acting on a set of points is called transitive if it
is possible to transform any point into any other point; we have shown the
group of Möbius transformations is doubly transitive. In fact, it is sharply
3-transitive: given any three distinct points a, b, c and any other three dis-
tinct points u, v, w on the Riemann sphere, there is one and only one Möbius
transformation f for which f(a) = u, f(b) = v, f(c) = w.

What about composing a pair of inversions across other combinations of
generalized circles? (Generalized circle is an umbrella term for both circles
and lines.) If the generalized circles intersect, the composition of inversions
is a hyperbolic rotation around the two poles, whereas if they don’t then the
two poles become a repelling source and an attracting sink for moving points.

Notice all of the inversion compositions show a doubling effect: the distance,
angle, scale factor, or appropriate bipolar coordinate “between” two lines or
circles is doubled to give the effect of the composition of inversions. This is a
manifestation of spin, a mysterious concept from physics once described by
a mathematician as the “square root of geometry.”
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■ Child’s Play: Solution

This is essentially a tangram - these are toy dissection puzzles, enjoyed by
children, like jigsaw puzzles but with simple sold-colored polygon pieces and
often with multiple different arrangements possible.

Indeed, this isn’t just any tangram, it’s the Ostomachion attributed to the
mathematician Archimedes from Ancient Greece.

A natural question to ask is: When is it possible to dissect one polygon and
rearrange the pieces into another polygon? Of course, the two polygons would
need to have the same area. The Wallace–Bolyai–Gerwien theorem says this
is not only necessary, it’s actually sufficient too!

Hilbert posed the same question for 3D polyhedra. If two polyhedra can be
dissected and rearranged into each other, they are called scissors-congruent.

Dehn answered the question by defining what we call the Dehn invariant,
a kind of numerical signature a polyhedron has which does not change by
dissection or rearrangement. In particular, the five Platonic solids have dif-
ferent Dehn invariants, so they are not scissors-congruent.

It turns out, two polyhedra are scissors-congruent if and only if they have
both the same Dehn invariant and the same volume.
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■ Conical Conversions: Solution

S(t) =

ˆ t

0

dτ

cosh τ
, T (s) =

ˆ s

0

dσ

cosσ
.

The function S(t) is called the Gudermannian function and T (s) the
inverse Gudermannian function. Writing S = S(T ) or T = T (S), they satisfy
the following three equivalent identities:

(1) tanS = sinhT
(2) sinS = tanhT
(3) cosS = sechT

For example, (1) says tanS(t) = sinh t and tan s = sinhT (s).

One identity may be converted into another by applying transformations,
using circular Pythagorean identities on the left and hyperbolic Pythagorean
identities on the right. Applying

√
1− x2 converts between (2) and (3); ap-

plying x/
√
1 + x2 converts from (1) to (2) and its inverse x/

√
1− x2 from (2)

to (1); applying 1/
√
1 + x2 converts from (1) to (3) and its inverse

√
1− x2/x

from (3) to (1). When converting from (3) it suffices to assume S, T ≥ 0 since
they are odd functions.

There is also a fourth equivalent half-angle identity

(4) tan(S/2) = tanh(T/2).

This follows from all (hence any) of (1),(2),(3) using either version of tan and
tanh’s half-angle formulas. For example,

tan
S

2
=

sinS

1 + cosS
=

tanhT

1 + sechT
=

sinhT

coshT + 1
= tanh

T

2
.

Conversely, (4) may be converted to (1) by applying 2x/(1 − x2), to (2) by
applying 2x/(1 + x2), and to (3) by applying (1− x2)/(1 + x2); therefore all
of the identities (1),(2),(3),(4) are equivalent to each other.

To show S(t) and T (s) are inverse functions, it suffices to establish any of the
four identities for S(t) and t and any other one of the four for s and T (s).
For example, if evaluating S(t) yields (1) and evaluating T (s) yields (2), then
(1) implies (2) so S(t) = sin−1(tanh t) and T (s) = tanh−1(sin s) and hence
they are inverse functions.
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Cofunction substitutions. Evaluate the definite integral S(t) using the
substitution u = sinh(τ) (where du = cosh(τ)dτ) and the hyperbolic Pythagorean
identity cosh2− sinh2 = 1:

S(t) =

ˆ t

0

cosh(τ)dτ

1 + sinh2(τ)
=

ˆ sinh t

0

du

1 + u2
= tan−1(sinh(t)).

Evaluate T (s) first by using the substitution u = sin(σ) (where du = cos(σ)du)
and the circular Pythagorean identity cos2+sin2 = 1:

T (s) =

ˆ s

0

cos(σ)dσ

1− sin2(σ)
=

ˆ sin s

0

du

1− u2
= tanh−1(sin(s)).

Without directly knowing or recognizing the derivative of tanh−1, it is also
possible to use partial fraction decomposition:

ˆ sin s

0

1

2

(
1

1− u
+

1

1 + u

)
du =

1

2
ln

∣∣∣∣1 + sin s

1− sin s

∣∣∣∣ = tanh−1(sin(s)).

Exponential substitutions. Evaluate S(t) using the substitution u = eτ

(where du = eτdτ) and absorbing 2 into the integral by doubling the interval
over which it is taken (since cosh is an even function):

S(t) =

ˆ t

0

2dτ

eτ + e−τ
=

ˆ t

−t

eτdτ

e2τ + 1
=

ˆ et

e−t

du

u2 + 1
= tan−1(et)− tan−1(e−t).

Apply tangent with difference-angle identity to get

tanS(t) =
et − e−t

1 + ete−t
= sinh(t).

We may instead have chosen to divide S by 2 in which case

S(t)

2
=

ˆ t

0

dτ

eτ + e−τ
=

ˆ et

1

du

u2 + 1
= tan−1(et)− tan−1(1).

Applying tangent (and multiplying by e−t/2/e−t/2) yields

tan
S(t)

2
=

et − 1

1 + et
=

(et/2 − e−t/2)/2

(et/2 + e−t/2)/2
= tanh(t/2).
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Phasor substitutions. With functions of complex variables and path inte-
grals in the complex plane it is possible to evaluate T (s) using the substitution
u = eiσ (where du = ieiσdσ) alongside the formula cos(σ) = (eiσ + e−iσ)/2.
Absorbing 2 into the integral yields:

T (s) =

ˆ s

0

2dσ

eiσ + e−iσ
=

ˆ s

−s

eiσdσ

e2iσ + 1
=

1

i

ˆ eis

e−is

du

u2 + 1

=
tan−1(eis)− tan−1(e−is)

i
.

Apply tangent with difference angle identity to get

tan iT (s) =
eis − e−is

1 + eise−is
= i sin s,

which is equivalent to tanhT (s) = sin s. Dividing by 2 instead,

T (s)

2
=

ˆ s

0

dσ

eiσ + e−iσ
=

1

i

ˆ eis

0

du

u2 + 1
=

tan−1(eis)− tan−1(1)

i

Applying tangent (and multiplying by e−is/2/e−is/2) yields

tan
iT (s)

2
=

eis − 1

1 + eis
=

eis/2 − eis/2

eis/2 + e−is/2
= tan(s/2).

Differentiation. Another idea: we may show (T ◦S)(t) = t by showing both
sides have the same derivative and agree at the initial value (T ◦ S)(0) = 0.
Differentiating with the chain rule and solving for S indicates we need to
show S(t) = ± cos−1(sech(t)). This, again, can be argued by showing both
sides are equal at t = 0 and have the same derivative, though one needs
to manage the continuity of the ± sign, and then the same can be done to
show (S ◦ T )(s) = s, or else argue S and T are one-to-one because they are
monotonic because their integrands are always positive on S and T ’s domains.
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■ Circular Cocycle: Solution

A function of the form f(x) = ax+b
cx+d is called a linear fractional transforma-

tion, or a Möbius transformation. Its derivative has numerator δ = ad− bc.
Notice this is the determinant of [ a b

c d ] !

The first three derivatives of y = (ax+ b)/(cx+ d) are

y′ =
δ

(cx+ d)2
,

y′′ =
−2cδ

(cx+ d)3
,

y′′′ =
6c2δ

(cx+ d)4
.

The three exponents are related by 2 + 4 = 3 + 3, so find

y′y′′′ =
6c2δ2

(cx+ d)6
,

y′′y′′ =
4c2δ2

(cx+ d)6
.

They differ only by their coefficients, so we may conclude

2y′y′′′ = 3
(
y′′)2.

Conversely, we should show this has no other solutions.

Given the above differential equation, we can first address when y′ ≡ 0 or
y′′ ≡ 0 identically: in this case y = ax+ b.

Otherwise, we may address an interval where y′′ ̸= 0, and hence (from the
differential equation) y′ ̸= 0 too, and futhermore we may assume it is positive,
y′ > 0, by replacing y with −y if necessary.
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First, divide to put in logarithmic derivative form
(
ln |f |

)′
= f ′/f ,

2
y′′′

y′′
= 3

y′′

y′

so that both sides integrate to become logarithms:

2 ln |y′′| = 3 ln |y′|+ C

Exponentiate, drop the absolute values by introducing a ± sign, then replace
eC with C (which absorbs the ± sign). We get(

y′′
)2

= C
(
y′
)3
.

Since (y′′)2 > 0 and y′ > 0, it follows C > 0 and we may take square roots.
Doing this, replace

√
C with C (again absorbing an implicit ±):(

y′
)−3/2

y′′ = C

Integrating (and dividing by −2, absorbing into constants) gives(
y′
)−1/2

= Cx+D

Then isolate y′ to get

y′ =
1

(Cx+D)2

Integrating again gives

y = − 1/C

Cx+D
+B

which, when combined, is of the form y = ax+b
cx+d . On any interval where this

is defined, y′ and y′′ cannot be 0, as assumed.

Note there are only three degrees of freedom to this form, despite there being
four unknowns a, b, c, d. This is because multiplying all four by a value doesn’t
change the function (without loss of generality, we may assume ad−bc = ±1,
which is done in some contexts).
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■ Cusp of Crying: Solution

The cusp (0, 1) has two tangent lines. By symmetry, their slopes are ±m
for some m. Their slopes will help us find the angle. Assume the curve is
parametrized by (x(t), y(t)) leading up to the cusp.

Squaring r = ey−1 yields x2 + y2 = e2y−2. Differentiating and halving yields

xx′ + yy′ = y′e2y−2

Collect like terms for y′ on the right, replace e2y−2 with x2 + y2, then divide:

1 =

(
x2 + y2 − y

x

)
y′

x′
=

(
x+ y

y − 1

x

)
y′

x′
.

The ratio (y−1)/x is the slope of the secant line from (0, 1) to (x, y), and y′/x′

is the slope of the tangent line at (x, y). Therefore, in the limit (x, y)→ (0, 1),

1 =
(
0 + 1 ·m

)
m = m2.

Thus, m = ±1, and the cusp is a right angle (∠ = 90◦).

The exponential function has the globally convergent power series

exp z =
∞∑
k=0

zk

k!
.

The truncations of this series to the first so many terms,

expn(z) :=
n∑

k=0

zk

k!
,

are polynomials and therefore have complex roots. But exp z itself has no
complex roots! Thus it’s no surprise the roots of expn(z), as n→∞, expand
outward without bound. And yet, they still approach a certain shape.
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The roots of expn divided by n tend towards this curve:

This is the Szëgo curve defined by |ze1−z| = 1 in the complex plane. By
rearranging this to |z| = |ez−1| and setting z = x + yi we may rewrite it in

Cartesian coordiantes as
√

x2 + y2 = ex−1; flipping this across the diagonal
line y = x leaves us with the teardrop curve of this problem.
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■ Cutting Sticks: Solution

We present two algorithms for cutting the sticks.

Greedy Algorithm. Greedy algorithms try to get as close to an objective
as possible at each step. A sufficiently greedy chess AI, for example, would
fail to sacrifice a piece even if sacrificing would have meant winning the next
turn, since it measures closeness to winning by material on the board and
will thus choose to avoid losing pieces whenever possible.

We can try to maximize how much we cut from one of the sticks. Starting
with the stick of length a, cut out the largest value from 1, 2 · · · , n possible
that hasn’t already been cut from it, and continue doing so as long as possible.

Suppose this process terminated with some stick left over. If at any stage
we didn’t cut the maximum unused length from the set {1, · · · , n}, then (be-
cause our original process had leftover stick) we could have increased the
cut at that stage without problem, contradicting the assumption we chose
lengths greedily. Thus, we must have cut lengths n, n− 1, n− 2, · · · , and if
our last cut wasn’t 1 then the process didn’t terminate because at the end we
can now cut 1 out. But this means we cut the total net length n+ · · ·+2+1
out of the first stick, so there can’t be any leftover length, a contradiction.

The sum total of all the lengths from 1, 2, · · · , n that weren’t cut from the
first stick must equal the length of the second stick. Therefore, these lengths
can be cut out of the second stick in any order (e.g. greedily) to finish.

Notice how this algorithm does not require the hypothesis a, b ≥ n. However,
the condition is necessary for a generalization: if we have sticks of lengths
ℓ1, · · · , ℓk ≥ n with sum total length ℓ1+ · · ·+ℓk = 1+2+ · · ·+n then we can
cut them into lengths 1, 2, · · · , n. The greedy algorithm doesn’t work for this
generalization. Indeed, whether or not this assertion is true is an unsolved
question - the cutting sticks conjecture!

The following recursive algorithm, on the other hand, does work for the
generalization for all n but for only finitely many exceptions for any given
number of sticks k (though the number of exceptions grows with k).
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Recursive Algorithm. A recursive algorithm solves a problem by using
itself on a subproblem at each step. For example, the recursive algorithm
computing 1 + 2 + · · ·+ n would compute 1 + 2 + · · ·+ (n− 1) then add n.

In the sticks problem, both lengths are a, b ≥ n. If we cut out a length of n
from the longer stick (suppose a ≥ b), then either the remaining stick length
a−n is ≥ n−1 or else < n−1. In the former case, we’ve reduced the problem
for minimal length of n to the same problem for a minimal length n − 1, so
our recursive algorithm can use itself on this subproblem.

The cases where we can’t use this algorithm are when the remaining stick
length is a − n < n − 1. In these cases, b ≤ a < 2n − 1 implies an upper
bound on the total length 1 + 2 + · · · + n = a + b ≤ 2a < 2(2n − 1). It is
well-known the so-called triangular number 1 + 2 + · · · + n is given by the

formula n(n+1)
2 , so our bound is n(n+1)

2 < 2(2n − 1). Clearing denominators
and distributing makes this n2 + n < 8n− 4, or equivalently n(n− 7) < −4,
which is only possible for n < 7. Thus for n = 3, 4, 5, 6 we manually find and
list a solution for the cases where a < 2n− 1:

n n(n+1)
2 2n− 1 a→ · · · b→ · · ·

6 21 11

5 15 9 8→ 5+3 7→ 4+2+1

4 10 7 6→ 3+2+1 4→ 4

5→ 4+1 5→ 3+2

3 6 5 4→ 3+1 2→ 2

3→ 2+1 3→ 3

123



UNOmaha Problem of the Week

■ Cyberpunk: Solution

The number of trailing zeros in a number m, represented in binary, equals
the number of times it is divisible by 2, or equivalently the power of 2 in its
prime factorization; let v2(m) be the power of 2 in m’s prime factorization.
In number theory this is called the 2-adic valuation. Much like a logarithm,
it satisfies the product rule v2(ab) = v2(a)+ v2(b). Therefore the valuation of
m = 112233 · · · 20492049 is equal to the sum

1v2(1) + 2v2(2) + 3v2(3) + · · ·+ 2049v2(2049)

We may tally the valuations v2(k) for k = 1, · · · , 16 (for illustration) as in
the below table on the left. To multiply k times v2(k) we may replace each
dot with a k and insert plus signs, as on the right:

1 ◦ ◦ ◦ ◦
2 • ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 • • ◦ ◦
5 ◦ ◦ ◦ ◦
6 • ◦ ◦ ◦
7 ◦ ◦ ◦ ◦
8 • • • ◦
9 ◦ ◦ ◦ ◦
10 • ◦ ◦ ◦
11 ◦ ◦ ◦ ◦
12 • • ◦ ◦
13 ◦ ◦ ◦ ◦
14 • ◦ ◦ ◦
15 ◦ ◦ ◦ ◦
16 • • • •

=⇒

2

4 + 4

6

8 + 8 + 8

10

12 + 12

14

16 + 16 + 16 + 16

Evaluating n = v2(m), then, amounts to adding up all the numbers scattered
above on the right. Instead of grouping the terms in rows, giving 2 + 4 · 2 +
6 + 8 · 3 + 10 + 12 · 2 + 14 + 16 · 4 + · · · , we will group the terms in columns
because the column sums have a nice formula.
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Grouping the summands according to columns on the last page,

(2 + 4 + 6 + 8 + · · ·+ 2048)
(4 + 8 + 12 + · · ·+ 2048)

(8 + 16 + · · ·+ 2048)
(16 + · · ·+ 2048)

...
+ (2048)
= n

From here we may factor out common factors:

2(1 + 2 + 3 + · · ·+ 1024)
4(1 + 2 + 3 + · · ·+ 512)
8(1 + 2 + 3 + · · ·+ 256)
16(1 + 2 + 3 + · · ·+ 128)

...
+ 2048(1)
= n

Note 2048 is a power of 2, by hand calculation:

e 2e

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048

And so it is revealed that 2049 is more than a Blade Runner reference; it is
closer to a perfect power of 2 than 2019 happens to be.
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At this point we need to use the following:

Lemma. The nth triangular number is given by the formula

Tn
def
= 1 + 2 + 3 + · · ·+ n =

n(n+ 1)

2
.

They count how many balls are in a triangular stack (by row):

(Proof 1.) Tn counts how many subsets of {1, 2, 3, · · · , n+ 1} have the form
{a, b}; make the following arrangement and count by rows:

{1, 2}
{1, 3}, {2, 3}

{1, 4}, {2, 4}, {3, 4}
{1, 5}, {2, 5}, {3, 5}, {4, 5}

{1, 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6}
{1, 7}, {2, 7}, {3, 7}, {4, 7}, {5, 7}, {6, 7}

(and so on)

On the other hand, if we pick a first then b, we have n + 1 choices for a
then n remaining choices for b, but then we must divide by 2 to undo our
overcounting since {a, b} = {b, a}; this gives n(n+ 1)/2.

(Proof 2.) There is an oft-told story which says that when a young Carl
Friedrich Gauss (considered one of the greatest mathematicians of all time)
was a schoolboy, his teacher gave the students busywork by asking them to
add the numbers 1 through 100, which Gauss solved immediately with the
trick of adding the sum to itself in reverse order.
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S = 1 + 2 + · · · + 99 + 100
+S = 100 + 99 + · · · + 2 + 1
2S = 101 + 101 + · · · + 101 + 101

Summing gives 2S = 100(101). This generalizes to 2Tn = n(n+ 1), and may
be visualized by combining two triangular stacks:

T4 + T4 = 4× 5

Applying the lemma to our aforementioned column sum for n,

n = 2
(
1024·1025

2

)
+ 4

(
512·513

2

)
+ 8

(
256·257

2

)
+ · · ·+ 2048

(
1·2
2

)
= 1024(1025 + 513 + 257 + · · ·+ 2)

For this we may employ yet another formula,

Lemma. The geometric sum formula for the kth partial sum of a geometric
sequence with first term 1 and common ratio r is:

S = 1 + r + r2 + · · ·+ rk−1 =
rk − 1

r − 1
.

(Proof.) Compare S with its multiple rS:

S = 1 + r + r2 + · · · +rk−1

rS = r + r2 + · · · +rk−1 + rk

Subtracting gives rS − S = rk − 1. Applying with r = 2 and k = 11,

n = 210
(
(210 + 1) + (29 + 1) + · · ·+ (20 + 1)

)
= 210

(
(210 + 29 + · · ·+ 20) + (1 + 1 + · · ·+ 1)

)
= 210

(
211 − 1

2− 1
+ 11

)
= 210(211 + 23 + 2) = 221 + 213 + 211

expressed in binary is 10000000101000000000002.
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■ Cyclic Sieving: Solution

Often, combinatorial formulas counting certain things with set-theoretic de-
scriptions generalize to other formulas (their q-analogs) which count similar
things with linear-algebra interpretations. (Arguably it would be more truth-
ful to say projective-geometry interpretations.) The analogs use the tradi-
tional choice of variable q. Here, linear algebra is not done over the fields R
or C, but rather over a finite field with q scalars denoted Fq.

The simplest example: n counts how many elements the set {1, · · · , n} has,
while [n] := qn−1+· · ·+q+1 counts how many 1D subspaces the n-dimensional

vector space Fn
q has. More generally, the binomial coefficient

(
n
k

)
= n(n−1)···

k(k−1)···
(with k terms in the numerator and denominator) counts how many size-k

subsets there are of {1, · · · , n}, and its q-analog [ nk ] =
[n][n−1]···
[k][k−1]··· counts how

many k-dimensional subspaces there are of the vector space Fn
q .

Plugging q = 1 into q-analogs typically gives the original combinatorial for-
mula. This suggests a “field with one element” is missing in field theory,
however changing the definition of a “field” to allow only one element fails to
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reproduce the combinatorial formulas. Mathematicians have tried to remedy
this by abstracting every possibly relevant definition until they can finally
actually define F1, but this saga has yet to reach a conclusion.

The cyclic sieving phenomenon (CSP) occurs when a combinatorial for-
mula counts certain things and then plugging a complex nth root of unity
into the q-analog counts how many of those things have cyclic symmetry.

For instance, the formula
(
n
k

)
counts how many ways there are to color k

vertices of a polygon one color and the other n − k vertices another (like a
necklace with beads), and if d is a factor of n then plugging a (primitive) dth
root of unity for q into the analog [ nk ] tells us how many of those colorings
are unchanged by rotating the polygon by 1/dth of a full turn.

In our problem of polygon triangulations, however, we are not counting the
“fixed points” of rotations (the configurations with cyclic symmetry) but
rather the “orbits,” or in other words we are grouping the triangulations
according to rotations and then counting how many groups (orbits) we get.
But we can count orbits using fixed points according to Burnside’s Lemma.

(If we did the same for coloring vertices of a polygon, grouping the colorings
according to rotations, necklace polynomials count the orbits.)

The total number of triangulations of a polygon with n vertices, where ro-
tations are not counted as equivalent, is Cn−2 where the Catalan numbers
are given by the formula Cn = 1

n+1

(
2n
n

)
. The q-analog 1

[n+1] [
2n
n ] exhibits CSP,

so plugging a complex (primitive) dth root of unity for q in (where d is a
factor of n) yields how many configurations are unchanged by 1/dth of a full
turn, which Burnside’s Lemma tells us how to count orbits with.
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■ Dynamical Billiards: Solution

Compare the trajectory of a point particle bouncing around the unit square
with that of a point particle free to traverse the plane:

As the particle crosses the first edge, its path (purple) may be flipped across
the edge to get the would-be trajectory had the particle instead bounced.
Generalizing, the points in any square correspond to points in an adjacent
square by flipping across the common edge. To illustrate, consider the effect
of repeatedly flipping the letter ‘R’ as follows:

The pattern is seen to repeat every 2 units. Therefore, after computing where
the point would be with no bouncing, we may subtract even numbers from
each coordinate to obtain a point in the initial 2× 2 square. Using half angle
formulas, the coordinates are

x = 60 cos
π

12
= 60

√
1 + cos π

6

2
= 30

√
2 +
√
3 ≈ 57.95

y = 60 sin
π

12
= 60

√
1− cos π

6

2
= 30

√
2−
√
3 ≈ 15.53
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Therefore, the corresponding point in the initial 2× 2 square is(
30

√
2 +
√
3− 56, 30

√
2−
√
3− 14

)
≈ (1.95, 1.53).

This point is catercorner to the original 1×1 square, so we must flip it across
both the vertical line x = 1 and horizontal line y = 1. This means replacing
x with 2− x and y with 2− y. Thus, the answer is(

58− 30

√
2 +
√
3, 16− 30

√
2−
√
3

)
.

Remark. Another way to evaluate cos π
12 and sin π

12 is using the difference
angle formulas, since π

12 = π
3 −

π
4 . In this case, we wind up with the curious

“denesting” identities 2
√

2±
√
3 =
√
6±
√
2.

Bonus: Triangular Billiards

With an equilateral triangle, there is again a repeating pattern of flipping
triangles across edges, but now there are six possible orientations. The pat-
tern now repeats in two (non-orthogonal) directions, say along vectors u⃗ and
v⃗. Their magnitude is double the side length of the triangles. We may draw
rhombi whose sides are these two vectors:
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By copy-and-pasting this rhombus over and over again, edge to edge, we get
a repeating pattern of rhombi. This repeating pattern is variously called a
lattice, tiling, or tessellation. The prototypical tile that all the others are
modeled on is called the fundamental polygon. These are studied in e.g.
crystallography and hyperbolic geometry.

Any other parallelogram with sides au⃗ + bv⃗ and cu⃗ + dv⃗ would also work
as a fundamental polygon, so long as the integer matrix [ a b

c d ] has determi-
nant 1 (for this it is necessary but not sufficient that gcd(a, b) and gcd(c, d)
are both 1). In fact, other non-polygonal shapes may be used as fundamental
regions for repeating patterns - for instance, replace the straight edges of a
fundamental polygon with curves.

The triangles have base 1 and height
√
3/2, so the vectors are

u⃗ =

[
3/2
1

]
, v⃗ =

[
0√
3

]
.

Whatever point the particle would end up at by crossing edges, we may write
it in terms of uv-coordinates:[

x
y

]
= a

[
3/2
1

]
+ b

[
0√
3

]
=

[
3/2 0

1
√
3

] [
a
b

]
To find the components a and b, simply compute[

a
b

]
=

[
3/2 0

1
√
3

]−1 [
x
y

]
.

For the square lattice we could subtract even numbers from either coordi-
nate. For the triangular lattice, we may subtract u⃗ and v⃗, which corresponds
to subtracting integers from the a and b components (to get their fractional
parts) and then converting back to xy-coordinates.

Once this is done, the point will be in one of the handful of triangles over-
lapping the fundamental rhombus. Compare with the grid points (vertices of
triangles) to figure out which triangle it is in and which lines to reflect over,
then proceed to reflect it as appropriate until it is in the original triangle.
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■ Ensemble Cast: Solution

The characteristic polynomial of the symmetric matrix H is

det

(
x+ y − λ z

z x− y − λ

)
= (x− λ)2 − y2 − z2.

The eigenvalues (λ1 ≤ λ2) of H are therefore given by{
λ1 = x−

√
y2 + z2

λ2 = x+
√
y2 + z2

Thus, the (x, y, z) corresponding to a given (λ1, λ2) satisfy{
x = 1

2(λ1 + λ2)

y2 + z2 = 1
4(λ2 − λ1)

2

This is a circle in xyz-space. The density ρ of H at every point on it is

ρ = π−3/2 exp
(
− (x2 + y2 + z2)

)
= π−3/2 exp

(
− 1

4(λ1 + λ2)
2 − 1

4(λ2 − λ1)
2
)

= π−3/2 exp
(
− 1

2(λ
2
1 + λ2

2)
)

Thus, the density ρ is constant on the circle associated to a given (λ1, λ2).

The circumference of the circle is 2π
√
y2 + z2 = π|λ2−λ1|. Since ρ is constant

on the circle, our answer is simply ρ times this circumference:

1√
π
exp

(
− λ2

1 + λ2
2

2

)
|λ2 − λ1|

This is a Gaussian Orthogonal Ensemble (GOE). Using complex Hermitian
matrices instead of real symmetric ones gives the Gaussian Unitary En-
semble (GUE), proposed by theoretical physicist Eugene Wigner as a way
to model the spectral theory (energy levels) of heavy atomic nuclei.

Notice ρ = 0 on the line λ1 = λ2. As a result, (λ1, λ2) exhibits repulsion:
the eigenvalues are not independent, they prefer to be apart from each other.
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■ Equational Sudoku: Solution

First, we want to figure out which of 0, 1, ⋆,$ that ⋆ × $ is. We will set it
equal to elements and multiply by ⋆−1 or $−1 to get contradictions:

• ⋆×$ = 0 ⇒ ⋆,$ = 0

• ⋆×$ = ⋆ ⇒ $ = 1

• ⋆×$ = $ ⇒ ⋆ = 1

These are all contradictions because 0, 1, ⋆,$ are all distinct. This leaves the
only possibility ⋆ × $ = 1, which also means $ × ⋆ = 1. In other words, ⋆
and $ are each other’s multiplicative inverses, ⋆−1 = $ and $−1 = ⋆.

Second, we do the same for ⋆× ⋆, multiplying by ⋆−1 = $:

• ⋆× ⋆ = 0 ⇒ ⋆ = 0

• ⋆× ⋆ = 1 ⇒ ⋆ = $

• ⋆× ⋆ = ⋆ ⇒ ⋆ = 1

This leaves only ⋆× ⋆ = $. Symmetrically, we must also have $×$ = ⋆.

Third, we may do the same for 1 + ⋆:

• 1 + ⋆ = 1 ⇒ ⋆ = 0 (add −1)

• 1 + ⋆ = ⋆ ⇒ 1 = 0 (add −⋆)

• 1 + ⋆ = 0 ⇒ ⋆ = $

From 1+⋆ = 0 we may multiply by $ to get $+1 = 0. Setting 1+⋆ = $+1,
we may add −1 to get ⋆ = $, a contradiction. This leaves only 1 + ⋆ = $,
and symmetrically 1 +$ = ⋆. Not much left to go!

Multiplying 1 + ⋆ = $ by ⋆ (or 1 +$ = ⋆ by $) gives ⋆+$ = 1.
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Lastly, multiplying the element # := 1 + ⋆ + $ by either of ⋆ or $ leaves
it unchanged - thus, we have (1 − ⋆)# = (1 − $)# = 0, and multiplying by
(1 − ⋆)−1 or (1 − $)−1 (which is possible because ⋆,$, 1 are distinct) yields
# = 0. Replacing ⋆+$ in # = 0 with 1, this equation is now 1 + 1 = 0.

Our completed table now reads

+ 0 1 ⋆ $
0 0 1 ⋆ $
1 1 0 $ ⋆
⋆ ⋆ $ 0 1
$ $ ⋆ 1 0

× 0 1 ⋆ $
0 0 0 0 0
1 0 1 ⋆ $
⋆ 0 ⋆ $ 1
$ 0 $ 1 ⋆

What this problem called a “number system” in math is known as a field,
and when it has a finite number of elements it is a finite field.

For comparison, consider the integers mod n, denoted Zn or Z/nZ. This
effectively consists of {0, 1 · · · , n− 1} with “clock arithmetic,” where the ad-
dition and multiplication operations “wrap around,” for instance 11+2 = 1 in
Z12 just as 2 hours after 11 :00 is 1 :00. If n is composite, then Zn has nonzero
elements without multiplicative inverses (anything not relatively prime to n),
but if p is prime then Zp is a finite field.

There is essentially only one finite field of size q for prime powers q, and none
for other cardinalities, denoted Fq in math or GF (q) in computer science
(“Galois field”). For primes p, the finite field Fp is just Zp. But for higher
prime powers q, we construct Fq by adding “imaginary” elements to Fp just
as how we construct C from R. For instance, we may construct F4 from the
problem by adjoining a cube root of unity $ to F2 = {0, 1}.

Finite fields are indispensable to modern cryptography and error correction.

135



UNOmaha Problem of the Week

■ Factorial Frenzy: Solution

Expanding (1 + x)m+n(1− x)m+n = (1− x2)m+n, the x2m coefficient is∑
k

(
m+ n

m+ k

)(
m+ n

m− k

)
(−1)m−k =

(
m+ n

m

)
(−1)m.

To understand the left side, note each x2m term arises from multiplying a(
m+n
m+k

)
xm+k term from (1+ x)m+n and a

(
m+n
m−k
)
(−x)m−k term from (1− x)m+n

together for some k. The right side is just the coefficient of
(
m+n
m

)
(−x2)m.

Rewriting the binomial coefficients with factorials gives∑
k

(m+ n)!

(m+ k)!(n− k)!
· (m+ n)!

(m− k)!(n+ k)!
(−1)m−k = (m+ n)!

m!n!
(−1)m.

The (−1)m can be cancelled from both sides, and (−1)−k might as well be
written (−1)k. There is an abundance of (m+n)!s, so let’s divide by both of
them from the LHS numerator to end up with one in the RHS denominator.
Furthermore, the m± k and n± k in the LHS denominator sum to 2m and
2n respectively, so let’s multiply both sides by (2m)!(2n)!. We get∑

k

(2m)!

(m+ k)!(m− k)!

(2n)!

(n− k)!(n+ k)!
(−1)k = (2m)!(2n)!

m!n!(m+ n)!
.

The RHS can be “unsimplified” in preparation to write binomial coefficients
by multiplying numerator and denominators by m! and n!:

(2m)!(2n)!

m!n!(m+ n)!
=

(2m)!

m!m!
· (2n)!
n!n!

· m!n!

(m+ n)!
=

(
2m

m

)(
2n

n

)
/

(
m+ n

m

)
Thus we conclude the von Szily convolution identity:∑

k

(−1)k
(

2m

m+ k

)(
2n

n− k

)
=

(
2m

m

)(
2n

n

)
/

(
m+ n

m

)

Ira Gessel called S(m,n) =
(
2m
m

)(
2n
n

)
/
(
m+n
m

)
the super Catalan numbers.
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It is not obvious from the rational expression that these should even be whole
numbers, let alone (surprisingly) what they ought to count!

A couple alternative ways to show they are whole numbers involve:

• Legendre’s formula: the exponent of a prime p in the factorization
of n! is (n− s)/(p− 1), where s is the sum of n’s digits in base p.

• Kummer’s theorem: the exponent of a prime p in the factorization
of
(
n
k

)
is the number of carries when adding k and (n− k) in base p.

It is possible to give S(m,n) a combinatorial interpretation via von Szily.

A lattice path is a sequence of unit steps north and east from one grid point
(usually the origin) to another in the Euclidean plane. The number of lattice
paths from (0, 0) to (m,n) is

(
m+n
m

)
, because a lattice path corresponds to a

choice of which m of the m+ n steps go right and which n go up.

Consider lattice paths (0, 0) → (m + n,m + n). There are
(
2m+2n
m+n

)
to-

tal. Any one of them must intersect the line x + y = 2m at some point
(m+ k,m− k) which is k squares diagonally from (m,m) for some k. (Note
this argument also works using x + y = 2n instead.) There are

(
2m
m+k

)
paths

(0, 0)→ (m+ k,m− k) and
(

2n
n−k
)
paths (m+ k,m− k)→ (m+ n,m+ n).

Thus, let E and O be the number of paths (0, 0) → (m + n,m + n) which
intersect x + y = 2m at a point an even or odd number of squares from
(m,m). Then super Catalan numbers are the difference S(m,n) = E −O.

137



UNOmaha Problem of the Week

■ Favorite Angle: Solution

Suppose a,b, c are (WLOG) unit vectors at 120◦ angles to each other.

Remember the dot product is bilinear and u ·v = ∥u∥∥v∥ cos θ. That means
each of the three dot products a · b, b · c, c · a is equal to −1

2 .

The most “nose-to-the-ground” solution solves for c as a linear combination
of a,b using this information. We can pick a unit normal vector n to the
plane spanned by {a,b}, then {a,b,n} is a basis and c = ua+ vb+ wn for
some coefficients u, v, w. The equations a · c = −1

2 and b · c = −1
2 become{

u− 1
2v = −1

2

−1
2u+ v = −1

2

=⇒

{
u = −1
v = −1

and then 1 = ∥c∥2 = u2 − uv + v2 + w2 becomes 1 = 1 + w2 which forces
w = 0, thus c = −a− b and we conclude a,b, c are linearly dependent.

This implies the identity a + b + c = 0, which in turn suggests there might
be a simple solution involving symmetry. Indeed, we can just distribute

∥a+ b+ c∥2 = (a+ b+ c) · (a+ b+ c)

= 3(1) + 6(−1
2) = 0.

and immediately conclude from this that a+ b+ c = 0.

A similar trick can be used to show the vertices of regular tetrahedron, cen-
tered at the origin, are at cos−1(−1

3) angles to each other. Note this proof
showing three vectors at 120◦ must be coplanar actually works in any number
of dimensions, not just 3D. (The previous solution can also be made to work
in n dimensions, by decomposing c = c∥+ c⊥ into parallel and perpendicular
components WRT span{a,b}, then c⊥ takes the role of n.)

The volume of the parallelepiped generated by a,b, c is the triple product

vol = det(a b c) = a · (b× c)
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If we define the matrix V = (a b c) (assuming the three vectors are column
vectors), we can use the so-called Gramian determinant

(detV )2 = (detV )(detV ) = (detV T )(detV ) = det(V TV )

= det

a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

 = det

 1 −1
2 −

1
2

−1
2 1 −1

2

−1
2 −

1
2 1

 = 0.

But detV = 0 implies the columns of V = (a b c) are linearly dependent!

(In fact, det(V TV ) = vol2 applies for the parallelepiped generated by any
number of vectors in any number of dimensions. The expression detV by
itself doesn’t make sense unless V is a square matrix.)

Note the last two solutions begin with the serendipitous decision of squaring,
after which the algebra works out. This is a common trick in some circles, a
special case of two mutually inverse tricks, polarization and symmetrization:
loosely speaking, these convert between bilinear and quadratic gadgets.

A root system Φ is a particularly symmetric set of vectors (called roots); any
line through a root contains only one other, its antipode; reflecting one root
across the plane perpendicular to a second root gives a third root; projecting
one root onto another produces an integer or half-integer multiple.

(Ruen, 2010)

By adding complex numbers into the mix, root systems can be used to clas-
sify (infinitesimal versions of) smooth symmetries. To compare smooth vs.
discrete symmetry, consider the symmetry of a sphere vs. of a polyhedron.
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The angles between roots are quite restricted - they are among the special
angles studied in school trigonometry, the 30◦ and 45◦ families. The ratio
between lengths of non-orthogonal roots can only be one of

√
1,
√
2,
√
3.

This is also related to the crystallographic restriction theorem, which
validates the empirical observation that crystals in nature have twofold, three-
fold, fourfold, or sixfold rotational symmetry and no other kind.

Picking a plane separates a root system Φ into “positive” and “negative”
halves, Φ = Φ+ ∪ Φ−. A basis ∆ ⊆ Φ+ of “simple” roots can be chosen so
that all positive roots are sums of simple ones. All but at most one pair of
simple roots are either orthogonal or at 120◦ angles to each other.

From ∆ we can construct a Dynkin diagram: a graph, consisting of one
node for each simple root and a simple edge for each pair at 120◦ angles (the
only possible exceptions are directed double or triple edges for the supple-
ments of 45◦ or 30◦ respectively, pointing from larger to shorter root).

It is possible to reconstruct root systems from their Dynkin diagrams. And
more generally, Dynkin diagrams are used to classify many kinds of interre-
lated mathematical objects involving symmetry and geometry.

(Nonenmacher, 2008)

The Dynkin diagrams for “irreducible” root systems are classified.
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■ Fenced In: Solution

For an upright rectangle with length L and width W , each lengthwise edge
has L + 1 grid points, each widthwise edge has W + 1 grid points, and the
interior has (L− 1)(W − 1) grid points. See below for a small example:

We can extend the orange-magenta parallelogram to a larger rectangle by
adding on blue-green right triangles to its upper left and lower right corners:

The larger rectangle has dimensions 89 × 377. If the two blue-green trian-
gles were combined into a smaller triangle, it would have dimensions 89×233.

Are there any points on the orange diagonals? The slope m = 89/233 of the
left diagonal is already in lowest terms, so cannot be expressed as a fraction
b/a with smaller numbers, and so there is no point (a, b) on it between its
endpoints. Any point on the right diagonal would correspond to one on the
left diagonal, so there are no points on the right diagonal either.

The number of grid points within the parallelogram is therefore the difference
between the numbers within the larger and smaller rectangles:

(88)(376)− (88)(232) = 88 · 144 = 12672.
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What about counting interior grid points of an arbitrary polygon?

Pick’s Theorem says the area A of a polygon
with integer-coordinate vertices can be expressed in
terms of the number i of interior grid points and the
number b of grid points on the boundary:

A = i+ 1
2b− 1. (PT)

We can divide any polygon into triangles and add their
PT equations up to get PT for the polygon. PT is true
for rectangles because A = LW , i = (L− 1)(W − 1),
and b = 2L+2W , and right triangles (by halving rect-
angles), so it’s true for triangles in general (by fitting
them in bounding boxes alongside right triangles).

Meanwhile, the Shoelace Formula says the area of a polygon with vertices
(x1, y2), (x2, y2), · · · , (xn, yn) (write (xn+1, yn+1) = (x1, y1), too) is given by

A =

∣∣∣∣x1 x2 · · · xn
y1 y2 · · · yn

∣∣∣∣ def
=

n∑
k=1

1

2

∣∣∣∣xk xk+1

yk yk+1

∣∣∣∣︸ ︷︷ ︸
xkyk+1−xk+1yk

.

The formula is so-named because in the 2 × n array above if we draw lines
to pair up the xs and ys that get multiplied, it looks like we’re lacing them up.

Each vertex may be interpreted as a vector, and
then any edge of the polygon, alongside the pair
of vectors to its endpoints, forms a triangle.

If we orient the edges around the polygon in a
loop, then we can say the triangles have positive or
negative area as a appropriate, and then the sum
of their signed areas is the area of the polygon!

(Note if a triangle has two edges meeting at the origin, interpreted as column
vectors a and b, its signed area is half of the determinant det(a b) =

∣∣ a1 b1
a2 b2

∣∣.)
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Using xkyk+1 − xk+1yk = xk(yk+1 − yk) − (xk+1 − xk)yk we may rewrite the
summands of the shoelace formula. In the limit the formula becomes

A =
1

2

∑(
x∆y − y∆x

)
−→ 1

2

˛
x dy − y dx.

In vector calculus this contour integral is a special case of Green’s theorem,
which is itself a special case of the curl theorem. This is the theoretical
basis for the real-life planimeter tool used to calculate areas.
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■ Finitessimal Accretion: Solution

Any set with n elements has 2n subsets. This follows from the fundamental
counting principle: to construct a subset, we need to make a binary decision
to either include or not include each of the n elements.

Let mk be how many subsets of {1, 12 ,
1
4 ,

1
4 , · · · ,

1
22021} have

1
2k

as its smallest

element. Then mk is how many times 1
2k

is counted in the sum.

Any subset X whose smallest element is 1
2k

is just a subset of {1, 12 , · · · ,
1

2k−1}
with 1

2k
added. There are k elements in {1, 12 , · · · ,

1
2k−1}, so there are 2k

subsets, i.e. mk = 2k. Summing this over all k we get an answer

1
(
1
)
+ 2

(
1

2

)
+ · · · + 22021

(
1

22021

)
= 2022.
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■ First Fold: Solution

Highlight and label the lower two triangles as follows:

The original top-left corner of the square is a right angle, which forces the
two resulting triangles to be similar. The left side of the square is folded into
y + z = 1 and the top side of the square becomes c+? = 1.

The Pythagorean theorem x2 + y2 = z2 says x2 = z2 − y2 = (z − y)(z + y),
which is just z − y. This establishes the linear system{

z + y = 1

z − y = x2
=⇒

{
z = 1

2(1 + x2)

y = 1
2(1− x2)

This follows from adding or subtracting, then halving, the equations.

The similarity of the triangles means the proportions (ratios between corre-
sponding sides) match. This is sometimes written [a : b : c] = [x : y : z].

Given c = 1, equating ratios [a : c] = [x : z] and [b : c] = [y : z] yields

a =
x

z
=

2x

1 + x2
, b =

y

z
=

1− x2

1 + x2
.

In fact, these are the formulas for stereographic projection!
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The picture of the fold with stereographic projection looks like:

This is called a Haga fold in mathematical paper folding.

By drawing lines to split the square into thirds, Haga folds can be used to
solve the problems of doubling the cube and trisecting the angle, which are
intractable with compass-and-straightedge constructions.
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■ Folding Point: Solution

After folding the first image onto the 80◦ region, the angles laid flat look
like this. In order for the picture to make sense, though, the clockwise and
counterclockwise angular dispalcements must exactly cancel each other out.
In other words, the sum of the angles in the clockwise direction must match
the sum of the angles in the counterclockwise direction. Calculate

71◦ + 45◦ + 64◦ = 80◦ + 43◦ + 57◦

62◦ + 63◦ + 56◦ ̸= 39◦ + 73◦ + 67◦

64◦ + 43◦ + 71◦ ̸= 77◦ + 49◦ + 56◦

Therefore the first picture is the correct answer.

This exemplifies Kawasaki’s theorem, which says the sum of every other
angle must equal the sum of the other alternating set of angles for the paper
to be flat-foldable. (But Kawasaki himself called it Husimi’s theorem.) This
also requires Maekawa’s theorem: the number of creases must be even.

Origami is a branch of math!
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■ Forty Two: Solution

Each triangle has one 1, two 2s and three 3s. Thus, if all the numbers in
a triangle are added together, the result is 12 + 22 + 32. There are three
triangles, so adding all the numbers up leaves us with 3(12 + 22 + 32).

On the other hand, instead of summing the numbers within a triangle first,
we could instead add them across triangles. In the top position, we get
1 + 2× 3. Moving from one position to another either adds 1, does nothing,
or subtracts 1 - thus, the sum of the three numbers in a given position is
constant! The first row has 1 position, the second row 2 positions, and the
third row 3 positions, so the sum of all the numbers is 1+2+3 times 1+2×3.

The general version of this has three triangles with n rows, yielding

3(12 + 22 + · · ·+ n2) = (1 + 2 + · · ·+ n)(1 + 2n)

This is an example of a so-called proof without words: a picture which,
if studied closely, can reveal a complete explanation of an interesting math-
ematical fact. Ideally, these proofs are supposed to be “self-evident” from
the pictures, however realistically some thought, guidance, or mathematical
background is still often necessary for real understanding.

Can you see a2 + b2 = c2 or A+B +C = 180◦ above? Deeper facts may also
have proof without words, e.g. Dandelin spheres or Monge’s Theorem.
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■ Golden Architecture: Solution

2D Constructions. There are certain compass and straightedge construc-
tions that can also be generalized to 3D and will be useful for our solution.
We consider these as a warm-up.

One may construct the line through a point P which is perpendicular to
the line L between points P and Q as follows. First, draw a circle C around
P through Q, call the intersection between C and L the point Q′. Draw a
circle D through Q′ around Q and another circle D′ through Q around Q′,
and let R be one of the intersection points between D and D′. Finally, draw
the line between P and R.

Similarly, one can construct the midpoint of a line segment between points
P and Q as follows. Draw a circle C around P through Q and another circle
D around Q through P . Call the intersection points between circles C and
D the points R and S. Draw the line L between R and S, and then the
intersection M between the line L and the line segment from P to Q will be
the midpoint of P and Q.

Given a known plane in 3D, any 2D construction may be performed in that
plane using astrolabe and flatedge by intersecting with the plane at each step.
For example, given two points C and X in the plane, construct the sphere
around C through X, the intersect that sphere with the plane to get the
circle around C through X within that plane.

Constructing Three Perpendicular Lines.

Given a point C, pick any two other points W and X and form the plane P
between the three points C,W,X with the flatedge tool. Within the plane P ,
draw the line L from C to X and construct the perpendicular line M through
C. Draw the sphere S around C through X and intersect with the line M to
get another point Y . Say the intersection of S with line L consists of points
X,X ′ and the intersection of S with line M consists of points Y, Y ′. We want
two points Z,Z ′ on an axis N perpendicular to L and M .

Form spheres around X through X ′ and vice versa and intersect to get a
circle C in the Y Z-plane perpendicular to L. Similarly, form spheres and Y
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through Y ′ and vice-versa and intersect to get a circle D in the XZ-plane per-
pendicular to M . The circles C and D intersect desired points Z,Z ′ through
which we may form the line N . Note in this picture Z,Z ′ are further from
the center C than X,X ′, Y, Y ′.

The three lines L,M,N are three perpendicular lines through C.

Constructing Golden Rectangles.

A rectangle is called golden if the smaller rectangle alongside an inscribed
square is similar to (same proportions as) the whole rectangle:

The equation (a + b)/a = a/b becomes 1 + 1/x = x if we define x = a/b,
and solving the subsequent quadratic equation x2 − x − 1 = 0 yields the
golden ratio φ = (1 +

√
5)/2. Thus, a rectangle is golden if the proportion

a/b between its sides is the golden ratio.

To construct a golden rectangle with a given center C in a plane, it suf-
fices to construct four equal-size golden rectangles around it. Thus, given
perpendicular lines L and M intersecting at a corner C in a plane, it suffices
to be able to construct a golden rectangle with a given line segment CX
along line L. By fiat declare this to be unit length.

Draw a circle around C through X and intersect with line M to get two
points Y, Y ′. Construct a line L′ perpendicular to L through X, and another
line M ′ perpendicular to M through Y . Call C ′ the intersection of lines L′

and M ′. Thus □CXC ′Y is a unit square.

Next, draw a circle around Y ′ through C ′ and intersect with M to get a
point W on the other side of Y ′ from C. Draw a circle around C through W
and again intersect with M to get another point W ′. Note W and W ′ are
both a distance of

√
5 from C, by the Pythagorean theorem applied to the

right triangle △C ′Y Y ′.
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Finally, construct the midpoint G of the line segment CW ′. Construct a
line M ′′ perpendicular to M at G. The lines L′ and M ′′ intersect at a point,
say H. Then CXGH is a golden rectangle.

Constructing Icosaheda.

Finally, after constructing three perpendicular lines intersecting at a point
C, pick a point X on one of them, form a sphere around C through X and
intersect with the three lines to get pairs X,X ′ and Y, Y ′ and Z,Z ′ on the
three axes. And may use these line segments to construct three golden rect-
angles in the three corresponding planes.

By drawing line segments between neighboring corners of the golden rect-
angles we obtain a regular icosahedron.
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■ Good Fibrations: Solution

Every neighboring pair of dodecahedra extends to a unique ring of ten do-
decahedra, and every ring extends to a unique bundle of a dozen rings:

pair → ring → bundle

This is not a one-to-one correspondence, though: each bundle arises from any
of its twelve rings, and similarly each ring arises from any of its ten neigh-
boring pairs of dodecahedra.

To construct a neighboring pair of dodecahedra within a given ring, we can
first pick one of the ten dodecahedra of the ring, then either of its two neigh-
bors, but notice this overcounts by a factor of two since we can pick the two
dodecahedra of a pair in two different orders - which is picked 1st vs 2nd.

Thus, there are 12× 10 = 120 neighboring pairs per bundle.

To construct a neighboring pair in general, we can pick any of the 120 do-
decahedra in the picture, then pick any of its 12 neighbors (a dodecahedron
has twelve faces), and divide by 2 for the same reason as before.

Thus, there are 120× 12 / 2 = 720 neighboring pairs in total.

Since there are 720 pairs total, and 120 pairs per bundle (and no pair shared
between bundles), there must be 720/120 = 6 bundles.

This counting argument also works in the game SET.

In SET, each of the cards has a picture with four features (color, shape,
number, shading), each with three possible variations, for a total of 34 = 81:
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• color: red, purple, green

• shape: oval, squiggly, diamond

• number: one, two, three

• shading: blank, solid, hatching

A “SET” is three cards in which each feature either has the same variation
on each card or all three variations. We can write down the equation

(SETs) · (pairs per SET) = (pairs) · (SETS per pair)

There are
(
3
2

)
= 3 pairs of cards per SET, and there is 1 SET per pair (in

any SET, the features of the third card are determined by those of the first

two). And the total number of pairs is
(
34

2

)
, so the number of SETs is(

34

2

)
/

(
3

2

)
= 1080.

For dodecahedral bundles we used the same reasoning, with adjacent pairs
of dodecahedra instead of pairs of cards and bundles of rings instead of SETs!

SET is an example of a Steiner system. A system S(t, k, n) is a collection
of k-subsets (called blocks) of an n-set for which every t-subset is contained
within exactly one block. By our counting argument, there are

(
n−ℓ
t−ℓ
)
/
(
k−ℓ
t−ℓ
)

blocks containing any ℓ-subset. SET is a S(2, 3, 34) and ℓ = 0 counts SETs.

There are infinitely-many lines (not necessarily through the origin) in Eu-
clidean space. If we consider 4D space, and instead of using real numbers for
coordinates use the integers mod 3, then the vectors and lines respectively
correspond to cards and SETs from the game SET!

This problem’s title and bundle picture are taken from a post of the same
name on the blog “Complex Projective 4-Space” by A.P. Goucher.
The dodecahedral bundles are discrete versions of the Hopf fibration.

Visualizing the fibration requires stereographic projection. Usually, we project
a circle onto a line, or a sphere onto a plane, but for this, we need to project
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the “three-sphere” sitting in 4D down to 3D Euclidean space.

Just as a Möbius band is a bunch of line segments arranged in a circle, or
a Klein bottle is a bunch of circles arranged in a circle, the three-sphere is,
somewhat miraculously, a bunch of circles arranged in the shape of a (2D)
sphere! When stereographically projected, that means all of 3D space is filled
in with circles, with one “infinitely large” circle (i.e. a line).

The circles can be bunched together into wreaths (solid Dupin cyclides, to
be exact), then those wreathes turned into rings of dodecahedra.

In 4D space, these dodecahedra are the cellular panels of the “120-cell” poly-
tope. The centers of the dodecehdra form the dual polytope, the “600-cell,”
which is also the group of unit-length icosians in the quaternions. Because
of how quaternions model 3D rotations, every antipodal pair of icosians cor-
responds to one of the 60 rotational symmetries of an icosahedron!
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■ Gyration Conjugation: Solution

An icosehdron has 12 vertices, 30 edges, and 20 triangular faces. If we mark
a distinguished vertex then any rotational symmetry may be specified by first
saying which vertex the marked one is sent to and then choosing one of the
five rotated orientations around that final vertex, for a total of 12 × 5 = 60
rotations. A similar argument works for edges (30×2) or faces (20×3). This
is an instance of the orbit-stabilizer theorem in group theory.

By symmetry, there are three types of axis a rotational symmetry of the icose-
hedron can have: one through a vertex or through the midpoint of either an
edge or a face. Every vertex corresponds to five rotations, every edge to two,
and every face to three. In the first case, for example, we have fifths of a full
turn, or multiples of 360◦/5 = 72◦. (Angles are measured counterclockwise
according to the right-hand rule.)

A reflex-angle rotation around a ray is the same as a convex-angle rotation
around the opposite ray (e.g. 270◦ around the South Pole is the same as
90◦ around the North Pole), so WLOG we may consider only convex angles.
Then, not counting 0◦, every vertex has two angles, every pair of opposite
edges has one angle, and every face has one angle. In summary:

order angle count × commute = total
1 0◦ 1 × 60 = 60
2 180◦ 15 × 4 = 60
3 120◦ 20 × 3 = 60
5 72◦ 12 × 5 = 60
5 144◦ 12 × 5 = 60

As AB = BA is equivalent to ABA−1 = B, we can count the (A,B) that
commute by counting for each type of rotation A the rotations B unchanged
by conjugation, tabulated above. In general, B simply must have the same
axis of rotation, unless A is 180◦ around an edge midpoint and then B can
also have a perpendicular axis (through another inscribed rectangle). Then

P =
5× 60

60× 60
=

5

60
=

1

12
.
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■ Halving Harmonics: Solution

Fill in the list a1, a2, a3, · · · with powers-of-two for the non-square indices,
and all other numbers in increasing order for square indices:

n∑
k=1

1

ak
= 1 +

1

2
+

1

4
+

1

3
+

1

8
+

1

16
+

1

32
+

1

64
+

1

5
+ · · ·

In the first n terms there are
√
n (rounded) harmonic terms, and the others

are geometric terms. The harmonic terms can be increased by decreasing the
denominators to simply be 1, 2, 3, · · · ,

√
n, so the harmonic part is bounded

above by H√n < ln
√
n + 1. The geometric part is bounded above by the

infinite geometric series 1
2 +

1
4 +

1
8 + · · · = 1.

Therefore, for any choice 0 < ε < 1
2 (setting c = 1

2 + ε), we have

n∑
k=1

1

ak
<
[
ln
√
n+ 1

]
+ 1 <

(
1

2
+ ε

)
lnn < c

n∑
k=1

1

k

for all n > N so long as 1 + 1 < ε lnN .
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■ Heat of Battle: Solution

The idea is to overlay all ship configurations together to get a heat map
which for each cell counts how many configurations have a ship occupying it.

Wherever a 3-tile ship is, we can rotate or flip the board so that it is either
vertical in the top left corner, or just to the right of that. In both cases,
determine how many 2-tile ship placements cover the other cells (the yellow
values 1, 2, 3, 4 below). Each configuration, the 2-tile ship contributes +2 to
the yellow total, so the number of configurations with the 3-tile ships is the
yellow totals divided by 2 (the yellow-orange values 18, 15).

For both arrays above, there are a total of four rotated versions of the array,
and then four more arrays that can be obtained by flipping those rotated
versions. Instead of writing down sixteen arrays and then adding sixteen
numbers for each of the sixteen cells, we can see what rotating and flipping
does to individual cells. For example, any one corner cell when rotated and
flipped lands at each of the four corner cells twice.

Considering this for all cells (or even just for three appropriate cells in a
corner 2× 2 block), we fill in the grid with sky, blue, and purple multipliers
shown in the next figure. After adding the yellow and yellow-orange grids
above together, we must apply the multipliers and then sum all the values in
cells of a given multiplier color to get our final heatmap.

For example, after adding the grids, the corners clockwise from the top left
are 18 + 1 = 19, 2 + 2 = 4, 2 + 2 = 4, and 1 + 2 = 3; doubling these values
gives 38, 8, 8, and 6; adding these values gives 38 + 8 + 8 + 6 = 60.
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Each cell counts how many configurations have a ship occupying it, but to
get probabilities we need to know how many configurations there are in total;
each configuration contributes +5 tiles to the total sum of orange-red values
above, so if we add all these orange-red values and divide by 5 we get a total
of 4(60+2 ·85+100)/5 = 264 configurations. Dividing the orange-red values
by 264 gives the probabilities listed below the grid above.

Computing the heatmap for a larger battleship grid using more pieces of more
shapes would require a computer.

The video game The Legend of Zelda: The Wind Waker includes an 8×8 bat-
tleship minigame, “Sploosh Kaboom,” which was once the bane of speedrun-
ners because the game generates the ship configuration randomly. (Speedrun-
ning is a competetive activity where very capable players beat video games,
or certain levels in them, under certain conditions as fast as possible.)

A breakthrough occured after an app was created which not only uses a
heatmap to show where the most probable hits are, but updates the heatmap
after each hit or miss by throwing out all configurations inconsistent with the
hit or miss. This is effectively an example of a Bayesian search.

Bayesian statistics has been applied successfully to real life searches where
traditional searches failed (with cost-benefit predictions to boot): many lost
ships and flights have been found from the ocean depths, including even a
lost hydrogen bomb. The U.S. Coast Guard and U.S. Air Force adopted it
for use in search and rescue operations after its success.
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■ Heisenberg: Solution

(I). We show ab−1 and b−1a commute:

(ab−1)(b−1a) = (b−1a)(ab−1)

⇐⇒ ab−2a = b−1a2b−1

⇐⇒ aba = b−1a−1b−1

⇐⇒ aba = (bab)−1

⇐⇒ (aba)(bab) = e

⇐⇒ (ab)(ab)(ab) = e

⇐⇒ (ab)3 = e

(II). And a commutes with aba−1b−1 because (much harder):

a(aba−1b−1) = (aba−1b−1)a (1)
⇐⇒ a(aba−1b−1)a−1(aba−1b−1)−1 = e (2)
⇐⇒ a(aba−1b−1)a−1(bab−1a−1) = e (3)
⇐⇒ a−1ba−1b−1a−1bab−1a−1 = e (4)
⇐⇒ a−1b(bab)bab−1a−1 = e (5)
⇐⇒ a−1b−1ab−1ab−1a−1 = e (6)
⇐⇒ a−1b−1ab−1ab−1 = a (7)
⇐⇒ ab−1ab−1ab−1 = e (8)
⇐⇒ (ab−1)3 = e (9)

(1)⇒ (2) rewrites xy = yx as xyx−1y−1 = e, where x = a and y = aba−1b−1;
(2) ⇒ (3) uses the socks-and-shoes rule; (3) ⇒ (4) rewrites a2 as a−1 in
the front; (4) ⇒ (5) rewrites a−1b−1a−1 = (aba)−1 as bab (compare with the
middle of the last derivation); (5) ⇒ (6) rewrites b2 as b−1; (6) ⇒ (7) ⇒ (8)
right-multiplies by a and left-multiplies by a−1 (replacing a−2 with a).

Suppose G is freely generated by a and b, or in other words all group elements
are products of powers of a and b, and it is not possible to express a or b in
terms of each other (in particular e, a, a2, b, b2 are all distinct).
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In the first derivation (I), the observation (ab)3 = e is equivalent to aba and
bab being inverses is prescient. Another consequence, to be used momentarily:

aba = (ab−1)(b−1a) = pq
⇐⇒ bab = (pq)−1 = q−1p−1,

denoting p = ab−1 and q = b−1a for convenience.

Interpret the equation (ab−1)b = a = b(b−1a) as a sliding rule: a recipe for
how to slide one group element past another (with compromises along the
way). In particular, the rule pb = bq says we can slide p past b from left to
right as long as we turn the p into q, or conversely we can slide q past b from
right to left as long as we turn the q into a p. But then how do we slide p
and q past b the other directions? Using b−1 = b2 we can determine

qb = (b−1a)b
= b(bab)
= bq−1p−1

and
bp = b(ab−1)

= (bab)b
= q−1p−1b

In conclusion, if we have an expression which is a bunch of ps and qs on one
side of b, these sliding rules let us convert it into an expression with a (prob-
ably different) bunch of ps and qs on the other side of b. Since p and q also
commute, we can conclude all group elements can be put into a “standard
form” like bupvqw with −1 ≤ u, v, w ≤ 1 (or 0 ≤ u, v, w ≤ 2, same difference);
in particular, this means the order (cardinality) is |G| = 33 = 27.

In (II) we work with the commutator [a, b] := aba−1b−1 of two elements
a and b, so-called because it “measures” the extent to which a and b fail
to commute. (This intuition extends further to describe the structure of a
group; see central series and nilpotence class.) In particular, two elements
commute (xy = yx) if and only if the commutator is trivial ([x, y] = e).
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Our derivation in (II) only showed a commutes with [a, b], or in other words
[a, [a, b]] = e, but it is possible to show this implies [b, [a, b]] = e too.

Note xy = xy implies y−1x = xy−1 and yx−1 = x−1y (multiply on the left or
right by x−1 or y−1 appropriately); also, it implies e.g. x2y = xxy = xyx =
yxx = yx2; similar reasoning shows any power of x commutes with any power
of y (positive or negative). Socks-and-shoes implies [x, y]−1 = [y, x]. By sym-
metry, we could have done the derivation in (II) with the letters a and b
swapped, which gives [b, [b, a]] = e, which thus implies [b, [a, b]] = e.

Since c := [a, b] commutes with G’s generators a and b, it is central: it
commutes with all group elements. We can interpret ab = cba or ba = abc−1

as another sliding rule for how to move a and b past each other, from which
we may conclude all group elements are expressible in a standard form like
aubvcw with −1 ≤ u, v, w ≤ 1 (or 0 ≤ u, v, w ≤ 2, if so inclined).

We can also express these ideas in the esoteric language of group theory.

For (I), consider the subgroup H = ⟨ab−1, b−1a⟩ of G. To show it’s normal, it
suffices to check conjugating H’s generators by G’s generators doesn’t leave
H: both a(b−1a)a−1 and b(b−1a)b−1 simplify to ab−1, and both a(ab−1)a−1

and b(ab−1)b−1 simplify to bab, which we found earlier is (b−1a)−1(ab−1)−1.

We can say “a ≡ b mod H” because b−1a and ab−1 are in H. Thus in the
quotient group G/H, all bs turn into as and so all elements can be represented
by a power au with 0 ≤ u ≤ 2. Moreover, ab−1 and b−1a commute and have
order 3 in H, so H is elementary abelian of order 32 = 9. From this we can
conclude the order of G is |G| = [G : H]|H| = 3 · 32 = 27.

Or for (II), consider the subgroup K = ⟨[a, b]⟩. It is cyclic of order 3. As
[a, b] is central, so is K, so in particular it is normal. We can say “ab ≡ ba
mod K” because (ab)(ba)−1 is in K. Thus in the quotient group G/K all
elements are expressible as aubv with 0 ≤ u, v ≤ 2, or in other words G/K is
elementary abelian of order 32. Once again, |G| = [G : K]|K| = 32 · 3 = 27.
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Our group G has an explicit matrix representation, by writing

a =

 1 1 0
0 1 0
0 0 1

 , b =

 1 0 0
0 1 1
0 0 1

 , c =

 1 0 1
0 1 0
0 0 1

 .

In this matrix group, numbers are interpreted mod 3, meaning all matrix
entries are in F3 = {0, 1, 2} where addition and multiplication “wrap around”
(for comparison, clock arithmetic is mod 12), which means e.g. −1 ≡ 2
represent the same scalar. Here, c = aba−1b−1, and the group of matrices
generated by a and b using matrix multiplication are the unitriangular ones:

G =


 1 x z
0 1 y
0 0 1

 ∣∣∣ x, y, z in F3

 .

This is theHeisenberg groupH3(F3). The continuous versionH3(R) (which
uses real numbers instead of integers mod 3) has infinitesimal generators
analogous to a and b which represent position and momentum operators in
quantum mechanics (also present in the Heisenberg uncertainty principle).

TheBurnside group B(k, n) is the “free”-est group of exponent n generated
by k generators. That means all group elements are products of powers of
generators a1, · · · , ak and the only relations that exist between the generators
are those that can be derived from the assumption that gn = e for all group
elements g. Our group is H3(F3) = B(2, 3). In general, if n = 3 the Burnside

group has order |B(k, 3)| = 3(
k
1)+(

k
2)+(

k
3). While it is known whether or not

B(k, n) is finite for many small values of (k, n), no general rule is known.

The complexity of the derivation for (II) is not at all an outlier in compu-
tational group theory. The word problem for groups asks if there is an
algorithm that, when given a group (presented by a set of generators and
relations between them) can decide when two “words” represent the same
element. It turns out to be undecidable: there is no such algorithm.
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■ Homogenization: Solution

For the two-variable version, we may combine like terms:

a0 + a1(x+ y) + a2(x
2 + xy + y2) + a3(x

3 + x2y + xy2 + y3) + · · ·

(Arbitrary rearrangement and grouping is legal since we do not need to worry
about convergence issues.) This means

∞∑
m=0

∞∑
n=0

am+nx
myn =

∞∑
s=0

as(x
s + · · ·+ ys) =

∞∑
s=0

as

(
xs+1 − ys+1

x− y

)

=

x

( ∞∑
s=0

asx
s

)
− y

( ∞∑
s=0

asy
s

)
x− y

=
xf(x)− yf(y)

x− y
.

For the four-variable version, notice that the sum of all monomials wkxℓymzn

such that k + ℓ = r and m+ n = s, where r and s are fixed, can be factored
as (the sum of all monomials wkxℓ with k + ℓ = r) times (the sum of all
monomials ymzn with m + n = s). This is because we may choose the
pairs (k, ℓ) and (m,n) independently of each other when deciding on which
monomial wkxℓymzn to write down. Therefore
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∞ ∑ k
=
0

∞ ∑ ℓ=
0

∞ ∑ m
=
0

∞ ∑ n
=
0

a
k
+
ℓ+

m
+
n
w

k
x
ℓ y

m
zn

=
∞ ∑ r=
0

∞ ∑ s=
0

a
r+

s
(w

r
+
··
·+

x
r
)(
y
s
+
··
·+

zs
)
=

∞ ∑ r=
0

∞ ∑ s=
0

a
r+

s

( wr
+
1
−

x
r+

1

w
−

x

)( y
s+

1
−
zs

+
1

y
−
z

)

=

w
y

( ∞ ∑ r=
0

∞ ∑ s=
0

w
r
y
s

) −
w
z

( ∞ ∑ r=
0

∞ ∑ s=
0

w
r
zs

) −
x
y

( ∞ ∑ r=
0

∞ ∑ s=
0

x
r
y
s

) +
x
z

( ∞ ∑ r=
0

∞ ∑ s=
0

x
r
zs

)
(w
−

x
)(
y
−

z)

=

w
y

( wf
(w

)
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y
f
(y
)

w
−

y

) −
w
z

( wf
(w

)
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zf
(z
)
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−
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y

( xf
(x
)
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y
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)
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z
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(x
)
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)
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z

)
(w
−

x
)(
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■ Hyperdiamond: Solution

How are the points (w, x, y, z) arranged?

The w = ±1 cross-sections each have a single point. The w = 0 cross-section
has the vertices of a regular octahedron (the six unit vectors along the 3D
coordinate axes), but no edges within this slice. The w = ±1

2 cross-sections
each contain a unit cube’s worth of vertices and edges.

The points with w = ±1 are connected to all vertices of the cube in the corre-
sponding w = ±1

2 slice. Each cube vertex is connected to the corresponding
vertex of the other cube. Each cube face corresponds to an octahedral vertex,
and any cube vertex is connected to an octahedral vertex corresponding to
an adjacent cube face.

(a) and (b):

First, let’s find how many regular hexagons are incident to (1, 0, 0, 0), by
first considering which cross-section an adjacent vertex may lie.

The distances from (1, 0, 0, 0) to other points are as follows:

•
√
1 for those in the w = +1

2 slice,

•
√
2 for those in the w = 0 slice,

•
√
3 for those in the w = −1

2 slice, and

•
√
4 for those in the w = −1 slice.

165



UNOmaha Problem of the Week

The second point in a regular hexagon must be 1 unit away, which forces it
to be any of the eight points in the w = 1

2 slice.

The third point must be 1 unit away from the second and
√
3 units from

the first, forcing it to be the cube vertex in the w = −1
2 slice corresponding

to the one chosen second in the w = 1
2 slice. So if we picked 1

2(1, 1, 1, 1) for

the second point, then the third must be 1
2(−1, 1, 1, 1).

For the next three points, use the fact the regular hexagon is symmetric
across the origin. This means it must contain the opposites of the three
points we already picked. This leaves us with one hexagon:

H1 = {(±1, 0, 0, 0), 12(±1,±1,±1,±1︸ ︷︷ ︸
same sign

)}.

Notice the entire hexagon was determined by the choice of second point.
There was some redundancy in this choice, however, since the hexagon ulti-
mately ended up having a pair of vertices antipodal within the w = 1

2 slice’s

cube, 1
2(1, 1, 1, 1) and

1
2(1,−1,−1,−1).

Therefore, the number of hexagons incident to (1, 0, 0, 0) is the number of
antipodal pairs of vertices of the cube, which is 4. By symmetry, every point
of the 24-cell is incident to 4 hexagons. Therefore,

(#hexagons)(#points per hexagon) = (#points)(#hexagons per point)

implies the number of hexagons is 24 × 4 / 6 = 16. Alternatively, we can
note that the second choice of vertex determining the rest of the hexagon is
equivalent to saying a single edge (between the first and second vertex) fully
determines the hexagon. Therefore,
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(#hexagons)(#edges per hexagon) = #edges

implies the number of hexagons is 96 / 6 = 16. The edge count

2(8 + 12 + 24) + 8 = 96

follows from counting edges between the five w slices:

• 8 edges from w = 1 to the w = 1
2 ,

• 12 edges within the w = 1
2 slice,

• 24 edges between the w = 1
2 slice and the w = 0 slice:

– 8× 3 by picking a vertex in w = 1
2 then w = 0, or

– 6× 4 by picking a vertex in w = 0 then w = 1
2 ,

• by symmetry, ditto for the negative side of w = 0,

• 8 edges between the w = ±1
2 slices.

In summary, every edge is contained in exactly one hexagon, so there are 16
hexagons and they form a partition of the 96 edges.

(c) and (d):

We will construct a bundle by first picking a hexagon H1, then a disjoint
hexagon H2, and so on. At each stage, we note how many hexagons we have
to choose from. By symmetry, we expect the number of hexagons available
at any stage is independent of which hexagons were chosen before. By the
fundamental counting principle, we multiply the numbers to count the or-
dered bundles (H1, H2, H3, H4).

Even before this, though, there are 16 hexagons total and 4 through w = ±1;
where are the other 12? Pick any of the 12 edges in the w = 1

2 slice, pick the

corresponding edge in the w = −1
2 slice, then connect them to the endpoints

of the parallel axis in the w = 0 slice:
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We’ve already picked H1 out of 16 options. Our next hexagon H2 cannot use
either of the vertices in w = ±1 so must entirely be contained in the middle
three slices. It must also avoid the cube-antipodal points already used in the
w = ±1

2 slices, as well as all of the edges connected to them. This leaves the
following six edges available:

Any of the six edges may be chosen, but the next three hexagons must be
vertex-disjoint, so we must choose all three edges of one or the other color
and determine three hexagons H2, H3, H4 from them.

Picking the three green edges, we have the following bundle:

H1 = {(±1, 0, 0, 0), 12(±1,
same sign︷ ︸︸ ︷

±1,±1,±1)},
H2 = {(0,±1, 0, 0), 12(±1,±1,−1,+1)},
H3 = {(0, 0,±1, 0), 12(±1,+1,±1,−1)},
H4 = {(0, 0, 0,±1), 12(±1,−1,+1,±1)}.

There are 4! permutations of (H1, H2, H3, H4), and when constructing the
bundle we had 16 options for H1 followed by 3! = 6 permutations of 2 color
choices for the remaining three hexagons H2, H3, H4, thus

#bundles =
16× 6× 2× 1

4× 3× 2× 1
= 8.
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Viewing (w, x, y, z) as a quaternion w+xi+yj+zk, the 24-cell Q24 is a finite
group under multiplication which contains the usual quaternion group Q8 =
{±1,±i,±j,±k}. The elements of orders 1, 2, 3, 4, 6 correspond to vertices
a distance of

√
0,
√
1,
√
2,
√
3,
√
4 away from 1 in the slices w = 1,−1,−1

2 , 0,
1
2 .

The order six subgroups of Q24, which are cyclic, are the four hexagons
through ±1, and are all conjugate. The 16 hexagons are the cosets of these
subgroups, and the 8 bundles are the left and right coset spaces of the four
hexagon subgroups. (Note every left coset is a right coset of a conjugate
subgroup, but left coset spaces are not right coset spaces.)
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■ Icosian Palette: Solution

All six colors must be present on the dodecahedron. Once one half (one face
and its five neighbors) has been painted, the other half is determined: every
face must be painted the same color as the face on the opposite side. This is
shown with front and back sides of an example below.

To see why this is true, suppose we start by painting one face our favorite
color. The first ring of five neighboring faces must exhibit the five other
colors. Call this the “front” side. The second ring of five faces beyond that,
on the back side, cannot be colored the first color, or else one of the five
faces in the first ring would be adjacent to two faces of the same color. This
backside ring of five faces must exhibit five different colors, since they are all
adjacent to the final face they surround and which is opposite the very first
one. As the backside ring exhibits the same five colors as the frontside ring,
that leaves only the first color for the final face opposite the very first one.

(front from front pov) (back from front pov) (back from back pov)

(The second picture above is what is seen if the front half is deleted, the third
is what is seen if the solid is rotated 180◦ in 3D around the North-South axis.)

Thus, any painting of the dodecahedron is determined by the ring of colors
around the face with our favorite color. There are 5! ways to put five colors to
five faces, but we must take into account these are equivalent under rotation
and reflection (from looking at the ring on the opposite side). There are five
rotations and five reflections of a pentagon, ten total, so our answer is

5!

10
= 12.
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The title of the problem is based on the Icosian Game, a toy puzzle invented
by mathematician William Rowan Hamilton in the late 1850s. The toy chal-
lenges the player to trace a circuit along a dodecahedron’s edges which con-
nects all the vertices, hitting each exactly once. Such a path is today called
a Hamiltonian circuit. A general version of the problem was posed a couple
years earlier by the graph theorist Kirkman.

(Royal Irish Academy Library, 2016)

Hamilton himself considered the game as a way to apply what he called the
icosian calculus, a way to describe the symmetries of the dodecahedron (which
are the same as those of an icosahedron, because they are dual polytopes) in
the language of group theory, aptly calling the symmetries “noncommutative
roots of unity.” His friend John T. Graves suggested turning the puzzle into
a commercial venture (which apparently failed).
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■ Isoepiareal Ratio: Solution

Let Q = V 2/S3 by the isoepiareal ratio. Suppose a cuboid with maximal Q
has dimensions x, y, z so its volume and surface area are

V = xyz, S = 2xy + 2yz + 2zx.

Solution 1. If Q is maximized, then so is lnQ, which is given by

lnQ = 2 ln(xyz)− 3 ln(xy + yz + zx)− 3 ln 2.

If two of x, y, z are fixed while the third is changed, the ratio is decreased,
so lnQ has a local maximum and its first derivative (with respect to the
nonconstant variable) must vanish. Thus,

∂ lnQ

∂x
=

2

x
− 3(y + z)

xy + yz + zx
= 0

∂ lnQ

∂y
=

2

y
− 3(x+ z)

xy + yz + zx
= 0

∂ lnQ

∂z
=

2

z
− 3(x+ y)

xy + yz + zx
= 0

Solve for 2
3(xy + yz + zx) in each, equate the results:

x(y + z) = y(x+ z) = z(x+ y).

Subtracting pairs of expressions from this equation gives

0 = (x− y)z = (y − z)x = (x− z)y.

Since x, y, z > 0, the differences (e.g. x− y) are zero, so x = y = z.

This means the cuboid must be a cube.

Solution 2. Let a, b, c be the products xy, yz, zx. Then V 2 = abc and
S = 2(a+ b+ c). With surface area S held constant, the AM-GM inequality
implies the volume is bounded above by

3
√
abc ≤ a+ b+ c

3
=⇒ V 2/3 ≤ S

6
=⇒ V 2

S3
≤ 1

63

with equality (hence when the ratio is maximized), crucially, if and only if
a = b = c, which in turn is equivalent to x = y = z.

172



UNOmaha Problem of the Week

■ Interesting Asymptotic: Solution

By repeatedly differentiating ln(1 + x) we can reasonably guess, and then
prove, a formula for its nth derivative, and then determine the coefficients
of its Taylor-Maclaurin power series. Alternatively, we can find the definite
integral of the geometric series for 1/(1 + t) from 0 to x.

Either way, we arrive at the so-called Newton-Mercator series:

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·

Thus we may rewrite 1
e(1 +

1
n)

n as powers of e and then

1

e

(
1 +

1

n

)n

= exp

[
−1 + n ln

(
1 +

1

n

)]
= exp

[
−1 + n

(
1

n
− 1

2n2
+

1

3n3
− · · ·

)]
= exp

(
− 1

2n
+

1

3n2
− · · ·

)
= 1 +

(
− 1

2n
+

1

3n2
− · · ·

)
+

1

2!

(
− 1

2n
+ · · ·

)2

+ · · ·

= 1− 1

2n
+

1

3n2
+

1

8n2
+ · · ·

And therefore we conclude a = −1
2 , b =

1
3 +

1
8 =

11
24 , or in other words

1

e

(
1 +

1

n

)n

≈ 1− 1

2n
+

11

24n2
.
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■ Involutive Units: Solution

Solution 1. Suppose n is tight and the (j + 1)st prime pj+1 is the largest
prime not dividing n, so n must be a factor of p2j+1− 1, and indeed n < p2j+1.

On the other hand, n is divisible by the first j primes p1, p2, · · · , pj so it
is divisible by their product, hence their product satisfies p1p2 · · · pj ≤ n.

Putting this together we conclude p1p2 · · · pj < p2j+1.

Check when this comparison first fails:

2 · 3 < 52

2 · 3 · 5 < 72

2 · 3 · 5 · 7 > 112

It will follow that p1p2 · · · pk > p2k+1 for all pk+1 ≥ 11, since if it holds for one
prime pk+1 on the right, then for the next prime pk+2 we have

p1p2 · · · pkpk+1 > p1p2 · · · pk · 4 > p2k+1 · 4 > p2k+2.

This uses Bertrand’s postulate, which implies pk+2 < 2pk+1.

If the largest prime not dividing n is pk+1 = 7, then n is a factor 72− 1 = 48.
This would imply 5 is not a factor of n. Therefore n is a factor of one of the
numbers 52 − 1 = 24 or 32 − 1 = 8 or 22 − 1 = 3.

It turns out the tight numbers are precisely the factors of 24:

n = 1, 2, 3, 4, 6, 8, 12, 24.

To check that one of these numbers n is tight, we can’t directly check it
is a factor of all x2 − 1 for all relatively prime values x because there are
infinitely many such values of x! But, it suffices to check n is a factor of
x2 − 1 for just relatively prime values x < n. This is because if y is any
value relatively prime to n and x is its remainder upon division by n then
y2 − 1 = (x2 − 1) + (2k + n)n has n as a factor if and only x2 − 1 does.

Manually check each listed number is right.
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Solution 2. The condition that n is a factor of x2 − 1 for values x coprime
to n may be restated as x2 ≡ 1 mod n for all units x mod n.

In other words, all nontrivial elements of the unit group U(n)
def
= (Z/nZ)×

have order two, i.e. they are all involutions and U(n) has exponent two.

The Chinese Remainder Theorem indicates U(n) is a direct product of U(pv)
for all prime powers pv in n’s prime factorization. This group, for odd primes,
is cyclic of order ϕ(pv) = pv−1(p− 1), hence if p− 1 > 2 then U(n) contains
elements of order not 2. Thus, if n is tight it cannot be divisible by any
prime p > 3 and can only be divisible by 3 at most once. For p = 2, we have
U(2w) ∼= Z2 × Z2w−2, which contains an element of order 4 if w − 2 > 1, so if
n is right it can only be divisible by 2 at most 3 times.

In conclusion, n = 2v3w with v ∈ {0, 1, 2, 3} and w ∈ {0, 1}.
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■ Joker’s Wild: Solution

Suppose a player’s current score is X. Let c1, · · · , ck−1, J be the cards they
haven’t drawn yet. The expected value of the next hand is then

E =
c1 + · · ·+ ck−1 −X

k
If the Joker is drawn next then the value of the next hand is −X, since the
score drops to 0. Note that X is the sum of all the cards that have been
drawn so far, so (c1 + · · ·+ ck−1) +X = 1 + 2 + · · ·+ 10 = 55. Therefore,

E =
(55−X)−X

k
The expected value of the next hand is positive precisely when 55− 2X > 0,
or X < 27.5. Thus we ought to set the target score at S = 28.
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■ Kaleidoscopic Diamonds: Solution

There are tons of ways to go between the top three diagrams (indeed, in-
finitely many if we allow backtracking and going in circles between diagrams).

Above is a fairly compact web showing how they can all be connected, where:

• red lines mean row swap,

• green lines mean column swap,

• blue lines mean block swap.

The tiles are also color-coded so that all of the sixteen tiles have a unique
combination of color and orientation. Can you see which swaps take place?
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The full problem, created and hosted online by Steven H. Cullinane, a self-
described finite geometry enthusiast, includes many more diagrams. There is
also a harder version challenging the player to turn a pair of diagrams into
another pair if the moves apply to both diagrams simultaneously!

Finite geometry studies what happens when the axioms and operations of
geometry apply to finite sets of points - indeed, the coordinates and equations
of finite geometry replace the real number system with finite fields (number
systems which have the usual four arithmetic operations +,−,×,÷ but only
finitely many numbers, like the integers mod p where p is prime).

Let G be the group of permutations of the sixteen positions generated from
swapping rows, columns, or blocks. Cullinane published a “Diamond theo-
rem” which says any permutation of G applied to the first diamond figure
always results in another figure with symmetry involving ordinary rotation,
reflection and/or color-swapping the white and gray of tiles. The number of
diagrams attainable from the first one is 24 · 35 = 840.

G has a a subgroup H (with 1/16th of the permutations of G) which has two
other interesting incarnations: (a) the group A8 of all even permutations of
{1, · · · , 8}, those that arise from an even number of swaps, and (b) the group
GL4F2 of all invertible 4 × 4 matrices with bit entries (0 or 1) and bitwise
arithmetic (where + is logical XOR and × is logical AND). The full group
G ∼= Aff4F2 is equivalent to all affine transformations of F4

2 (four-dimensional
space with bit coordinates), and has 8! · 8 = 322 560 permutations.
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■ Killer Triangle Solution

In fact, we can show a stronger inequality:

60◦ ≤ aA+ bB + cC

a + b + c
≤ 90◦.

The upper bound is realized exactly when△ABC is degenerate (one-dimensional),
and the lower bound is realized exactly when △ABC is equilateral.

First, we may replace 90◦ with (A+B + C)/2 and cross-multiply:

2aA+ 2bB + 2cC ≤ (a+ b+ c)(A+B + C).

Expanding the right side (viewing a + b + c as a single coefficient), then
subtracting the terms from left to right and combining like terms yields

0 ≤ (b+ c− a)A+ (c+ a− b)B + (a+ b− c)C

The triangle inequality says each of these coefficients is positive (assuming it
is nondegenerate). In other words, the shortest path between two points (in
Euclidean space) is a straight line, which means the distance c on the trian-
gle is shorter than the zig-zag distance a+b the other way around the triangle.

As all of our operations were reversible, the truth of this last inequality im-
plies the truth of the first one. That is, 90◦ is indeed the upper bound.

We can proceed in a similar fashion for the lower bound: replace 60◦ with
(A+B + C)/3, and then cross-multiply to get the inequality

(a+ b+ c)(A+B + C) ≤ 3aA+ 3bB + 3cC

Subtracting the left side from the right side, the right side then admits an
elementary but nonetheless extremely non-obvious factorization:

0 ≤ (a− b)(A−B) + (b− c)(B − C) + (c− a)(C − A)

The triangle’s angles and sides have the same order rankings (for example,
if A ≥ B ≥ C then a ≥ b ≥ c). Thus, every pair of factors above has the
same sign (e.g. a−b and A−B), and so all three products above are nonneg-
ative. Indeed, the only way all of them are zero is if the triangle is equilateral.
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As before, all the operations performed were reversible, so the truth of this
last inequality implies the truth of the 60◦ lower bound.

This is an example of a Coffin Problem. These were examination prob-
lems given to Jewish candidates at Moscow State University during the 70s
and 80s which had solutions that were wildly easier to understand than they
were to discover (especially in a test setting), thus giving the mathematics
department a means of discrimination with plausible deniability.

This particular problem is attributed to Podol’skii, Aliseichik, 1989 in the
article Entrance Examinations to the Mekh-mat by A. Shen. Ilan Vardi has
written a set of solutions to twenty of the problems listed in Shen’s article:

http://www.lix.polytechnique.fr/Labo/Ilan.Vardi/mekh-mat.html

Tanya Khovanova also keeps an online collection of coffin problems:

http://www.tanyakhovanova.com/coffins.html

A similar-looking problem is attributed to Dranishnikov, Savchenko, 1984:

a+ b− 2c

sinC/2
+

b+ c− 2a

sinA/2
+

a+ c− 2b

sinB/2
≥ 0

which follows from rearranging the sum of three nonnegative terms∑
cyc

(a− b)

(
1

sinB/2
− 1

sinA/2

)
.

The notation
∑

cyc (which is conventional, since expressions with these kinds
of symmetry show up in certain contexts a lot) means to cycle through the
letters alphabetically (wrapping back around as appropriate). For instance,
the 60◦ lower bound earlier followed from rearranging

∑
cyc(a− b)(A−B).
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■ Lazy Spline: Solution

Denote the central vertex v. The curve is given by the formula

x(t) = t4 a+ 4t3(1− t)b+ 6t2(1− t)2 v + 4t(1− t)3 c+ (1− t)4 d.

with velocity vector x′(t) = p(t) + q(t)v, where

p(t) = 4t3 a+ 4(3− 4t)t2 b+ 4(1− 4t)(1− t)2 c− 4(1− t)3 d

and q(t) = 12t(2t2 − 3t + 1), computed by software (because we’re lazy, but
certainly possible to compute by hand). Then the energy functional is

E =

ˆ 1

0

∥p(t) + q(t)v∥2 dt

which, using ∥r∥2 = r · r and FOILing out becomes

E =

ˆ 1

0

∥p(t)∥2 + 2p(t) · q(t)v + q(t)2∥v∥2 dt.

This is extremized when ∇E = 0, where E is a scalar function of v. And

∇E =

ˆ 1

0

2p(t)q(t) + 2q(t)2v dt.

Setting ∇E = 0 and solving for v yields

v = −
( ˆ 1

0

p(t)q(t) dt
)/( ˆ 1

0

q(t)2 dt
)
.

Again using software we compute all integrals and coefficients and get

− (−24/35) a+ (12/35)b+ (12/35) c− (24/35)d

24/35

which simplifies to v = a− 1
2b−

1
2c+ d.
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The solution v has the following interpretation: it is the midpoint of BC
reflected across the midpoint of AD. This is evident in the formula

v = 1
2(a+ d)−

(
1
2(b+ c)− 1

2(a+ d)
)

Essentially, while b and c draw the curve outwards, the solution v is located
so as to pull the curve equally and oppositely back inward:

Quadratic and cubic Bèzier curves are used in vector graphics.

While common filetypes like PNG and JPG store a rectangular array of pixels,
other filetypes like SVG store equations that describe curves and gradients;
the latter kind are scalable - they look smooth no matter how zoomed-in.
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■ Lattice Chasing: Solution

A B C

A ∪B B ∪ C C ∪ A

A ∩B B ∩ C C ∩ A

(A ∪B) ∩ C (B ∪ C) ∩ A (C ∪ A) ∩B

(A ∩B) ∪ C (B ∩ C) ∪ A (C ∩ A) ∪B

A ∪B ∪ C

A ∩B ∩ C

X
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Note the last set in the lower right corner has two representations:

X = (A ∩B) ∪ (B ∩ C) ∪ (C ∩ A) = (A ∪B) ∩ (B ∪ C) ∩ (C ∪ A)

All of these diagrams can be guaranteed distinct when each of the seven
possible regions in the circles is nonempty. For instance, let A,B,C literally
be the circles depicted in the Euclidean plane. Or label each of the regions
1-7 and construct the corresponding sets A, B, C:

A = {1, 4, 6, 7}

B = {2, 4, 5, 7}

C = {3, 5, 6, 7}

It can be manually checked that unioning or intersecting any two of the listed
sets from the previous page yields another one of the listed sets. Therefore,
the maximum number of distinct sets we can get is 18 sets.

If counting empty union and empty intersection, there are 20 sets.

The empty union is the union of no sets, which must be empty because the
empty set is the only set that doesn’t affect anything else when unioning.
Similarly, the empty intersection is the intersection of no sets, which must be
the entire universe of elements under consideration. In a Venn diagram, this
would be all three circles filled in, plus the rest of a rectangle outside of it.
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■ Like an Egyptian: Solution

Without loss of generality, a < b < c. Then a > 1 and b > 2. Furthermore,

1

2
+

1

3
+

1

6
= 1,

which means for c > 6 we can maximize the sum using a = 2 and b = 3:

1

a
+

1

b
+

1

c
≤ 1

2
+

1

3
+

1

7
=

41

42
< 1.

We maximize the above sum by maximizing the summands individually,
which in turn we do by minimizing the denominators.

If c = 6, we know (a, b) ̸= (2, 3) which means we can similarly bound

1

a
+

1

b
+

1

6
≤ 1

2
+

1

b
+

1

6
≤ 1

2
+

1

4
+

1

6
=

11

12
<

41

42
.

We can manually check all four possibilities for 1
a +

1
b +

1
c with c < 6:

1

3
+

1

4
+

1

5
=

47

60
<

41

42
,

1

2
+

1

4
+

1

5
=

19

20
<

41

42
,

1

2
+

1

3
+

1

5
=

31

30
> 1,

1

2
+

1

3
+

1

4
=

13

12
> 1.

Thus we conclude 1
2 +

1
3 +

1
7 is closest, being 1

42 less than 1.
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■ Local Linear Fraction: Solution

The first three terms in f(x)s Taylor series around x = w:

f(x) ≈ f(w) + f ′(w)(x− w) + 1
2f
′′(w)(x− w)2

If f ′(w) = 0, the only Mobius transformation with derivative 0 somewhere
are constant functions, so the best approximation is the constant f(w).

Otherwise, we may subtract f(w) and divide by f ′(w)(x− w) to get

1

f ′(w)

f(x)− f(w)

x− w
≈ 1 +

f ′′(w)

2f ′(w)
(x− w)

The right side is the first two terms of a geometric series,

1 +
f ′′(w)

2f ′(w)
(x− w) ≈ 1

1− f ′′(w)

2f ′(w)
(x− w)

Putting this together gives

1

f ′(w)

f(x)− f(w)

x− w
≈ 1

1− f ′′(w)

2f ′(w)
(x− w)

which becomes

f(x) ≈ f(w) +
f ′(w)(x− w)

1− f ′′(w)

2f ′(w)
(x− w)

which is expressible as
ax+ b

cx+ d
. Notice if f ′(w) = 0, this becomes f(x) ≈ f(w),

and if f ′′(w) = 0 it becomes the linear approximation.

Another solution method is to rewrite the Möbius transformation g(x) to
only depend on three parameters, write the system of equations

g(w) = f(w), g′(w) = f ′(w), g′′(w) = f ′′(w),

and then solve for the three parameters.
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■ Noncommutative Calculus: Solution

We can work “mod t4,” meaning ignore any powers of t higher than t3.

The left-hand side exp(tX) exp(tY ) is(
1 + tX + 1

2t
2X2 + 1

6t
3X3 + · · ·

)(
1 + tY + 1

2t
2Y 2 + 1

6t
3Y 3 + · · ·

)
=

1+ t(X + Y ) + 1
2t

2
(
X2 + 2XY + Y 2

)
+ 1

6t
3
(
X3 + 3X2Y + 3XY 2 + Y 3

)
+ · · ·

On the other hand, the right-hand side exp(tZ1 + t2Z2 + t3Z3 + · · · ) is

1 + (tZ1 + t2Z2 + t3Z3 + · · · ) + 1
2(tZ1 + t2Z2 + · · · )2 + 1

6(tZ1 + · · · )3 + · · ·

= 1 + tZ1 +
1
2t

2(Z2
1 + 2Z2) +

1
6t

3(Z3
1 + 3Z1Z2 + 3Z2Z1 + 6Z3) + · · ·

Equating coefficients of t gives Z1 = X + Y , and equating coefficients of 1
2t

2

gives Z2
1 + 2Z2 = X2 + 2XY + Y 2: substituting Z1 into the latter we can

solve Z2 =
1
2(XY − Y X). Equating coefficients of 1

6t
3 and substituting gives

(X + Y )3 + 3
2(X + Y )(XY − Y X) + 3

2(XY − Y X)(X + Y ) + 6Z3

= X3 + 3X2Y + 3XY 2 + Y 3.

Distributing, subtracting, cancelling, and dividing by 6 gives

Z3 = 1
12

(
X2Y − 2XYX + Y X2 + Y 2X − 2Y XY +XY 2

)
.

The noncommutative polynomials Zk(X, Y ) may be expressed much more
compactly using the commutator operation [X, Y ] := XY − Y X:

Z1 = X + Y ,
Z2 =

1
2 [X, Y ],

Z3 =
1
12 [X, [X, Y ]] + 1

12 [Y, [Y,X]],
Z4 =

1
24 [Y, [X, [Y,X]]],

...
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A formula of Dynkin says that in Zn(X, Y ) the coefficient of

[X, [X, · · · [X︸ ︷︷ ︸
r1

, [Y, [Y, · · · [Y︸ ︷︷ ︸
s1

, · · · [X, [X, · · · [X︸ ︷︷ ︸
rn

, [Y, [Y, · · ·Y︸ ︷︷ ︸
sn

] · · · · · · ]

is (−1)n−1

n times the reciprocal of (r1+ · · ·+rn+s1+ · · ·+sn)r1! · · · rn!s1! · · · sn!

The full solution Z(X, Y ) =
∑∞

n=0 Zn(X, Y ) to exp(X) exp(Y ) = expZ (so,
when t = 1) is known as the Baker-Campbell-Hausdorff formula.

Beginning with Klein’s Erlangen Program at the turn of the 20th century,
mathematicians began studying the geometry of homogeneous spaces from
the perspective of symmetry groups. (“Homogeneous,” here, means no point
in space is more special than any other point in space.) The symmetry of a
sphere, for example, is the matrix group SO(3) of 3D rotation matrices.

Born from this was an interest in the action of continuous symmetry groups,
called Lie groups, particularly when it came to solving differential equa-
tions describing motion and dynamics. Lie’s idea was to think about so-
called infinitessimal symmetries. In other words, if we parametrize a family
of symmetries to create an animation (imagine, for instance, an animation of
a sphere rotating around an axis), we may differentiate the parametrization
at time t = 0. The infinitessimal symmetries form a Lie algebra.

The BCH formula implies it is possible to reconstruct the composition oper-
ation of the Lie group (locally, at least) from the bracket operation of the Lie
algebra. This is one of many results of a larger Lie-group−Lie-algebra corre-
spondence. More generally, the composition, conjugation, and commutator
operations of a Lie group correspond respectively (via differentiation) to the
addition, adjoint, and bracket operations in the corresponding Lie algebra.
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■ Not Yet Ready: Solution

Notice the progression 22← 44← 88. It suggests a process of simply divid-
ing by 2. Indeed, this explains what happens to even numbers on the graph.

The arrows from odd numbers are 352 ← 117, 88 ← 29, 28 ← 9, 22 ← 7; in
these cases, by inspection, the ratio between neighboring numbers is closer
to 3 than it is to 2. Suspiciously close, in fact. Indeed, the larger numbers
are all exactly 1 more than 3 times the smaller odd numbers! So we have:

704

352

117

176

88

442211

29 58

116

19

7 14 28

56 112

9 18

Our graph is none other than a graph of the function

T (x) =

{
x/2 x even

3x+ 1 x odd

The Collatz conjecture proposed in 1937 says this function applied over
and over again to any whole number must eventually reach 1. Paul Erdös,
one of the most prolific and renowned mathematicians of the 20th century,
said of the conjecture “Mathematics may not be ready for such problems.”
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■ Odd One Out: Solution

Suppose for the sake of contradiction a prime power pv evenly divided only
one of the denominators. It doesn’t matter which one, so just say it was x.

This means p can only be a factor at most v−1 times in the other denomina-
tors, so if we multiply the equation by pv−1 and move the other two fractions
to the other side we get a new equation like the following:

A

X
=

B

Y
+

C

Z

We only multiplied by pv−1, so the denominator X is still divisible by p. On
the other hand, the new denominators Y and Z no longer have p as a factor
(if they ever did to begin with...), which means when we add the fractions
on the right, the new denominator (after simplifying) will be a factor of Y Z,
and so the denominator on the right will not be divisible by p:

A

X
=

D

W

In summary, when the fractions on both sides are in lowest terms, the left
denominator is divisible by p but the right one isn’t. This is a contradiction!
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■ Orange Stack: Solution

There are three layers and a central sphere is chosen from the middle one;
it has three neighboring spheres in both the top and bottom layers, and six
neighboring spheres in the middle layer, for a total of twelve neighbors.

Counting, we find 12 vertices, 24 edges, and 14 faces. Specifically, 8 triangu-
lar and 6 square faces - the quadrilateral faces may not look like squares in
the 2D projection because in 3D they are sloped. This is a cuboctahedron.

This illustrates the kissing number (the most unit spheres which fit around
a central one) in 3D is 12. In 2D the kissing number is 6, corresponding to
a hexagon, which also extends to a circle packing. (This is why honeycombs
use hexagons!) In 4D the kissing number is 24, corresponding to a 24-cell.
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■

Observe 1 + 2 + 3 + 4 + 3 + 2 = 15. Up to this and beyond we have:

1 1
2 2
3 3
4 4
5 3 2
6 1 2 3
7 4 3
8 2 1 2 3
9 4 3 2
10 1 2 3 4
11 3 2 1 2 3
12 4 3 2 1 2
13 3 4 3 2 1
14 2 3 4 3 2
15 1 2 3 4 3 2
16 1 2 3 4 3 2 1
17 2 3 4 3 2 1 2
18 3 4 3 2 1 2 3
19 4 3 2 1 2 3 4
20 3 2 1 2 3 4 3 2

Moreover, notice after segmenting the sequence up to n = 15, the sequence
is back at its first term of 1. Thus, to segment terms of the sequence to sum
to any n beyond 15, we may first include the next 6 terms of the sequence
(which is the period, so any 6 consecutive terms sum to 15) and then include
whatever comes next that was used to segment the earlier value of n− 15.

Any sequence with the same property (that it can be segmented to get the
sequence of whole numbers) is called a Šindel sequence. If the sequence is
periodic with period p, and the sum of its first p terms is s, then we need
only check the first (s− 1)/2 terms to conclude it is a Šindel sequence.
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(Prague Astronomical Clock - Orloj 2022)

The Orloj is a medieval astronomical clock in Prague. Started in 1410, it
is the oldest running clock in the world. Its inner workings contain a gear
with teeth spaced at intervals 1, 2, 3, · · · , 24 and an auxillary gear with teeth
spaced at 1, 2, 3, 4, 3, 2. This allows it to strike k times on the kth hour.

(FG Forrest)
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■ Pair of Pairs: Solution

The number
(
n
2

)
counts how many unordered pairs {a, b} there are with a, b

distinct numbers drawn from {1, · · · , n}. Furthermore, the expression((n
2

)
2

)
counts how many pairs of pairs {{a, b}, {c, d}} there are with a, b, c, d from
{1, · · · , n}, with {a, b} ≠ {c, d}. There are two cases: the sets {a, b} and
{c, d} either share one number in common, or none.

In the first case, there are
(
n
3

)
ways to pick three distinct numbers {a, b, c}

from {1, · · · , n}, and then 3 ways to construct a pair of pairs out of them:

{{a, b}, {a, c}}, {{a, b}, {b, c}}, {{a, c}, {b, c}},

each corresponding to a choice of one of a, b, c (assume a < b < c so these
subsets are distinguishable) to be repeated. In the second case, there are

(
n
4

)
ways to pick four distinct numbers {a, b, c, d} (again assume a < b < c < d),
and then there are four ways to partition these four into two pairs of pairs:

{{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}}.

Putting it all together, we can write this as an equation((n
2

)
2

)
= 3

(
n

3

)
+ 3

(
n

4

)
.

Alternatively, we could have used the formula
(
n
k

)
= n

k
n−1
k−1

n−2
k−2 · · · (with k

fractions being multiplied) to verify the identity algebraically:

n(n− 1)

2

(
n(n− 1)

2
− 1

)
2

= 3
n(n− 1)(n− 2)

6
+ 3

n(n− 1)(n− 2)(n− 3)

24
.
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■ Pentagonal Peculiarity: Solution

Let r be the number of dots in the bottom row and d on the right diagonal.

▶ If r > d, we can pour the right diagonal into a new row. This increases
the number of rows by one. The new row will have strictly less dots than the
one above, so all rows have distinct numbers of dots, unless a dot from the
original last row gets poured into the new last row! This will happen if the
last row and right diagonal share a corner dot, in which case the new row
will fail to have fewer dots than the row above precisely if r = d+ 1.

In this case, the number of dots is

n = r + (r + 1) + · · ·+ (r + r − 2)

= (r − 1)r +
(r − 2)(r − 1)

2

=
(3r − 2)(r − 1)

2
=

(3d+ 1)d

2
.

▶ If r ≤ d, we can scoop the last row into the right diagonal. The rows will
still have distinct numbers of dots. This decreases the number of rows by
one, unless we scoop a dot back into the last row! This will happen if r = d
and again a corner dot is shared by the last row and right diagonal.

In this case the number of dots is

n = r + (r + 1) + · · ·+ (r + r − 1)

= r2 +
r(r − 1)

2
=

(3r − 1)r

2
.

Defining the kth pentagonal number g(k) = (3k − 1)k/2, the second case
has n = g(r) and the first case has n = g(−d). Note g is a one-to-one function
since g(0) = 0 and g(k) < g(−k) < g(k + 1) for all k > 0. Thus, either one
exception or the other can occur, depending on n, but not both.

In conclusion, the pouring-and-scooping procedure pairs the even-row dia-
grams with the odd-row diagrams, with at most one exception, so |E−O| = 1.
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The triangular numbers, square numbers, and pentagonal numbers are so-
named because they count dots in series of expanding geometric figures:

This has applications to expanding a certain infinite product into a series,

∞∏
m=1

(1− qm) =
∞∑
n=0

□ qn

When we expand out the product, infinitely, the resulting terms are of the
form (−1)rqm1+···+mr for distinct exponents m1, · · · ,mr. These terms corre-
spond to diagrams with n dots - specifically, with m1 in the first row, m2 in
the second row, and so on. Each diagram contributes ±1 to the coefficient □
depending on whether the number of rows is even or odd.

Thus, □ = E−O. We’ve seen this is 0 except when n = g(k) is a generalized
pentagonal number. In both kinds of exceptions we examined, the number
of rows was k (either k = d when r = d+ 1 or k = r when r = d). Therefore

∞∏
m=1

(1− qm) =
∞∑

k=−∞

(−1)kqk(3k−1)/2.

This is the Pentagonal Number Theorem.
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■ Perspective Shift: Solution

First, stretch out the triangle edges’ midpoints, and tighten the circular arcs
until they’re taut, to get a hexagon. Then, pull those same three vertices out
of the page to get a “triangular antiprism,” i.e. an octahedron!

Around all three axes there is fourfold rotational symmetry. In fact, we can
color opposite faces the same color using four colors, and then there is exactly
one rotational symmetry for each of the 4! = 24 permutations of these colors!

The graph of this problem, minus its outer circle, is a famous depiction of
the Fano plane F2P2 studied in finite geometry.

Finite geometry studies finite sets with combinatorial structures satisfying
axioms from geometry, often modeled with equations involving finite fields
(number systems with only finitely many numbers). In this context, the
axioms come from projective geometry, a branch of geometry historically in-
fluenced by the development of perspective drawing in Renaissance art.

The real projective plane RP2 is the 2D space whose points represent all
possible 1D subspaces of 3D Euclidean space R3. Every 1D subspace of R3

can be represented by a pair of unit vectors, so RP2 is like the sphere S2 but
where antipodal points ±v of S2 count as the same point of RP2. The real
projective plane, like the Klein bottle, is impossible to embed in R3 without
self-intersection, although immersions are possible (notably Boy’s surface).
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The Fano plane F2P2 is defined the same way, but uses the finite field F2

instead of the real numbers R. The term field means there is addition and
multiplication satisfying commutativity, distributivity and associativity, and
F2 in particular has only two numbers, an additive identity called 0 and a mul-
tiplicative identity called 1. Arithmetic is what you’d expect, except 1+1 = 0.

This means F3
2 has 23 = 8 vectors (a, b, c), and every 1D subspace contains

exactly one nonzero vector so there are seven elements of the Fano plane
F2P2, corresponding to the seven vertices of the graphical depiction. Every
2D subspace of F3

2 (called a line of F2P2) contains exactly three 1D subspaces,
which suggests drawing every possible edge between seven vertices (i.e., a
complete graph K7) and coloring the 3-cycles which are projective lines. The
usual triangular Fano plane depiction is missing edges, unfortunately.
The fact that the Fano plane’s symmetry group PGL3F2 has

(23 − 1)(23 − 2)(23 − 22) = 168 = 24 · 7

elements means there ought to be a picture which captures its sevenfold sym-
metry (which is not apparent in the octahedral picture). This picture can be
obtained by considering the exceptional isomorphism PGL3F2

∼= PSL2F7 and
the metacyclic subgroup of PSL2F7 (whose Möbius transformations acting on
the projective line F7P1 are affine transformations fixing 1/0 = ∞). It can
also be a helpful mnemonic for octonion multiplication! Octonions are an
eight-dimensional nonassociative number system generalizing quaternions.
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■ Pinching an Impulse: Solution

Pick any constant m, unbounded sequence m1,m2,m3, · · · and three se-
quences (i) a1, a2, a3, · · · ; (ii) b1, b2, b2, · · · ; and (iii) c1, c2, c3, · · · satisfying
0 < an < bn < cn < 1 and lim

n→∞
an = 1. For example we could pick

m = 0, mn = n, an = 1− 1

n+ 1
, bn = 1− 1

n+ 2
, cn = 1− 1

n+ 3
.

Then define fn(x) to be the piecewise-linear function whose graph consists of
the line segments joining the points (0,m), (an,m), (bn,mn), (cn,m), (1,m):

Since fn(1) = m for all n, so too does f(1) = m. For any x < 1 in the
domain, eventually an > x (or in other words, the triangle passes to the right
of x), after which point fn(x) = m, and thus f(x) = m there too. Thus, f is
the constant function identically equal to m, which is bounded.

This phenomenon shows up in some places.

Consider the continuity of f(x, y) = 2x2y/(x4 + y2) at (0, 0). Approaching
the origin along any line, the limit is 0. But approaching the origin along one
of the parabolas y = ±x2, the limit is ±1. This, and riffs on it, are common
counterexamples given in introductory calculus classes.
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Restricting the function f to a circle of radius r centered at the origin, the
graph shows ridges on either side which, as r → 0, get squeezed towards the
East and West poles of the circle, never really reaching them.

Another illustration of this is seen in Gibbs phenomenon. Almost any
“nice” function is expressible as an infinite sum of trigonometric functions,
called a Fourier series. The partial sums of a Fourier series converge, yet
there are “ringing artifacts” that are squeezed towards jump discontinuities.

200



UNOmaha Problem of the Week

■ Polarization: Solution

First we extend the vanishing condition. Substitute a = a1 + a2 into the
vanishing condition, and then distribute (aka “FOIL”) with multlinearity for

ϕ(a1,b, a2,b) + ϕ(a2,b, a1,b) = 0

The terms ϕ(a1,b, a1,b) and ϕ(a2,b, a2,b) are zero so do not appear. By the
symmetry condition, the two remaining terms are equal, so ϕ(a1,b, a2,b) = 0.

Similarly, substituting b = b1 + b2 into ϕ(a1,b, a2,b) = 0 gives

ϕ(a1,b2, a2,b1) = −ϕ(a1,b1, a2,b2)

Thus, swapping the second and fourth arguments changes the sign. If we had
instead substituted b = b1 + b2 first and a = a1 + a2 second we would have
found swapping the first and third arguments also changes the sign.

In conclusion, ϕ is fully antisymmetric: swapping any two of its arguments
changes its sign. This also forces ϕ to be alternating: if any two of its
arguments are equal, ϕ vanishes (equals 0). This is because if two arguments
are equal, then swapping them changes the sign but also does nothing, and
the only scalar value ϕ satisfying ϕ = −ϕ is ϕ = 0.

Finally, for ϕ(a,b, c,d), we can use basis vectors e1, e2, e3 to write
a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

c = c1e1 + c2e2 + c3e3

d = d1e1 + d2e2 + d3e3

which means ϕ(a,b, c,d) =
3∑

i=1

3∑
j=1

3∑
k=1

3∑
ℓ=1

aibjckdℓ ϕ(ei, ej, ek, eℓ).

Two of i, j, k, ℓ must be equal by the pigeonhole principle, which means all
of the summands above are 0, forcing ϕ(a,b, c,d) = 0 for all a,b, c,d.
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This solution shows how the two-vector Lagrange identity

∥a× b∥2 = (a · a)(b · b)− (a · b)2

in three dimensions implies the four-vector Binet-Cauchy identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

= det

(
a · c a · d
b · c b · d

)
= det

 | |a b
| |

T  | |c d
| |


of which the Lagrange identity is a special case: set ϕ(a,b, c,d) to be the
difference between the left and right sides of Binet-Cauchy, then show ϕ ≡ 0.

The situation is different in higher dimensions - in four dimensions, for in-
stance, there is a nonzero alternating form satisfying all four properties:

ϕ(a,b, c,d) = det

 | | | |a b c d
| | | |

 .

Even more generally, in n dimensions the set of all multilinear alternating
forms of k variables forms an

(
n
k

)
-dimensional vector space called the exte-

rior power ΛkRn (or technically its dual, depending on definitions).

Besides the pigeonhole principle, this solution uses polarization, a technique
for converting between homogeneous multivariable polynomials of degree d
and multilinear forms of d variables. The simplest nontrivial case is con-
verting between quadratic and bilinear forms, as seen in any of the many
polarization identities relating squared norms and inner products:

∥a+ b∥2 = ∥a∥2 + 2(a · b) + ∥b∥2.

The relation ∥v∥2 = v ·v tells us how to write norms in terms of dot products
and leads to this identity by substituting v = a + b, and conversely this
identity tells us how to rewrite dot products in terms of norms.
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Another equivalent polarization identity does the same trick,

a · b = 1
4

(
∥a+ b∥2 − ∥a− b∥2

)
,

and is the antisymmetrized sibling of the parallelogram law

2
(
∥a∥2 + ∥b∥2

)
= ∥a+ b∥2 + ∥a− b∥2.

Exercise 3.7 of The Cauchy-Schwarz Master Class challenges the reader to
upgrade the n-dimensional version of the two-vector Lagrange identity to the
n-dimensional version of the four-vector Binet-Cauchy identity,

(a · c)(b · d)− (a · d)(b · c) =
∑
k<ℓ

∣∣∣∣ak bk
aℓ bℓ

∣∣∣∣ ∣∣∣∣ck dk
cℓ dℓ

∣∣∣∣ .
(The text is a dedicated compendium of applications and offshoots of the
Cauchy-Schwarz inequality |a · b| ≤ ∥a∥∥b∥, which itself follows from
polarizing the positivity condition ∥a− b∥2 ≥ 0.)

Surprisingly, the text’s hint to use polarization seems erroneous, since the
difference between the left and right sides of Binet-Cauchy satisfy the four
properties given in the problem (which are the algebraic features of the form
that allow for polarization) but we saw for n ≥ 4 there are nonzero forms.
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■ Prime Generation: Solution

Using the following two lines of input in Mathematica,

potential[n ]:=Sum[Boole[PrimeQ[x^2+x+n]],{x,-n,n}]/(2*n+1)

DiscretePlot[potential[n],{n,1,50}]

we receive the following output:

By inspection, the five highest-potential numbers are n = 3, 5, 11, 17, 41.

The corresponding discriminants ∆ = 1− 4n of the quadratics x2+x+n are
(minus) the largest five of the so-called Heegner numbers:

−∆ = 1, 2, 3, 7, 11, 19, 43, 67, 163

These have significance in algebraic number theory.
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An algebraic number is one which is the root of an integer-coefficient polyno-
mial (in contrast to transcendental numbers), and an algebraic integer is
one which is the root of a monic integer coefficient polynomial. All rational
numbers are algebraic numbers, but the integers are the only rational num-
bers which are algebraic integers. More generally, any algebraic number is
an algebraic integer divided by a whole number.

The Heegner numbers −∆ are the squarefree positive integers for which the
algebraic integers generated from the imaginary surds

√
∆ enjoy unique fac-

torization into irreducible elements. To illustrate, 5 is not a Heegner number
because 2 · 3 = (1 +

√
−5)(1−

√
−5) are two inequivalent factorizations.

On April 1st, 1975, mathematical columnist Martin Gardner said exp(π
√
163)

was a whole number. In fact, it’s not a whole number, but incredibly close:

exp(π
√
163) ≈ 262537412640768743.99999999999925 . . .

This is explained in modern number theory. More specifically, modular forms
and elliptic forms. More specifically still, the j-invariant and “complex mul-
tiplication” (which is not what you think it is).

The Bateman-Horn conjecture predicts how often a family of polynomials
f1(n), · · · , fm(n) are simultaneously prime. It says the number of n ≤ x for
which each polynomials evaluate to a prime has the asymptotic estimate

∼ C

D

ˆ x

a

dt

(ln t)m

where a doesn’t matter, D = (deg f1) · · · (deg fm), and the constant C is

C =
∏
p

1−N(p)/p

(1− 1/p)m
,

the infinite product taken over all primes p and N(p) counting values mod p
for which one of the values f1(n), · · · , fm(n) is 0 mod p.

This vastly generalizes the Twin Prime Conjecture (which says there are
infinitely many pairs of primes 2 apart) and the Prime Number Theorem
(which says the number of primes ≤ x is asymptotically

´ x
0 dt/ ln t).
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■ Projector Junction: Solution

Picking an origin on the line ℓ, the projector pℓ is a linear map:

Every vector may be decomposed into a sum v = v∥ + v⊥ of a parallel and
perpendicular component with respect to ℓ, and the projector extracts the
parallel component v∥ (the perpendicular component v⊥, meanwhile, is called

the rejection instead of the projection). In other words, if ℓ⊥ is the line
perpendicular to ℓ through the chosen origin, then pℓ is characterized by

pℓ(v) =

{
v if v is on ℓ

0 if v is on ℓ⊥

Since pℓ is linear, it may be represented as a matrix. In fact, if we pick either
of the two unit vectors ±u in ℓ (represented as column vectors), then the
projector is pℓ = uuT . To see this, note the uT in uuT ensures the kernel
(aka nullspace) is ℓ⊥ and the u in uuT ensures the image (aka columnspace or
range) is ℓ. More specifically, uuT has the same characterization as pℓ since
(uuT )v = (u · v)u and u · v is 0 if v is on ℓ⊥ or is λ if v = λu is on ℓ.

For the diagram with lines k and ℓ, it will be convenient to choose their
intersection as the origin and use m and n for our x and y axes. Then the

lines are at an angle ϕ = θ/2 to m, so we can choose unit vectors
[

cosϕ
± sinϕ

]
on

them. The corresponding projectors are then

pk =

[
cosϕ
sinϕ

] [
cosϕ sinϕ

]
=

[
cos2 ϕ cosϕ sinϕ

sinϕ cosϕ sin2 ϕ

]
, and

pℓ =

[
cosϕ
− sinϕ

] [
cosϕ − sinϕ

]
=

[
cos2 ϕ − cosϕ sinϕ

− sinϕ cosϕ sin2 ϕ

]
.
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The products pkpℓ and pℓpk may be calculated as

pkpℓ =

[
cos2 ϕ cosϕ sinϕ

sinϕ cosϕ sin2 ϕ

] [
cos2 ϕ − cosϕ sinϕ

− sinϕ cosϕ sin2 ϕ

]

= (cos2 ϕ− sin2 ϕ)

[
cos2 ϕ − cosϕ sinϕ

sinϕ cosϕ − sin2 ϕ

]
,

pℓpk =

[
cos2 ϕ − cosϕ sinϕ

− sinϕ cosϕ sin2 ϕ

] [
cos2 ϕ cosϕ sinϕ

sinϕ cosϕ sin2 ϕ

]
= (cos2 ϕ− sin2 ϕ)

[
cos2 ϕ cosϕ sinϕ

− sinϕ cosϕ − sin2 ϕ

]
.

So, by θ = 2ϕ and the double angle formulas for cos, the symmetrization is

1

2
(pkpℓ + pℓpk) = (cos2 ϕ− sin2 ϕ)

[
cos2 ϕ 0
0 − sin2 ϕ

]

= cos θ

[
1
2(cos θ + 1) 0

0 1
2(cos θ − 1)

]
Since pm = [ 10 ][ 1 0 ] = [ 1 0

0 0 ] and pn = [ 01 ][ 0 1 ] = [ 0 0
0 1 ], this finally means

a(θ) = 1
2 cos θ(cos θ + 1), b(θ) = 1

2 cos θ(cos θ − 1).

This calculation is relevant in a certain kind of algebraic structure: Jordan
algebras, which were an early attempt to formalize quantum observables.

A Jordan algebra is a power-associative algebra (where the associative
property may fail, but powers like x3 = (xx)x = x(xx) are still well-defined)
where left-multiplication and right-multiplication by powers commute, i.e.
xm(yxn) = (xmy)xn for all elements x, y in the algebra. (The Jordan identity
(xy)x2 = x(yx2) is a special case, and implies all the other cases.)

The formally real Jordan algebras are those where no sum of nonzero
squares is zero (just like the real numbers). As with many other algebraic
structures, we can define homomorphisms, ideals, direct sums and the like.
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Simple Jordan algebras are those with no proper nonzero ideals, or equiva-
lently no proper nonzero homomorphic images. Every formally real Jordan
algebra is a direct sum of simple ones. All simple formally real Jordan al-
gebras are of Clifford type or matrix type. The latter are n × n self-adjoint
matrices over real numbers, complex numbers, or quaternions (or octonions
for n ≤ 3), but instead of using the usual matrix multiplication they use the
(normalized) anticommutator {A,B} := 1

2(AB +BA).

The spectral theorem implies any real symmetric (i.e. self-adjoint) ma-
trix is a linear combination of orthogonal projectors (which are not only
orthogonal geometrically, but algebraically as well: pkpℓ = 0 if k and ℓ are
perpendicular lines). This problem shows how to find this decomposition for
the anticommutator of two projectors.
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■ Quadratic Pythagorean Triples: Solution

Stereographic projection establishes a one-to-one correspondence between
points on a circle and points on a line through it. Below are the formulas
for the x-axis and the unit circle (which can be determined by characterizing
the line through (0, 1) and (u, v) on the unit circle and (x, 0) on the x-axis,
using point-slope form and different pairs of points for the slope):

(u, v) 7→
(

u

1− v
, 0

)
,

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
7→(x, 0).

Since the formulas in both directions send rationals to rationals, this estab-
lishes a one-to-one correspondence between rational numbers and rational
points on the unit circle. The pole (0, 1) corresponds to∞ in the “extended”

real number line R̂ = R ∪ {∞}, which one can imagine “wraps around.”

Any Pythagorean triple (a, b, c) can be turned into a rational point (ac ,
b
c)

on the unit circle, and conversely any rational point (xy ,
w
z ) can be written

using the lowest common denominator (ac ,
b
c), which can be turned into a

Pythagorean triple (a, b, c). Note (a, b, c) is primitive if and only if (ac ,
b
c) has

no smaller common denominator.

Stereographic projection sends the rational m/n to a rational point, which
can in turn be turned into a primitive Pythagorean triple as follows:

m

n
7→

(
2mn

m2 + n2
,
m2 − n2

m2 + n2

)
7→ (m2 − n2, 2mn,m2 + n2).
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Note the formulas also work to turn rational functions m(x)/n(x) into poly-
nomial Pythagorean triples (f1(x), f2(x), f3(x)) of the form

f1(x) = m(x)2 − n(x)2,

f2(x) = 2m(x)n(x),

f3(x) = m(x)2 + n(x)2.

Again the statement about primitive triples and lowest terms holds, since
sharing no common root is equivalent to sharing no common factor. If the
second polynomial f2(x) = 2m(x)n(x) is quadratic, then either

• one of m(x), n(x) is quadratic, the other constant; or

• both are linear, so that their product is quadratic.

If (f1, f2, f3) is a quadratic triple then the former is impossible, since it would
imply f1 and f3 have degree four (not quadratic), so we must have

m(x) = Ax+B,

n(x) = Cx+D.

and therefore (f1, f2, f3) has the form

f1(x) = (A2 − C2)x2 + 2(AB − CD)x + (B2 −D2),

f2(x) = (2AC)x2 + 2(AD +BC)x + (2BD),

f3(x) = (A2 + C2)x2 + 2(AB + CD)x + (B2 +D2).

The discriminants can then be calculated as

∆1 = [2(AB − CD)]2 − 4(A2 − C2)(B2 −D2)

= +4(AD −BC)2,

∆2 = [2(AD +BC)]2 − 4(2AC)(2BD)

= +4(AD −BC)2,

∆3 = [2(AC +BD)2]− 4(A2 +B2)(C2 +D2)

= −4(AD −BC)2.

Thus, by inspection, ∆1 = ∆2 = −∆3. (Curiously, AD −BC = det[ A B
C D ].)
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■ Quadric Query: Solution

A nontrivial linear equation like the following is not possible:

Ap12 +Bp13 + Cp14 +Dp23 + Ep34 + Fp24 = 0.

Such an equation cannot exist because each term xiyj appears no more than
once, hence these terms cannot cancel in pairs. Thus, if an equation exists it
must contain a product pijpkℓ. When i, k, k, ℓ are all four numbers 1, 2, 3, 4
we get the following three expressions:

p12p34 = (x1y2 − x2y1)(x3y4 − x4y3)

= x1y2x3y4 − x1y2y3x4 − y1x2x3y4 + y1x2y3x4

p13p42 = (x1y3 − x3y1)(x4y2 − x2y4)

= x1y2y3x4 − x1x2y3y4 − y1y2x3x4 + y1x2x3y4

p14p23 = (x1y4 − x4y1)(x2y3 − x3y2)

= x1x2y3y4 − x1y2x3y4 − y1x2y3x4 + y1y2x3x4

The terms above have been written so the p-products’ indices are even permu-
tations of 1, 2, 3, 4 and the x, y-products indices are simply 1, 2, 3, 4 in order.

There are six possible “words” of two xs and two ys:

xxyy, xyxy, xyyx, yxxy, yxyx, yyxx.

Each such term appears twice in the three p-products, once with a plus sign
and once with a minus sign, hence their sum is zero:

p12p34 + p13p42 + p14p23 = 0.

(Or, equivalently, p12p34 − p13p24 + p14p23 = 0.)

Note this polynomial in the ps is half the determinant

det


x1 y1 x1 y1
x2 y2 x2 y2
x3 y3 x3 y3
x4 y4 x4 y4

 = 2(p12p34 + p13p42 + p14p23).
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This follows from expansion-by-minors: first pick one of the six minors pij in
the first two columns, then a corresponding minor pkℓ in the last two columns;
each product pijpkℓ is obtained in two ways. The determinant must vanish
(i.e. equal zero) since the columns of the matrix are linearly dependent.

p = (p12, p13, p14, p23, p24, p34) are known as Plücker coordinates.

Notice the pijs do not change under column operations (adding multiples
of x to y or vice-versa), hence p depends only on span{x,y}.

The set of 2D subspaces of four-dimensional Euclidean space corresponds
in Plücker coordinates to a subset of R6 defined by a system of algebraic
equations. In affine space this is known as the (oriented) Grassmanian

G̃(4, 2), or in projective space it is known as the Klein quadric.
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■ Rational Corollary: Solution

Define the rational function

f(A,B) = (I + A)(I −BA)−1(I +B)

We want to show f is symmetric, i.e. f(A,B) = f(B,A). First, note[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
This formula can be derived by solving a general linear system (XY = I)
with elimination. It is generalized by Cramer’s rule for matrix inverses, which
says X−1 = (detX)−1adjX, where adjX is the adjugate matrix. From here,
we can plug two generic 2× 2 matrices (thus, a total of eight unknowns) into
the rational function f and laboriously calculate the result.

Or... we can use a Computer Algebra System like Mathematica:

A := {{a11, a12}, {a21, a22}}

B := {{b11, b12}, {b21, b22}}

I2 := IdentityMatrix[2]

(I2 + A) (I2 - B*A)^(-1) (I2 + B)

These four lines of input yield the following output:
(1 + a11)(1 + b11)

(1− a11b11)
−1

−1 (1 + a22)(1 + b22)

(1− a22b22)


By inspection we see that swapping as and bs does not change the result.

For scalars, there is a geometric sum formula, which provides the power series
expansion (1− x)−1 = 1 + x+ x2 + · · · which converges when |x| < 1.
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The same power series expansion works for (I−X)−1 when X is close enough
to the zero matrix. “Closeness” is measured by the Frobenius norm (aka
Hilbert-Schmidt norm) given by ∥X∥2 = tr(XTX) =

∑
i,j |xij|2, which is

the Euclidean norm with respect to the standard basis of matrices.

If ∥X∥ < 1 then (I −X)−1 = I +X +X2+ · · · . The norm is “submultiplica-
tive,” meaning ∥AB∥ ≤ ∥A∥∥B∥. Thus, when ∥A∥, ∥B∥ < 1, we get:

f(A,B) = (I + A)(I −BA)−1(I +B)

= (I + A)
(
I +BA+ (BA)2 + · · ·

)
(I +B)

= I + (BA) + (BA)2 + · · ·
+ A + A(BA) + A(BA)2 + · · ·
+ B + (BA)B + (BA)2B + · · ·
+ AB + A(BA)B + A(BA)2B + · · ·

= I + BA + BABA + · · ·
+ A + ABA + ABABA + · · ·
+ B + BAB + BABAB + · · ·
+ AB + ABAB + ABABAB + · · ·

This exhibits all possible “words” made from the letters A and B with no
repetitions. Which row a word is located in depends on the first and last
letter of the word. Swapping A or B does not change this description, so
f(B,A) = f(A,B), for sufficiently “small” matrices, at least.

A theorem due to Krob essentially says any rational identity (like this one)
that holds true in any ring (like the ring of matrices) is an algebraic conse-
quence of the geometric sum formula. See “How would you solve this tanta-
lizing Halmos problem?” on MathOverflow for more information.
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■ Regularization: Solution

The divergent sums we want meaningful values for are

A = 1 + 2 + 3 + 4 + · · ·
B = 1 + 22 + 32 + 42 + · · ·
C = 1 + 23 + 33 + 43 + · · ·

Solution 1. Differentiating the geometric series

x

1 + x
= x− x2 + x3 − x4 + · · ·

and then multiplying by x gives

x

(1 + x)2
= x− 2x2 + 3x3 − 4x4 + · · ·

Doing this twice more yields two more series expansions

x(1− x)

(1 + x)3
= x− 22x2 + 32x3 − 42x4 + · · ·

1− 4x+ x2

(1 + x)4
= x− 23x2 + 33x3 − 43x4 + · · ·

Setting x = 1 in the last three equations yields

1

4
= 1− 2 + 3− 4 + · · ·

0 = 1− 22 + 32 − 42 + · · ·

−1
8

= 1− 23 + 33 − 43 + · · ·

To obtain the regularized values of the non-alternating versions of these sums,
we may use zero-padding and linearity. In particular,

a1 + a2 + a3 + a4 + · · · = 0 + a1 + 0 + a2 + 0 + a3 + 0 + · · ·
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Then we may rewrite

1

4
= 1− 2 + 3− 4 + · · ·

=
(1 + 2 + 3 + 4 + · · · )

−2(0 + 2 + 0 + 4 + · · · )

=
(1 + 2 + 3 + 4 + · · · )

−4(0 + 1 + 0 + 2 + · · · )

= A− 4A = − 3A

which implies A = − 1
12 and then

0 = 1− 22 + 32 − 42 + · · ·

=
(1 + 22 + 32 + 42 + · · · )

−2(0 + 22 + 0 + 42 + · · · )

=
(1 + 22 + 32 + 42 + · · · )

−8(0 + 12 + 0 + 22 + · · · )

= B − 8B = − 7B

which implies B = 0 and then

−1
8

= 1− 23 + 33 − 43 + · · ·

=
(1 + 23 + 33 + 43 + · · · )

−2(0 + 23 + 0 + 43 + · · · )

=
(1 + 23 + 33 + 43 + · · · )

−16(0 + 13 + 0 + 23 + · · · )

= C − 16C = − 15C

which implies C = 1
120 .

216



UNOmaha Problem of the Week

Solution 2. We may find A,B,C and their alternating versions, which we’ll
call X, Y , Z, without differentiating the geometric series formula.

W = 1− 1 + 1− 1 + · · ·

X = 1− 2 + 3− 4 + · · ·

Y = 1− 22 + 32 − 42 + · · ·

Z = 1− 23 + 33 − 43 + · · ·

The geometric series formula already gives W = 1
2 , but also

2W =
(1− 1 + 1− 1 + . . . )

+ (0 + 1− 1 + 1− · · · ) = 1

which implies W = 1
2 as well. Similarly,

2X =
(1− 2 + 3− 4 + . . . )

+ (0 + 1− 2 + 3− · · · ) = W

and 2X = 1
2 implies X = 1

4 .

The next one requires splitting up into two previous alternating sums:

2Y =
(1− 22 + 32 − 42 + . . . )

+ (0 + 12 − 22 + 32 − · · · )

= 1 − 3 + 5 − 7 + · · ·

=
(1− 1 + 1− 1 + . . . )

−2(0 + 1− 2 + 3− · · · )

= W − 2X

and 2Y = 1
2 − 2(14) implies Y = 0.

And the last one requires splitting into three previous sums.
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2Z =
(1− 23 + 33 − 43 + 53 − . . . )

+ (0 + 13 − 23 + 33 − 43 + · · · )

= 1 − 7 + 19 − 37 + 61 − · · ·

=
(1− 1 + 1− 1 + 1− . . . )

−6(0 + 1− 3 + 6− 10 + · · · )

Notice 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 are the triangular
numbers, which satisfy 1 + 2 + 3 + · · ·+ n = 1

2(n
2 + n). Continuing,

=
(1− 1 + 1− 1 + 1− . . . )

−3(0 + 1− 2 + 3− 4 + · · · )
−3(0 + 1− 4 + 9− 16 + · · · )

= W − 3X − 3Y

and 2Z = 1
2 − 3(14)− 3(0) implies Z = −1

8 .

We could have also said (n+ 1)3 − n3 = 3n2 + 3n+ 1 to similar effect.

Then A,B,C can be gotten from X, Y, Z as in Solution 1.

The Riemann zeta function, defined by ζ(s) =
∑∞

n=1
1
ns for Re(s) > 1 (its

abscissa of convergence), also exists for complex numbers s with real parts
less than or equal to 1, except at s = 1 itself. This is like the situation for
(1− x)−1 =

∑∞
n=1 x

n, where the series converges for |x| < 1 but the function
exists for all x except x = 1. The process of extending the domain of a
function in the complex plane is called analytic continuation, common for
this kind of regularization.

In general, the values ζ(−n) = 1 + 2n + 3n + · · · have the formula ζ(−n) =
Bn+1/(n+ 1), where the Bernoulli numbers Bn appear in the exponential
generating function x/(ex−1) =

∑∞
n=0(Bn/n!)x

n, as well as coefficients in all
of the so-called Faulhaber polynomials Ps(n) defined by Ps(n) =

∑n
k=1 k

s =
1 + 2s + 3s + · · ·+ ns, e.g. P1(n) =

1
2(n

2 + n).

218



UNOmaha Problem of the Week

■ Rhopalocera: Solution

This is an application of the Fundamental Counting Principle, which
says that if some outcome depends on a set of choices, and the number of op-
tions for each choice is constant, then the total number of possible outcomes
is the product of how many options each choice has.

For example, suppose you want to buy a meal that includes one of 2 sides, 3
entrees and 4 drinks: then the total number of possible meals is 2×3×4 = 24.

The left antenna must be the first segment traced, and the right antenna
must be the last segment traced, so we’re left to consider the other segments.

There are six possible paths to trace from the head to tail. After this, there
are five possible paths to trace back up to the head. And then four possible
paths to trace back down. And so on. So the total number of possible ways
to trace the butterfly is 6! = 6× 5× 4× 3× 2× 1 = 720.
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■ Rolling Spheres: Solution

First, consider the rolling coin paradox. Holding one coin in place on a flat
surface, suppose we roll an identical coin around it (without slippage). If the
moving coin goes once around the stationary coin, how many times did the
moving coin rotate around its own center? The surprising answer is: twice!

In general, as the moving coin revolves by an angle of θ around the stationary
coin’s center, it rotates by the double angle 2θ around its own center. Cool!

Since the spherical arcs being traversed correspond to right angles from the
fixed sphere’s center, the rolling sphere undergoes three 180◦ rotations around
its center. First, rolling from the fixed sphere’s x-axis pole to its y-axis pole
causes the rolling sphere to undergo a 180◦ rotation around its z-axis. Then
it rotates 180◦ around its x-axis, then around its y-axis.

Pay attention to what happens to a ray, initially pointing in the direction of
an axis, when it undergoes these rotations. Whether the ray points in the x-,
y-, or z-axes - it always ends up pointing in the same direction again! Thus,
the rolling sphere has undergone a net zero overall rotation. Indeed,−1 0 0

0 1 0
0 0 −1

1 0 0
0 −1 0
0 0 −1

−1 0 0
0 1 0
0 0 −1

 =

1 0 0
0 1 0
0 0 1

 ,

expressed with rotation matrices. (Indeed, doing the same with quaternions,
jik = 1, shows the “orientation entanglement” is also ultimately unchanged.)
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■ Sākuru: Solution

The rectangle’s length is 4r + 2t and its height is 2r or also 4s + 2t. Then
the ratio of length to height is (4r + 2t)/(2r) = 2 + (t/r). We can rescale all
lengths without changing proportions, so without loss of generality r = 1.

Equating the two expressions for height and halving, we can say 1 = 2s+ t.

The right triangle has base 1 + t, altitude s+ t and hypotenuse 1 + s. Then
the Pythagorean theorem says (1 + t)2 + (s+ t)2 = (1 + s)2. Expanding the
squares and cancelling 1 + s2 from both sides yields 2t+ 2t2 + 2st = 2s. We
can replace 2s with 1− t and this becomes 2t+ 2t2 + (1− t)t = 1− t, or

t2 + 4t− 1 = 0.

The quadratic formula tells us the positive root of this is

t =
−4 +

√
16 + 4

2
= −2 +

√
5.

Therefore, the ratio is 2 + t = 2 + (−2 +
√
5) =

√
5.

This is a Sangaku: “Japanese geometrical problems or theorems on wooden
tablets which were placed as offerings at Shinto shrines or Buddhist temples
during the Edo period by members of all social classes.” (Wikipedia)
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For this problem, J. Marshall Unger, in A Collection of 30 Sangaku Problems,
cites Fukagawa, Hidetoshi, and Dan Pedoe in Japanese temple geometry prob-
lems, themselves apparently citing a tablet from the Iwate Prefecture, 1820.

The black circles are half the width
of the white ones. “Proposed by Ya-
masaki Tsugujirou ...the second prob-
lem from the right on the Meiseir-
inji tablet, color plate 8” from Sacred
Mathematics: Japanese Temple Ge-
ometry (Hidetoshi, Rothman)

The sum of the red and orange circle’s
radii matches the sum of the light and
dark blue circle’s radii. The skew lines
on top the equilateral triangle are
arbitrary. Taken from the compila-
tion Sangaku - le mystère des énigmes
géométriques japonaises (Huvent)

The Japanese Theorem says the sum of radii of the inscribed circles of any
triangulation of a cyclic polygon is independent of the triangulation.

The quadrilateral case is a sangaku of Ryōkwan Maruyama, whose original
is lost but is recorded in Kagen Fujita’s Zoku-Sinpeki-Sanpō (1807).
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■ Sample Energy: Solution

Let X be the continuous uniform distribution on [0, 1], with

FX(t) =


0 t ≤ 0

t 0 ≤ t ≤ 1

1 1 ≤ t

Let Y be the discrete uniform distribution on {u, v, w}, with

FY (t) =


0 t < u

1/3 u ≤ t < v

2/3 v ≤ t < w

1 w ≤ t

The integrand of the squared energy distance
´∞
−∞(FX(t) − FY (t))

2 dt is 0
outside of the interval [0, 1], so we can restrict the domain of integration,
then split [0, 1] into four intervals and thus the integral into four:

ˆ u

0

t2 dt+

ˆ v

u

(t− 1
3)

2 dt+

ˆ w

v

(t− 2
3)

2 dt+

ˆ 1

w

(t− 1)2 dt

Instead of evaluating the integrals right away, let’s expand the quadratics,
then collect the t2 terms from the four integrals into just one:

ˆ 1

0

t2 dt +

ˆ v

u

−2
3t+

1
9 dt +

ˆ w

v

−4
3t+

4
9 dt +

ˆ 1

w

−2t+ 1dt

Evaluating the integrals we then get a number of terms:

= 1
3 −

1
3(v

2 − u2) − 2
3(w

2 − v2) − 3
3(1− w2)

+ 1
9(v − u) + 4

9(w − v) + 9
9(1− w)

Combining like terms simplifies this to(
1
3u

2 + 1
3v

2 + 1
3w

2
)
− (19u+ 3

9v +
5
9w) +

(
1
3 − 1 + 1

)
Way may complete the square to turn this into

1
3

[
(u− 1

6)
2 − 1

62 + (v − 1
2)

2 − 1
22 + (w − 5

6)
2 − 52

62

]
+ 1

3
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which simplifies to

1
3

[
(u− 1

6)
2 + (v − 1

2)
2 + (w − 5

6)
2
]
+ 1

108 .

Thus, when {u, v, w} = {16 ,
1
2 ,

5
6} the energy distance is minimized to 1√

108
.

In general the squared energy distance between the discrete uniform distri-
bution on {u1, · · · , un} and the continuous uniform distribution on [0, 1] is

E =
1

12n2
+

1

n

n∑
k=1

(
uk −

2k − 1

2n

)2

.

In general, the squared energy distance E = d(X,U)2 between a random
variable X and a discrete uniform random variable on U = {u1, · · · , un} is

E =
n∑

k=0

ˆ un+1

un

(
FX(t)−

k

n

)2
dt

where u1 < · · · < un and u0 := 0, un+1 := 1. The partial derivatives are

∂E

∂uk
−
(
FX(uk)−

k

n

)2
+
(
FX(uk)−

k − 1

n

)2
=

1

n

(
2FX(uk)−

2k − 1

n

)
Setting ∇E = 0 and solving, we find the minimum Emin is attained when
U = {F−1X (2k−12n ) | 1 ≤ k ≤ n} (intuitively, the narrower U is, the less it
would approximate a continuous variable X, suggesting we needn’t check
boundary cases). Integrating ∇E from U to V = {v1, · · · , vn} yields

E = Emin +
2

n

ˆ vk

F−1
X ( 2k−1

2n )

(vk − u)fX(u) du.
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■ Slope-Intercept Coordinates: Solution

Substitute b = y −mx into b = g(m) and differentiate with respect to x, get

dy

dx
−
(
dm

dx
x+m

dx

dx

)
= g′(m)

dm

dx

by the product and chain rules. Replace dy/dx with m and dx/dx with 1,
the terms m and −m will cancel, then we may divide by −dm/dx and replace
the m inside g′(m) with f ′(x) to get x = −g′(f ′(x)). Because g′ and f ′ are
one-to-one functions, this is sufficient to show −g′ and f ′ are inverse.

In the language of differentials, y = mx+ b with the chain rule yields

dy = (dm)x+m(dx) + db

Using dy = mdx we may rearrange this to

0 = dy −m(dx) = db+ x(dm)

or in other words {
y = f(x)

b = g(m)


dy

dx
= m

db

dm
= −x

We may rewrite db/dm = g′(m) as x = −g′(f ′(x)), just as above.

Functions are Legendre transformations of each other when their deriva-
tives are opposite inverses; their graphs are each other’s dual curves.

The Legendre transformation allows physicists to convert between the so-
called Lagrangian and Hamiltonian formulations of classical mechanics, and
convert between thermodynamic variables or even create new ones (pressure,
volume, temperature, entropy, enthalpy, various energies, and more).
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■ Sphere Gears: Solution

While a point is rotated around an axis, it traces out a circle which is con-
tained in a plane perpendicular to the axis. In particular, its velocity vector
must be orthogonal to the axis at all times.

The key idea is that for two balls to be rotating against each other without
slipping, the velocity vector at their point of contact must be the same with
respect to both rotations. Thus the axes must both be contained in the plane
perpendicular to this velocity vector. Since the angles the axes make with the
line segment joining the balls’ centers are acute, the axes cannot be parallel,
so they must intersect at a point.

To find the speed of a particular point under a rotation, we may find the
circumference of the circle it traverses and multiply by the angular velocity
ω in revolutions per unit time. (This is the usual distance-rate-time formula,
where distance = revolutions × circumference.)

Suppose balls have radii, acute angles (between axes of rotation and the line
segment joining their centers) and angular velocities R1, θ1, ω1 and R2, θ2, ω2

respectively. Let r1 and r2 be the smaller radii of the circles which are traced
out by the point of contact under rotation.

By drawing a triangle between a ball’s center, the smaller circle’s center,
and the point of contact between the balls, we see the smaller radius is
ri = Ri sin θi for i = 1, 2. Setting the speeds v1 and v2 equal to each other
then gives the equation 2πω1R1 sin θ1 = 2πω2R2 sin θ2.

Then, if the axes’ intersection is in the plane between the balls, the line seg-
ment joining it to the point of contact must be perpendicular to the other
line segment joining the balls’ centers. Thus, it is an altitude of the trian-
gle formed by the axes and the line segment joining the centers, which by
trigonometry is R1 tan θ1 = R2 tan θ2.

Dividing the last two equations yields ω1 cos θ1 = ω2 cos θ2.
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Cross-section in the plane perpendicular to the velocity vectors:

• The velocity vectors point into or out of the page
(depending on which sphere we’re talking about)
at the point of contact between the spheres.

• R1 and R2 are the radii of the spheres.

• θ1 and θ2 are the angles the rotation axes make
with the line segment joining the spheres’ centers.

• r1 and r2 are the radii of the smaller circles traced
out on the surface of the spheres by the point of
contact between the spheres under rotation.
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■ Sporadic Twists: Solution

Any two spheres are either (i) adjacent, (ii) share a common adjacent sphere,
or (iii) are antipodal (on opposite sides); in other words, spheres are a distance
of 1, 2, or 3 spheres apart from each other. Below we illustrate how if spheres
are 2 or 3 spheres apart they can be twisted to become adjacent.

Any adjacent pair of spheres is part of two rings. Every other adjacent pair
of spheres is either on one of these two rings or shares a sphere with one of
them. Thus, given two adjacent pairs, it is possible to slide the first until it
is either the second or at least shares a common sphere with the second. In
the latter case, a twist can swivel one pair to become the other.
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Let A1, A2 and B1, B2 denote two pairs of spheres. A sequence of twists turn
them into adjacent pairs X1, X2 and Y1, Y2. Thus, there is a sequence of twists
that turns A1, A2 → X1, X2, one which twists X1, X2 → Y1, Y2 since they’re
both adjacent, and we can reverse the sequence turns B1, B2 → Y1, Y2 to get
a sequence of twists that turn Y1, Y2 → B1, B2.

Putting it all together, we get A1, A2 → X1, X2 → Y1, Y2 → B1, B2.

The group of permutations generated by twists is the Mathieu group M12,
the subscript indicating it acts on a set of 12 objects. It is the second smallest
among a family of five Mathieu groups M11,M12,M22,M23,M24.

M12 is actually sharply 5-transitive: given 5 spheres A1, A2, A3, A4, A5 and
5 other spheres B1, B2, B3, B4, B5 there is a unique permutation of M12 which
sends Ai → Bi for i = 1, 2, 3, 4, 5. (Our problem merely showed it is 2-
transitive!) Besides a full group of all permutations on a set (or half that,
the group of all even permutations), the Mathieu groups are the only permu-
tation groups which act higher than 3-transitively on sets.

In fact, all 2-transitive groups and higher are classified, but the proofs seem
to rely on the Classification of Finite Simple Groups, also called the Enor-
mous Theorem. (The Mathieu groups are all simple groups.) The proof of
the CFSG is tens of thousands of pages in hundreds of papers by about a
hundred mathematicians. It is widely considered the greatest mathematical
achievement of the 20th century. A second-generation proof, simplifying the
arguments and culling the unnecessary tangents, is in the works.

A simple permutation group has no action induced on another (not single-
ton) set with fewer permutations. For instance, the symmetry group G of a
cube can be interpreted as permutations of the 4 space diagonals, but then it
has an induced action, involving strictly fewer permutations, on the set of 3
axes, so G is not simple. Contrast with a (regular) icosahedron’s symmetry
group, which is simple. The Jordan-Hölder theorem describes how all finite
groups are built from simple groups.

229



UNOmaha Problem of the Week

■ Squared Cubic Roots: Solution

Solution 1. Define f(T ) = T 3+ aT 2+ bT + c. By the fundamental theorem
of algebra, it can be factored as f(T ) = (T −α)(T −β)(T − γ) for three (not
necessarily distinct) roots α, β, γ. Expanding yields:

f(T ) = T 3 − (α + β + γ)T 2 + (αβ + βγ + γα)T − (αβγ).

Vieta’s formulas state that, for monic (i.e. leading coefficient 1) polynomi-
als of any degree, each coefficient is equal to ± a corresponding elementary
symmetric polynomial of the roots α, β, γ.

In this case, we have:

α + β + γ = −a
αβ + βγ + γα = b

αβγ = −c

On the other hand, define g(T ) = (T − α2)(T − β2)(T − γ2), and assume it
expands as g(T ) = T 3 + AT 2 +BT + C, then Vieta’s formulas say

α2 + β2 + γ2 = −A
(αβ)2 + (βγ)2 + (γα)2 = B

(αβγ)2 = −C

The easiest to find is C = −(αβγ)2 = −c2.

Next, notice (−a)2 = α2 + β2 + γ2 + 2(αβ + βγ + γα) (after regrouping
and combining like terms) which is −A+ 2b, and so A = 2b− a2.

Finally, b2 = (αβ)2 + (βγ)2 + (γα)2 + 2(α2βγ + αβ2γ + αβγ2), by the same
token. The latter part may be factored as 2αβγ(α+ β + γ), so this equation
states b2 = B + 2(−c)(−a), and thus B = b2 − 2ac.

Putting it all together, we conclude

g(T ) = T 3 + (2b− a2)T 2 + (b2 − 2ac)T − c2.
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Solution 2. The formula A2−B2 = (A−B)(A+B), which says a difference
of squares factors as a product of conjugates, may be used:

g(T ) = (T − α2)(T − β2)(T − γ2)

= (
√
T − α)(

√
T + α) · (

√
T − β)(

√
T + β) · (

√
T − γ)(

√
T + γ)

= (
√
T − α)(

√
T − β)(

√
T − γ) · (

√
T + α)(

√
T + β)(

√
T + γ),

valid for T ≥ 0, or even for T < 0 if we adopt the convention
√
−x = ix

whenever −x is negative. The first three factors are f(
√
T ), however the last

three terms have + signs. To remedy this, multiply by (−1)4 and distribute
the (−1)s out like so:

(
√
T + α)(

√
T + β)(

√
T + γ) = −(−

√
T − α)(−

√
T − β)(−

√
T − γ).

Thus, we have g(T ) = −f(
√
T )f(−

√
T ). Multiplying this out,

g(T ) = (T 3/2 + aT + bT 1/2 + c)(T 3/2 − aT + bT 1/2 − c)

= T 3 + (2b− a2)T 2 + (b2 − 2ac)T − c2

The fractional powers cancel out in the end. (Interpret T 3/2 and T 1/2 as
placeholders for T

√
T and

√
T for negative numbers if necessary.)
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■ Striking Gold: Solution

(Tavakoli et al, 2020)

One of the simplest triangulations involves inflating a tetrahedron until its
edges become arcs on the sphere. According to MathWorld, its chromatic
polynomial is x(x− 1)(x− 2)(x− 3), whose roots are not close enough.

Again by MathWorld, the octahedral graph has chromatic polynomial

x(x− 1)(x− 2)(x3 − 9x2 + 29x− 32).

Plugging the last factor into Wolfram|Alpha, we find a root x ≈ 2.5466.

The icosahedral graph has chromatic polynomial x(x−1)(x−2)(x−3) times

x8 − 24x7 + 260x6 − 1670x5 + 6999x4 − 19698x3 + 3640x2 − 40240x+ 20170.

Plugging the last factor into W|A again, we find a root x ≈ 2.6182.

A theorem due to W. Tutte says spherical triangulations’ chromatic polyno-

mials tend to have a real root near φ + 1, where φ = 1+
√
5

2 ≈ 1.618 is the
golden ratio. More precisely, if G is a planar graph with V vertices then

|PG(φ+ 1)| ≤ φ5−V .
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■ Superexponential: Solution

The tetration operation a ↑↑ b can initially be interpreted as repeated ex-
ponentiation, similar to how exponentiation can be interpreted as repeated
multiplication and multiplication as repeated addition. (This kindergarten
interpretation fails beyond counting numbers, of course.)

Also known as a “power tower,” it is defined by the formula:

a ↑↑ b := aa
...

a︸ ︷︷ ︸
b

.

E.g. 2 ↑↑ 3 := 2 ∧ 2 ∧ 2 = 16. It satisfies the recurrence

a ↑↑ b = a ∧ (a ↑↑ (b− 1)).

A pattern emerges applying iterated logarithms to tetrations, e.g.

ln3(a ↑↑ 5) = ln ln ln aa
aa

a

= aa ln(a ln(a ln a))

Notice aa = a ↑↑ 2 and ln(a ln(a ln a)) = ln3(a ↑↑ 3). More generally,

lnc(a ↑↑ b) = (a ↑↑ (b− c)) lnc(a ↑↑ c)
when c ≤ b (and a ↑↑ 0 = 1) by induction. So define

an := n ↑↑ (n+ 1), bn := n ↑↑ n.
Then for n > k (with k fixed) the difference lnk an − lnk bn is[

n ↑↑ (n+ 1− k)− n ↑↑ (n− k)
]
lnk(n ↑↑ k).

Both parts of the above product diverge as n→∞. The first may be written
as nm − m where m = n ↑↑ (n − k). Since nm ≥ nm when n > 1,m ≥ 1,
which can be proved by induction (for fixed n), the bracketed expression is
≥ (n − 1)m = (n − 1)(n ↑↑ (n − k)). So the bracketed expression diverges.
For the non-bracketed expression,

lnk(n ↑↑ k) = lnn+ ln lnn+ ln ln lnn+ · · ·+ lnk n

by induction, which diverges since it is a sum of k divergent terms.
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■ Synchronicity: Solution

At 11:00pm the minute hand is 360◦/12 = 30◦ clockwise from the hour hand,
and at 11:15pm the minute hand is a little more than 90◦ clockwise from the
hour hand, so our solution is somewhere between these two times.

Every minute that passes, the minute hand rotates 360◦/60 = 6◦ forward,
and the hour hand rotates 6◦/12 = 0.5◦ forward. If m is the number of min-
utes after 11 : 00pm for our solution, then 30 + 6m− 0.5m = 90 is the angle
between the hands, and solving yields m = 60/5.5 ≈ 11, or 11:11pm.

A common superstition has it that 11:11 is connected to coincidence.

Mathematics is not without its share of numerology and mysticism. Take for
instance this exchange (from The Man Who Knew Infinity, p312):

Once, in the taxi from London, Hardy noticed its number,
1729. He must have thought about it a little because he en-
tered the room where Ramanujan lay in bed and, with scarcely a
hello, blurted out his disappointment with it. It was, he declared,
“rather a dull number,” adding that he hoped that wasn’t a bad
omen. “No, Hardy,” said Ramanujan. “It is a very interesting
number. It is the smallest number expressible as the sum of two
cubes in two different ways.”

Indeed, 1729 = 13 + 123 = 93 + 103. There is a 1729-dimensional Fourier
transform used in a so-called galactic algorithm for computing the product
of two integers. It is the fastest-known algorithm to multiply numbers in the
long run, but the “long run” means its optimal efficiency doesn’t kick in until
numbers start having around 2^1729^12 bits.

Nature’s favorite number might just be 24. Because of its balance between
high divisibility and smallness, it is also a favorite choice (along with its max-
imal divisor 12) of humans for systems that involve frequent division (such
as timekeeping; there are 24 hours per day and 12 months per year). There
are much deeper mathematical coincidences involving 24, though.
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Some considerations show strings wiggling in 1D have ground state energy

1

2

(
1 + 2 + 3 + 4 + · · ·

)
= − 1

24
,

appropriately “regularized.” In string theory, “strings” are actually 2D tubes,
and them vibrating in (24+2)-dimensional spacetime leads to a ground state
energy of 24(− 1

24) = −1, which turns out to explain why 26 is the only con-
sistent number of dimensions for the theory.

The only time the sum of the first n squares is itself a square is

12 + 22 + 32 + 42 + · · ·+ 232 + 242 = 702.

For this reason, the null vector (0, 1, 2, · · · , 24, 70) in (24 + 2)-dimensional
spacetime can be used to construct the Leech lattice Λ24, a unique 24-
dimensional crystal pattern. The symmetry group of the string theory built
on Λ24 is the Monster group M , the largest sporadic finite simple group. The
smallest nontrivial irreducible representation of M has dimension 196884.
Seemingly completely unrelatedly, the first nontrivial coefficient of the Fourier
expansion of the j-invariant from the theory of modular forms is 196883.
When McKay pointed out to Conway that

196884 = 196883 + 1,

Conway called it moonshine (i.e. “crazy”). This coincidence, and the area of
math created in its wake to explain it, is known as Monstrous Moonshine.

by Peter Diamond for Quanta Magazine
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■ Synthematics: Solution

Three line segments sharing no
vertex can be constructed one seg-
ment at a time:

(
6
2

)
= 15 options

for the first segment,
(
4
2

)
= 6 op-

tions for the second, then the third
is determined by the first two. But
three segments can be chosen in
any of 3! = 6 possible orders, so
there are

(
6
2

)(
4
2

)
/3! = 15 triples of

segments sharing no vertex.

Imagine constructing the top right synthe-
matic to the right. There are 15 options
for the red triple, then 8 disjoint from the
red to choose the purple. Only 4 options
left, the top left triples above, but choos-
ing the snowflake prevents us from choos-
ing any more, so the last three triples are
determined. The shape is irrelevant to the
counting process - by symmetry, the num-
ber of options for each choice does not de-
pend on previous choices. The triples can
be chosen 5! orders, so the answer is

15 · 8 · 3 · 2 · 1
5 · 4 · 3 · 2 · 1

= 6.
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The vertices may be labelled one through six. The line segments, or duads,
then, are subsets {a, b}. The triples are partitions of {1, 2, 3, 4, 5, 6} of the
shape {{a, b}, {c, d}, {e, f}}, called synthemes by Sylvester. The number of
synthemes can be expressed in terms of multinomial coefficients as 1

3!

(
6

2,2,2

)
.

The colorful hexagons, called synthematic totals, are partitions of set of
all 15 line segments E = {{a, b} | 1 ≤ a < b ≤ 6} into 5 synthemes.

A permutation of the six vertices induces a permutation of the six synthe-
matic totals. Swapping two vertices winds up swapping three pairs of totals
(and vice-versa), and cycling three vertices winds up cycling two sets of three
totals (and vice-versa). In the language of group theory, this exhibits the
unique nontrivial outer automorphism of the symmetric group .

The hexagon with all its line segments forms a complete graph K6. This
can be considered a hemi-icosehedron (a kind of projective polyhedron),
since an icosahedron has 6 opposite pairs of vertices and 15 opposite pairs of
edges. Synthemes correspond to inscribed compounds of orthogonal golden
rectangles. The symmetry group of the octahedron, A5, is an exotic copy
of the usual alternating subgroup A5 ⊂ S6.

The fact OutS6
∼= Z2 has order two indicates there is duality. Indeed, con-

structing the set of synthematic totals out of a six element set can be con-
sidered (the restriction of a) combinatorial species which has order two
under composition (up to natural isomorphism). Moreover, the duads and
synthemes are the vertices and edges of the self-dual Cremona-Richmond
configuration (whose vertices may represent duads and synthematics).
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■ Tale of Two Tangents: Solution

Label the three points given A,B,C. Draw a circle around B through C and
a circle around C through B, then label their points of intersection X, Y .
Draw a line through X and Y . This is the perpendicular bisector of B,C.

The circle around B intersects the line through A,B twice, call these points
U, V . We know how to construct perpendicular bisectors now, so construct
one through B. Do the same process with A as well.

These bisectors intersect the other line at points P,Q. Our final answer is
the circle centered at P through A and the circle centered at Q through B.
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■ Thinking Outside the Box: Solution

If we tilt our head until we’re looking straight at the floor, or the left wall,
or the right wall, then all the squares we see are the same color!
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■ Totally Tubular: Solution

Below are six inequivalent nonseparating loops in six different colors.

Slicing the double donut vertically between the left and right halves would
separate it into two donuts; slicing it vertically the other way would yield the
primary (blue, yellow, and red) colored loops; slicing it horizontally would
yield the secondary (purple, green, and orange) colored loops.

Any loop on the surface can be tightened until it becomes a geodesic (a curve
that minimizes surface-distance between any two sufficiently close points on
it; in flat space, it is well-known the geodesics are just straight lines).

(Oberwolfach Photo
Collection 2014)

Maryam Mirzakhani won the Fields Medal in
2014 for her work on the dynamics and geometry
of Riemann surfaces. In particular, she showed
the number of geodesics of length ≤ L can be
estimated similar to the prime numbers ≤ x.

A corollary says nonseparating loops on a double
torus outnumber separating ones six to one.
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■ Transitive Property: Solution

We may outline all (equally likely) outcomes:

• 2 4 9
1 • • •
6 • • •
8 • • •

• 3 5 7
2 • • •
4 • • •
9 • • •

• 1 6 8
3 • • •
5 • • •
7 • • •

The dots represent winners. The upper left dot represents the die which is
more likely to win between the two dice in a given table. Therefore,

Prob(L > C) = Prob(M > L) = Prob(C > M) = 5
9 .

In other words, lime beats cyan, magenta beats lime, and cyan beats magenta.

Thus, whatever die you pick, your acquaintance may pick the superior die
and have the better odds, so you should not accept the offer.
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■ Twenty Four: Solution

A simple Python script is below. (Try it on your favorite online Python IDE!)

hands = []

for A in range(1, 14):

for B in range(1, 14):

for C in range(1, 14):

for D in range(1, 14):

if (A * D == (B * D - C) * 24):

hands.append([A, B, C, D])

print(hands[-1])

print("Total: " + str(len(hands)))

Note denominators are cleared for the equation AD = (BD − C) · 24 so the
program doesn’t need to handle fractions. This returns the following output:

[2, 1, 11, 12]

[3, 1, 7, 8]

[4, 1, 5, 6]

[4, 1, 10, 12]

[4, 2, 11, 6]

[6, 1, 3, 4]

[6, 1, 6, 8]

[6, 1, 9, 12]

[6, 2, 7, 4]

[6, 3, 11, 4]

[8, 1, 2, 3]

[8, 1, 4, 6]

[8, 1, 6, 9]

[8, 1, 8, 12]

[8, 2, 5, 3]

[8, 2, 10, 6]

[8, 3, 8, 3]

[8, 4, 11, 3]

[9, 1, 5, 8]

[9, 2, 13, 8]

[10, 1, 7, 12]

[12, 1, 1, 2]

[12, 1, 2, 4]

[12, 1, 3, 6]

[12, 1, 4, 8]

[12, 1, 5, 10]

[12, 1, 6, 12]

[12, 2, 3, 2]

[12, 2, 6, 4]

[12, 2, 9, 6]

[12, 2, 12, 8]

[12, 3, 5, 2]

[12, 3, 10, 4]

[12, 4, 7, 2]

[12, 5, 9, 2]

[12, 6, 11, 2]

[12, 7, 13, 2]

Total: 37

According to statistics from the website 4nums.com, the three quadruples
(out of the 1362 total solvable quadruples) which take humans the longest
time to solve are (2, 3, 5, 12), (1, 3, 4, 6), and (1, 4, 5, 6), all three of which have
solutions exclusively of the form A/(B − C/D) = 24.
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24 is similar to the numbers round of Countdown, a long-running British
game show. There are 24 numbers to choose from: four large (25, 50, 75, 100)
and twenty small (two of each of the numbers 1-10). Contestants, of course,
only get to choose the sizes of the six numbers they receive (small or large),
not the actual numbers themselves. A 3-digit number is randomly generated,
and contestants win points based on how close they can get to it in 30 seconds
using any of the 6 numbers and the four arithmetic operations (+,−,×,÷).

Replacing Carol Vorderman in
2008, Rachel Riley is more
than just a Vanna White-style
hostess for the show: she not
only checks the contestants’
answers, but routinely finishes
the rounds off by providing the
best or better solutions purely
from mental math.

A crossover 8 Out of 10 Cats Does Countdown began in 2012, which was the
same show but played (less seriously) by comedians and celebrity guests. In
episode 5 of series 14, contestants failed to get close to 576. The contestants
were incredulous when Rachel revealed an exact solution::

After a friendly ribbing for having no friends (“the numbers are my friends!”),
she pointed out a better solution is 576 = 242 = ((75/3 + 1)× ((1 + 3)× 6).
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■ Twisted Clothesline: Solution

For each of the seven (1 + 2 + 4 = 7) vertices above the last row, we have
a binary choice of whether or not to swivel the subtree below it. Thus, the
number of swivellable permutations of the last row of vertices is 27 = 128.

It may not be obvious why this exhausts all possibilities; what about the
order in which we swivel subtrees, or the option to swivel multiple times at
a vertex (just not in a row), why don’t these lead to more permutations?

Consider the general problem of counting the number Wn of permutations
possible if our tree has n levels (our situation is n = 3). The permutations
are of two kinds: those where the left half of the numbers remain on the left
and the right half of numbers remain on the right, or those where the opposite
is true. There are an equal number of each, because swivelling below the top
vertex converts permutations of the one kind to the other and then back.

The number of permutations of the first kind is Wn−1×Wn−1, because there
are Wn−1 permutations possible for the first half of numbers and Wn−1 also
for the second half. Therefore, we have the recursion

Wn = 2W 2
n−1.

The first couple values are W0 = 1 and W1 = 2 by inspection, which leads to
W2 = 23 = 8 and W3 = 27 = 128. The general formula we then guess is

Wn = 21+2+···+2n−1

= 22
n−1.

We can verify this is true by induction: this satisfiesW0 = 1 andWn = 2W 2
n−1.

This means swivelling in different orders or multiple times at vertices achieves
no more permutations than if we always swivel the vertices in the same order
at most once each. Indeed, each permutation can be interpreted as a function
of {1, 2, 3, 4, 5, 6, 7, 8} which means we have a permutation group: a set of
invertible functions on a set which is closed under composition and inverses.
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To understand the structure of this permutation group, it’s necessary to un-
derstand wreath products. One way to understand the wreath products
(and direct products) of permutation groups is with the product action. Sup-
pose G is a permutation group acting on the set {1, · · · ,m} and H is a
permutation group acting on the set {1, · · · , n}. Make a table with m rows
and n columns, filling the entries with the numbers 1 through m× n:

1 2 3 · · · n

1
2
3
...
m

1 · · · · · ·
· · · · · · ·
· · · · · · ·
...

...
...

. . .
...

· · · · · · mn

The direct product Hm =

m︷ ︸︸ ︷
H × · · · ×H (in some contexts called a direct sum,

for which we will use the shorthand mH = H ⊕ · · · ⊕ H) is a permutation
group acting on {1, · · · ,mn}, the set of labels in the table. The elements of
Hm are attained by using permutations from H on each row individually.

The wreath product H ≀ G is a larger permutation group, containing Hm as
a subgroup, acting on {1, · · · ,mn}. The functions of H ≀ G are attained by
using row-permutations from Hm followed by using a permutation from G to
shuffle the rows amongst each other. This means the order (cardinality) of
the wreath product is |H ≀G| = |H|m|G|.

The permutation group which cycles the elements {1, 2, · · · , p} around in a
circle we can denote Zp. The permutation group of order 27 we found acting

on {1, · · · , 8} is actually a wreath power Z≀32 = Z2 ≀ Z2 ≀ Z2 (we don’t need
to distinguish between Z2 ≀ (Z2 ≀ Z2) and (Z2 ≀ Z2) ≀ Z2 because the wreath
product, as an operation on permutation groups, is associative).

Wreath powers yield Sylow subgroups of symmetric groups. The first Sy-
low theorem asserts that if a finite group G has order n and pk is the largest
power of a prime p dividing n, then G has a subgroup of order pk, called a Sy-
low subgroup (this is a partial converse to Lagrange’s theorem, which says the
order of any subgroup H is a divisor of n; the full converse is false in general).
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In particular, our Z≀32 is a Sylow subgroup of S23. In general, a Sylow subgroup
P of Sn can be constructed as a direct sum of wreath powers analogous to rep-
resenting n in base-p. Specifically, if n =

∑
nkp

k (with digits nk taken from
{0, 1, · · · , p − 1}) is n’s base-p representation, then P =

⊕
nkZ≀ kp . This can

be verified a Sylow subgroup with Legendre’s formula from number theory.
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■ Trees and Wreaths

We begin by substituting (k, ℓ) for the indices (so fm+n,2m+3n becomes fk,ℓ),
and then solving for (m,n) by elimination (to rewrite xmyn):{

k = m+ n

ℓ = 2m+ 3n
=⇒

{
m = 3k − ℓ

n = ℓ− 2k

Then the double series becomes∑
m,n

fm+n,2m+3n x
myn =

∑
k,ℓ

fk,ℓ x
3k−ℓyℓ−2k

=
∑
k,ℓ

fk,ℓ (x
3y−2)k(x−1y)ℓ = F (x3/y2, y/x).
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■ Unequal Booty: Solution

Call the number of coins in the chest A, the number of coins the captain
gets first B, the number of coins the second pirate gets first C, the number
of coins the third gets first D, the number the swabbie gets first E, and the
number of coins each pirate gets in the final handout F , so that

A = 1 + 3B

2B = 1 + 3C,

2C = 1 + 3D,

2D = 1 + 3E,

2E = 1 + 3F .

A series of substitutions allows us to write

A = 1 + 3B

= 1 + 3
2(1 + 3C)

= 1 + 3
2(1 +

3
2(1 + 3D))

= 1 + 3
2(1 +

3
2(1 +

3
2(1 + 3E)))

= 1 + 3
2(1 +

3
2(1 +

3
2(1 +

3
2(3F )))).

Multiplying by 24 = 16 rids fractions, then find quotient/remainder of ÷16:

16A = 16 + 3(8 + 3(4 + 3(2 + 3(6F ))))

= 16 + 24 + 46 + 54 + 243F

= 130 + 243F

= 16(8 + 15F ) + (2 + 3F )

Subtracting and factoring allows us to write

16(A− 8− 15F ) = 2 + 3F.

The larger F is, the larger the number of coins in the chest is. We seek
the smallest value of F that makes 2 + 3F divisible by 16. Or, equivalently,
the smallest multiple of 16 that is 2 greater than a multiple of 3. This last
interpretation lends itself to a quick answer: 32 is the smallest such multiple
of 16, yielding F = 10, and subsequently E = 15, D = 23, C = 35, B = 53
and the smallest number of coins in the chest is A = 160.
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This is an adaptation of the monkey and the co-
conuts problem, the favorite problem of proba-
bly the most famous mathematical columnist of
all, Martin Gardner, writer for the Mathematical
Games column of the Scientific American maga-
zine for a quarter century, and publisher of over a
hundred books. Besides popularizing recreational
mathematics, he was also an expert on Lewis Car-
roll, and founded the now Committee for Skeptical
Inquiry (CSI) to combat pseudoscience.
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■ Versorial Validation: Solution

Setting p = a+ u and q = b+ v, we begin by expanding |pq|2:

|(a+ u)(b+ v)|2 = |(ab− u · v) + (av + bu+ u× v)|2

= (ab− u · v)2 + ∥av + bu+ u× v∥2.

We can FOIL (ab−u · v)2, and additionally using the relation ∥w∥2 = w ·w
we can distribute the vector norm above and combine like terms to get

= a2b2 − 2ab(u · v) + (u · v)2

+ a2∥v∥2 + b2∥u∥2 + ∥u× v∥2

+ 2ab(u · v) + 2av · (u× v) + 2bu · (u× v).

The ±2ab(u · v) terms cancel. The cross product u × v is orthogonal to u
and v, which makes the dot products v · (u× v) and u · (u× v) zero, so the
magenta terms vanish. For the orange terms, we can use the facts{

u · v = ∥u∥∥v∥ cos θ,
∥u× v∥ = ∥u∥∥v∥ sin θ.

Using cos2 θ+sin2 θ = 1, the orange terms combine to ∥u∥2∥v∥2. So we have

= a2b2 + a2∥v∥2 + b2∥u∥2 + ∥u∥2∥v∥2

= (a2 + ∥u∥2)(b2 + ∥v∥2) = |a+ u|2|b+ v|2.
In conclusion, we have shown |pq|2 = |p|2|q|2.

Hamilton spent about a decade searching for a 3D number system that would
model rotations similar to how complex numbers model 2D rotations:

Every morning in the early part of October 1843, on my coming
down to breakfast, your brother William Edwin and yourself used
to ask me: “Well, Papa, can you multiply triples?” Whereto I was
always obliged to reply, with a sad shake of the head, “No, I can
only add and subtract them.”
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Orthogonality (the assumption that 1 and i point in orthogonal directions)
and multiplicativity are the key properties that let phasors (unit-norm com-
plex numbers of the form eiθ) act as rotations of the complex plane. Hamilton
sought a similar system with triples a + bi + cj, but to no avail, until one
day he realized making i and j anticommute (ij = −ji) and ij jut out into
a fourth dimension made all the algebra work out:

An electric circuit seemed to close; and a spark flashed forth,
the herald (as I foresaw, immediately) of many long years to come
of definitely directed thought and work, by myself if spared, and
at all events on the part of others, if I should even be allowed
to live long enough distinctly to communicate the discovery. Nor
could I resist the impulse - unphilosophical as it may have been -
to cut with a knife on a stone of Brougham Bridge, as we passed
it, the fundamental formula with the symbols, i, j, k; namely,

i2 = j2 = k2 = ijk = −1.

(It is a quick exercise to verify this very symmetric equation is equivalent to
the usual relations i2 = j2 = k2 = −1 and k = ij = −ji.) In hindsight, it
makes sense three imaginaries are necessary: there are three perpendicular
planes of rotation possible in 3D, unlike only one plane of rotation in 2D.

Hamilton may have spent the rest of his life evangelizing quaternions, but
they eventually fell out of favor - imagining four dimensions is a hard ask -
but Gibbs came along later and cut out the real and imaginary parts of the
product of two pure imaginary quaternions and gave us what we now call
the dot product and cross product, now standard curriculum today. This
story is but a subplot in a larger ‘war’ waged over various kinds of algebras -
other notable names include Gibbs and Heaviside on the side of vectors, and
Clifford and Grassman with a multivector generalization of quaternions.

The quaternions are denoted H in honor of Hamilton.
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The real and imaginary parts of quaternions are also called the scalar and vec-
tor parts. A couple characterizations: two quaternions commute (xy = yx) if
and only if their vector parts are parallel, and they anticommute (yx = −xy)
if and only if they are perpendicular vectors.

In H, the only square roots of +1 form a ‘zero-sphere’ S0 = {±1}, the only
square roots of −1 are 3D unit vectors forming the two-sphere S2, and the
versors (unit quaternions) form a hypersphere S3. All nonzero quaternions
have a polar form r exp(θu), where r is the norm, u is a unit vector, θ is a
convex angle 0 ≤ θ ≤ π, and Euler’s formula applies to exp(θu).

Any unit vector u can be extended to an orthonormal basis {u,v,w} for
3D space (oriented according to the right-hand rule), which extends to a ba-
sis {1,u,v,w} for H. If p = exp(θu) then the left-multiplication function
Lp(x) = px acts as a rotation by θ in a pair of 2D subspaces, the 1u-plane
and the vw-plane. The right-multiplication map Rp(x) = xp is the same,
but rotates the opposite direction in the vw-plane.

The composition Lp ◦ Rp−1 is conjugation x 7→ pxp−1. These left and right
multiplications cancel out in the 1u-plane, so when restricted to 3D vectors
the effect is rotation around the u-axis by the double angle 2θ. This is
how quaternions model 3D rotations. Indeed, they also model 4D rotations:
any rotation of four-dimensional space is equivalent to the “bimultiplication”
Lp ◦Rq−1 for some pair of versors p and q.

252



UNOmaha Problem of the Week

■ Vexing Vexillology: Solution

The Pythagorean theorem yields the system of equations
a2 + b2 = x2

b2 + c2 = 162

c2 + d2 = 112

d2 + a2 = 212

which yields

a2 + b2 + c2 + d2 = x2 + 112 = 162 + 212

and therefore
x =

√
162 + 212 − 112 = 24.

This is an example of the British Flag Theorem.
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■ Washers in Balance: Solution

Say the slice volumes are V1, · · · , Vn and the radius is r (all depending on n).

Let Ai be the area of a cross-section of the corresponding slice of a unit
sphere. Scaling by r2, we can say r2Ai is the area of a cross-section of the
volume Vi. Its height is

2r
n , so we may approximate Vi ≈ (2rn )(r

2Ai).

The volume equation 4
3πr

3 = Cn implies 2r3

n = 3C
2π which means Vi ≈ (3C2π )Ai.

The logarithm lnPn = lnV1 + · · ·+ lnVn we may estimate by

≈ n ln
(
3C
2π

)
+ lnA1 + · · ·+ lnAn

= n

[
ln

(
3C

2π

)
+

1

n

n∑
i=1

lnAi

]
For the limit to exist, the expression inside brackets must tend to 0 as n→∞.

The summation is akin to a Riemann sum. But for what integral? We need
to parametrize the cross-sectional areas using the interval [0, 1]. The cross-
sections are circles with radii

√
1− z2 and areas A = π(

√
1− z2)2, and we

can parametrize −1 ≤ z ≤ 1 from 0 ≤ t ≤ 1 using z(t) = 2t − 1. Thus, the
cross-sectional area is A(t) = π

(
1− (2t− 1)2

)
= 4πt(1− t), and then

ln

(
3C

2π

)
= −

ˆ 1

0

ln
[
4πt(1− t)

]
dt.

= − ln(4π)−
ˆ 1

0

ln t dt−
ˆ 1

0

ln(1− t) dt

We may add ln(4π) over to the left, then combine the integrals on the right
since they are equal (by symmetry - use the substitution s = 1− t):

ln(6C) = −2
ˆ 1

0

ln t dt = −2
[
t(ln t− 1)

]1
0
= 2

(since lim
t→0+

t ln t = 0), which leads to C =
e2

6
.
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Similar results are possible slicing up a circle by chords (equal angle apart),
into parallel chords (equal distance apart), or a sphere into concentric shells
(of equal thickness), provided by Dan (user 398708) on Math.StackExchange:

A = 2n

P → [2 cosh( π
2
√
3
)]2

A = (πe8 )n

P → 2 cos( π
2
√
3
)

V = (e
2

6 )n

P → 2

V = (e
2

3 )n

P → 2 cosh( π
2
√
3
)
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■ Working Backwards: Solution

We can represent the state of the game with three numbers (a, b, c), which
means there are a, b, and c marbles of each color left. Say (a, b, c) is a winning
position if perfect play starting from that position has a guaranteed win, and
a losing position otherwise. (Order doesn’t matter to whether the game state
is a winning or losing position, so we might as well assume a ≤ b ≤ c so that
we don’t have to write as many triples.)

A position is winning if (and only if) either you can win the game on that
turn or else it is possible to make a move which leaves your friend with a
losing position. Conversely, a position is losing if (and only if) no matter
what move you make you leave your friend with a winning position.

The game states where you can win on your turn are those where all marbles
have only one color left, i.e. when two of the numbers a, b, c are zero:

Win: (0,0,1), (0,0,2), (0,0,3).

The losing position with fewest marbles is (0, 1, 1), since no matter which
marble you take you leave your friend with the winning game position (0, 0, 1);
this means any state that can reach (0, 1, 1) on the next turn is winning:

Win: (0,1,2), (0,1,3),

(1,1,1), (1,1,2), (1,1,3).

This means (0,2,2) must be a losing position, because it can only leave your
friend with one of the winning positions (0,1,2) or (0,0,2), which also means

Win: (1,2,2), (0,2,3).

Finally, (1,2,3) is a losing position because it too can only leave your friend
one of the winning positions (0,2,3), (1,1,3), (1,2,2), (1,1,2), (1,1,1), (0,1,2).

In conclusion, if you believe your friend is banking on this fact, or else can
recognize and capitalize on it immediately, you should decline her offer.
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This is the game of Nim. The game can start with any number of “heaps,”
each heap having any number of items, and you take turns with your opponent
removing any number of items from one heap per turn. Games can be added:

+ =

In game theory terms, the combined game is the disjunctive sum of the
smaller games. The sum A+B of two games A and B has players playing the
games A and B “in parallel,” meaning each turn a player performs a move
in either game A or game B (until one of them is concluded, after which the
players finish the remaining game), and the sum game is finished when both
A and B are, with the final outcome the same as that of the final game.

Compare with simultaneous exhibitions where a high-ranking player plays
multiple other players (in chess or Go, for example) at the same time. The
disjunctive sum is like this, but played 1v1 instead of against multiple other
players, and only the last-concluded game’s outcome counts.

Maybe we can determine if the sum A + B is a winning or losing position
based on the positions of Nim games A and B? Consider the possibilities:

• L + L = L. If A and B are both losing positions, your opponent can
play perfectly in both games and win both, hence the sum.

• L+W = W . If (say) A is a winning position and B is a losing position,
then you can play a correct move in A to leave your opponent with two
games in losing position, which we just said is a losing position.

• W + W is indeterminate, as our previous work reveals - for example
(1) + (1) = (1, 2) is a losing position but (1) + (2) = (1, 2) is winning.

Perhaps we can study some special cases and generalize? The simple game
(1, 1, · · · , 1) with n one-item heaps is winning or losing based on n’s parity,
i.e. it is a winning position for odd n and a losing position for even n.
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If we analyze the two-heap game (a, b) for small values of a and b we will find
it is only a losing position when a = b. What makes equal-size pairs of heaps
so special? For the game (a, a), you cannot take all of one heap because then
your opponent can win next turn. But then whatever number of items you
take from one heap, your opponent can mirror your move by taking an equal
number of items from the other heap! This generalizes: given any game A,
the game A + A must be a losing position, since whatever move you do in
one of the A games, your oppononent can copy it in the other A game.

If we analyze the three-heap game (a, b, c) for small values of a, b, c, no ob-
vious pattern emerges. (We will find out in a bit that the three-heap games
are the key to solving the full game with any number of heaps.)

Consider the effect of adding one heap to a game. For any game A, there is
at most one number a for which A + (a) is in a losing position. Indeed, if
there were two such numbers a < b, then faced with A+(b) you could remove
items from (b) to leave your opponent with the losing position A+(a), which
means A + (b) was a winning position for you, a contradiction. The value a
(which will turn out to always exist) is called the nim sum of A.

To anyone familiar with computer science, this may feel like a parity bit,
or more generally a checksum. Computers deal in bits, or 1s and 0s (cor-
responding to the presence or absence of electrical signals in circuits, or to
magnetic poles in physical media, or to True and False respectively in gen-
eral). Computers often append a parity bit to the end of a code (string of
bits) which is the XOR (exclusive or) of previous bits. In practice this means
the parity bit has the same parity as the number of 1s in the code (parity
means whether a number is even or odd).

A checksum is a larger block of data that functions the same way. Parity bits
and checksums are examples of error-detection systems. More sophisticated
coding schemes can be used to not only detect but also correct reasonable
levels of errors in signals travelling over noisy channels on-the-fly. Modern
computers and the internet as we know it wouldn’t be possible without error
correction fixing flipped bits caused by interference.
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Just as a parity bit is the unique bit added to the end of a code to make the
total XOR equal 0, the nim-sum of a game is the unique heap size (possibly
zero) to add to make it a losing position, hence the analogy.

Let’s use the notation ΣA for the nim sum of a game A. By definition,
A + (ΣA) and B + (ΣB) are losing positions, as is A + B + (ΣA+B). That
means the sum of all three of them is also a losing position:

A+ (ΣA) +B + (ΣB) + A+B + (ΣA+B).

We said earlier L + L = L and L + W = W , which means subtracting
any losing game (if possible) from a sum does not change winning or losing
position. As A+B+A+B is a losing position, we can subtract it to conclude

(ΣA) + (ΣB) + (ΣA+B)

is also a losing position, which means not only is ΣA+B the nim-sum of A
and B, it is also the nim-sum of (ΣA) + (ΣB)! This means we can replace
the last two heaps of a game (a1, · · · , an−1, an) with their nim-sum as a single
heap and the overall nim-sum is unaffected. Thus, finding the nim-sum of
any game is reduced to finding the nim-sum of two-heap games!

Let’s pick notation that indicates we’re considering a binary operation: let
a⊕ b denote the nim sum of (a)+(b). We’ve found 1⊕2 = 3 in this problem,
for instance. It takes quite a bit of legwork (working out case after case by
hand) before we can observe any patterns in a nim-sum table:

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

Every entry in the table is the nim-sum of its

row’s first number and its column’s top number.
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The diagonal is filled with 0s (as we said earlier, A + A is always a losing
position, which implies a ⊕ a = 0). Also notice there are many runs of con-
secutive numbers within rows and columns of different sizes.

There also seems to be interlacing and reversing effects - for example, in the
row beginning with 1, the numbers after 0 are just the same numbers above
them but every consecutive pair is swapped. The effect is more pronounced if
we subdivide the 8×8 array into a 2×2 array of 4×4 arrays: each 4×4 array
is identical to the catercorner 4 × 4 array. The same is true if we subdivide
the 4× 4 arrays into 2× 2 arrays, and this pattern continues if we zoom out
to look at 8× 8 arrays within a 16× 16 or beyond.

This fractal-like structure (self-similarity at different scales) is reminiscent of
numbers represented in binary. In our decimal (i.e. base-10) number system
(chosen because we have ten fingers), each digit represents higher powers of
ten, so for instance 100 = 102 and 1000 = 103. In binary, the digits represent
powers of two, so 111 in binary is 4 + 2 + 1 = 7 in decimal for example.

binary decimal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

000 001 010 011 100 101 110 111

001 000 011 010 101 100 111 110

010 011 000 001 110 111 100 101

011 010 001 000 111 110 101 100

100 101 110 111 000 001 010 011

101 100 111 110 001 000 011 010

110 111 100 101 010 011 000 001

111 110 101 100 011 010 001 000

In the left table of binary representations, notice the units digit alternates
between 0 and 1, the twos digit alternates between two 0s and two 1s, the
fours digit alternates between four 0s and four 1s, and this pattern continues.

On a hunch, let’s rewrite the nim-sum table in binary. It may not be obvious,
but this is also the table for bitwise XOR! That is, a binary digit of a⊕ b is 0
if the corresponding binary digits of a and b match, and is 1 otherwise.

This completely solves the game of Nim. For example, consider the game
(1, 2, 3, 4). The nim-sum is the bitwise XOR of the numbers 1, 2, 3, 4:
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0001

0010

0011

⊕ 0100

0100

The nim-sum is 1⊕ 2⊕ 3⊕ 4 = 4. Since the nim-sum is not
zero, we conclude (1, 2, 3, 4) is a winning position. In fact,
this gives us the strategy for perfect play: always leave your
opponent with a nim-sum of zero for the start of their turn.

The earliest European references to Nim are from the 1500s, but it’s possible
the game originated in China, and some of its many variations have been
played since ancient times. The first published mathematical solution was in
1901, for comparison, so a lot of time went by before the solution was finally
found. Don’t get hung up if you didn’t see it; almost nobody does!

261



UNOmaha Problem of the Week

■ Yoga of π: Solution

The first trick is that we can rewrite a positive constant α as α =
´
0≤v≤α dv,

or equivalently 1/α =
´
0≤αv≤1 dv, which we can use to rewrite the integrand

as its own integral (α = u2 + 1, ignoring the 2), creating a double integral:

ˆ

−1≤u≤1

2 du

u2 + 1
=

ˆˆ

−1≤u≤1
0≤(u2+1)v≤1

2 dudv

Observe the resemblance of (u2+1)v = u2v+ v to x2+ y2; both are bounded
by the same inequality. This suggests setting u2v = x2 and v = y2, meaning{

x = u
√
v

y =
√
v

⇐⇒

{
u = x/y

v = y2

With this change of variables, the double integral becomes

ˆˆ

−1≤u≤1
0≤(u2+1)v≤1

2 dudv =

ˆˆ

−1≤x/y≤1
x2+y2≤1

2
∂(u, v)

∂(x, y)
dxdy

We may calculate the Jacobian determinant to be

∂(u, v)

∂(x, y)
=

∣∣∣∣ ∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣ = ∣∣∣∣ 1/y −x/y2
0 2y

∣∣∣∣ = 2

and therefore the double integral becomes
ˆˆ

−y≤x≤y
x2+y2≤1

4 dxdy =

ˆˆ

Q2

dxdy +

ˆˆ

Q2

dxdy +

ˆˆ

Q2

dxdy +

ˆˆ

Q2

dxdy.

The domain Q2 is the top quarter sector of the unit disk. We can use the
substitution (x, y) 7→ (y, x) to turn two of the Q2 domains into Q1, the right
quarter sector. Then, we can use the substitution (x, y) 7→ (−x,−y) to turn
one Q1 and one Q2 into the other two quarters Q3 and Q4. Also note these
substitutions do not change the integrands or differentials.
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Thus the four integrals become
ˆˆ

Q1

dxdy +

ˆˆ

Q2

dxdy +

ˆˆ

Q3

dxdy +

ˆˆ

Q4

dxdy =

ˆˆ

x2+y2≤1

dxdy.

And so we have followed the rules to concludeˆ

−1≤u≤1

2 du

u2 + 1
−→

ˆˆ

x2+y2≤1

dxdy.

In school we encounter an increasing progression of larger number systems:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

N = {1, 2, 3, · · · } is the set of natural numbers (whether or not 0 is included
depends on author and context), Z is the set of integers, Q is the set of ra-
tional numbers (quotients), R is the set of real numbers, and C is the set of
complex numbers. A different extension of Q besides R is the set Q of all
algebraic numbers (roots of integer-coefficient polynomials). Other than N
these are all rings, meaning they are closed under the arithmetic operations
of addition, subtraction, and multiplication.

A larger class of numbers is the ring of periods. A period is any number
expressible as a (possibly multivariable) integral of a rational function (with
rational coefficients) over a domain defined by polynomial inequalities; while
the set of periods includes the set of algebraic numbers, “most” periods are
transcendental, and yet the set of periods is still countable.

Examples of periods include π, the natural logarithm of algebraic numbers,
and special values of broad families of zeta and hypergeometric functions and
elliptic integrals. This problem not only illustrates π is a period, but:

Conjecture. If a period is expressible as two different integrals, it is possi-
ble to convert one integral to the other using just the rules outlined in this
problem. (Bonus conjecture: there is an algorithm that can do this.)
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Disappointingly, e ≈ 2.718 is not expected to be a period. This suggests
extending the ring of periods to “exponential periods,” which would include
for example the Gaussian integral

√
π =

´∞
−∞ e−x

2

dx. There is an analo-
gous extension of field theory to “differential field theory” which allows us
to actually prove functions like xx and ex

2

have no elementary antiderivatives.

It is also not expected that the Euler-Mascheroni constant, defined by the

limit γ
def
= lim

n→∞
(1 + 1

2 + · · · +
1
n − lnn) ≈ 0.577, is a period. This is unlikely

to be proven any time soon, though; it has not even been proven that γ is
irrational! In the context of regularization and asymptotic analysis γ can be
considered an honorary zeta value ζ(1) (which technically doesn’t exist).

Following this trend, Kontsevich and Zagier in their survey article “Periods”
opine that “all classical constants are periods in an appropriate sense.”
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Appendix

AM-GM

(Isoequiareal Quotient)

Bertrand’s Postulate

(Involutive Units)

Bèzier Curves

(Arts and Crafts) (Lazy Spline)

Calculus

(Interesting Asymptotic) (Noncommutative Calculus) (Blinding Sphere) (Halv-
ing Harmonics) (Yoga of π) (Slope-Intercept Coordinates) (Washers in Bal-
ance) (Cusp of Crying)

Chromatic Polynomials

(Striking Gold)

Compass & Straightedge

(Tale of Two Tangents) (Golden Architecture)

Computer Aid

(Prime Generation) (Twenty Four)
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Factoring Polynomials

(Alfred’s Ansatz) (abcs in the Margin)

Fundamental Counting Principle

(Finitessimal Accretion) (Rhopalocera) (Trees and Wreaths) (Pair of Pairs)
(Involutive Units)

Fundamental Theorem of Arithmetic

(Arithmetic Jenga) (Odd One Out)

Generating Functions

(Arboreal Reactor) (Twisted Clothesline) (Interesting Asymptotic) (Noncom-
mutative Calculus) (Factorial Frenzy) (Pentagonal Peculiarity)

Geometric Sums

(Homogenizations) (Cyberpunk)

Group Theory

(Diamond Theory) (Equational Sudoku) (Gyration Conjugation) (Synthe-
matics) (Rational Corollary) (Heisenberg) (Sporadic Twists) (Hyperdiamond)

Graph Theory

(Campus Dash)

Homogenization

(Homogenization)
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Hopf Bundle

(Good Fibrations) (Hyperdiamond)

Hyperbolic Functions

(Conical Conversions)

Induction

(Cutting Sticks) (Orloj Cog)

Möbius Transformations

(Celestial Shift) (Circular Cocycle) (Local Linear Function)

Pick’s Theorem

(Zagged Enclosure)

Platonic Solids

(Icosian Palette)

Probability Theory

(Transitive Property) (Heat of Battle) (Anharmonic Asymmetry) (Joker’s
Wild) (Ensemble Cast) (Sample Energy)

Polytopes

(Good Fibrations) (Hyperdiamond)
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Proof without Words

(Forty Two)

Pythagorean Theorem

(Sākuru) (Vexing Vexillology) (First Fold)

Quaternions

(Versorial Validation)

Regularization

(Regularization)

Shoelace Formula

(Zagged Enclosure)

Sterographic Projection

(First Fold) (Quadratic Pythagorean Triples)

Symmetric Polynomials

(Squared Cubic Roots)

Tetration

(Superexponential)
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Triangle Inequality

(Killer Triangle Problem)

Vector Algebra

(Favorite Angle) (Versorial Validation) (Projector Junction) (Polarization)
(Blade Angle)

269



UNOmaha Problem of the Week

Bibliography

Goucher, A. (2021, April 24). Good fibrations. Complex Projective 4-Space.

Retrieved from https://cp4space.hatsya.com/2012/09/27/good-fibrations

Cmglee. (2013, January 21). File:Quadratic Beziers in string Art.svg.

Wikimedia Commons. Retrieved from commons.wikimedia.org
/wiki/File:Quadratic Beziers in string art.svg

FG Forrest, a.s. (n.d.). The Astronomical Clock Machine. Prague.eu.

Retrieved from https://www.prague.eu/en/articles/the-
astronomical-clock-machine-14396

Greuel. G.M. Oberwolfach Photo Collection. Details: Maryam Mirzakhani.

(2014). Retrieved from https://opc.mfo.de/detail?photo
id=19099

Library, R. I. A. (2016, October 17). On display today: Icosian game

- mathematical board game devised by sir William Rowan Hamil-
ton, mria #mathsweek2016 pic.twitter.com/1hoax7mbct. Twitter.
Retrieved from https://twitter.com/library ria/status/787937032
760922112

McKay, B., Happy, C., Trueman, T., Herbert, Koundy, & AWinter.

(2015, March 5). Yumshoq yuzani chizish. de-vraag. Retrieved
January 2022, from https://de-vraag.com/uz/71720571

Nonenmacher, R. A. (2008, August 5). File:connected dynkin diagrams.svg.

Wikimedia Commons. Retrieved from commons.wikimedia.org
/wiki/File:Connected Dynkin Diagrams.svg

Patel, A. (2018, October 19). Delaunay+Voronoi on a sphere.

Retrieved from https://www.redblobgames.com/x/1842
-delaunay-voronoi-sphere

270



UNOmaha Problem of the Week

Prague Astronomical Clock - Orloj. Amazing Czechia. (2022, March 14).

Retrieved from https://www.amazingczechia.com/sights/prague-
astronomical-clock-orloj

Richeson, D. (n.d.). The Japanese Theorem for Nonconvex Polygons.

The Japanese theorem for nonconvex polygons. Retrieved from
https://www.maa.org/book/export/html/254805

Ruen, T. (2010, December 21). File:Root vectors b3 c3-d3.png.

Retrieved from https://commons.wikimedia.org/wiki/File:
Root vectors b3 c3-d3.png

Schleimer, S., & Segerman, H. (2015). Puzzling the 120-cell. Notices of the

American Mathematical Society, 62(11), 1309–1316.
https://doi.org/10.1090/noti1297

Tavakoli, Armin, & Gisin, Nicolas. (2020). The Platonic solids and

fundamental tests of quantum mechanics. Quantum. 4. 293.
10.22331/q-2020-07-09-293.

271



UNOmaha Problem of the Week

272


	Preface
	Elliptic Problems
	(1) Finitessimal Accretion
	(2) Rhopalocera
	(3) Sākuru
	(4) Transitive Property
	(5) Prime Generation
	(6) Synchronicity
	(7) Not Yet Ready
	(8) Cyclic Sieving
	(9) Unequal Booty
	(10) Child's Play
	(11) First Fold
	(12) Killer Triangle Problem
	(13) Trees and Wreaths
	(14) Arithmetic Jenga
	(15) Cutting Sticks
	(16) Heat of Battle
	(17) Odd One Out
	(18) Working Backwards
	(19) Forty Two
	(20) Kaleidoscopic Diamonds
	(21) Vexing Vexillology
	(22) Fenced In
	(23) Thinking Outside the Box
	(24) Orange Stack
	Parabolic Problems
	(1) Icosian Palette
	(2) Rolling Spheres
	(3) Equational Sudoku
	(4) Totally Tubular
	(5) Favorite Angle
	(6) Orloj Cog
	(7) Like an Egyptian
	(8) Pinching an Impulse
	(9) Categorical Imperative
	(10) Arts and Crafts
	(11) Folding Point
	(12) Tale of Two Tangents
	(13) Pair of Pairs
	(14) Alfred's Ansatz
	(15) Twenty Four
	(16) Anharmonic Asymmetry
	(17) Twisted Clothesline
	(18) Joker's Wild
	(19) Interesting Asymptotic
	(20) Noncommutative Calculus
	(21) Versorial Validation
	(22) Projector Junction
	(23) Perspective Shift
	(24) Campus Dash
	Hyperbolic Problems
	(1) Quadratic Pythagorean Triples
	(2) Bipolarity
	(3) Ensemble Cast
	(4) Good Fibrations
	(5) Lazy Spline
	(6) Blinding Sphere
	(7) Sample Energy
	(8) Gyration Conjugation
	(9) Halving Harmonics
	(10) Factorial Frenzy
	(11) Yoga of 
	(12) Synthematics
	(13) Buckminsterfullerene
	(14) abcs in the Margin
	(15) Rational Corollary
	(16) Heisenberg
	(17) Slope-Intercept Coordinates
	(18) Pentagonal Peculiarity
	(19) Washers in Balance
	(20) Cusp of Crying
	(21) Polarization
	(22) Sporadic Twists
	(23) Striking Gold
	(24) Celestial Shifting
	Older Problems
	(1) Conical Conversions
	(2) Homogenization
	(3) Dynamical Billiards
	(4) Cyberpunk
	(5) Hyperdiamond
	(6) Regularization
	(7) Squared Cubic Roots
	(8) Sphere Gears
	(9) Circular Cocycle
	(10) Local Linear Fraction
	(11) Lattice Chasing
	(12) Involutive Units
	(13) Golden Architecture
	(14) Isoepiareal Ratio
	(15) Superexponential
	(16) Quadric Query
	(17) Blade Angle
	Solutions
	abcs in the Margin
	Alfred's Ansatz
	Anharmonic Asymmetry
	Arithmetic Jenga
	Arts and Crafts
	Bipolarity
	Blade Angle
	Blinding Sphere
	Buckminsterfullerene
	Campus Dash
	Categorical Imperative
	Celestial Shifting
	Child's Play
	Conical Conversions
	Circular Cocycle
	Cusp of Crying
	Cutting Sticks
	Cyberpunk
	Cyclic Sieving
	Dynamical Billiards
	Ensemble Cast
	Equational Sudoku
	Factorial Frenzy
	Favorite Angle
	Fenced In
	Finitessimal Accretion
	First Fold
	Folding Point
	Forty Two
	Golden Architecture
	Good Fibrations
	Gyration Conjugation
	Halving Harmonics
	Heat of Battle
	Heisenberg
	Homogenization
	Hyperdiamond
	Icosian Palette
	Isoepiareal Ratio
	Interesting Asymptotic
	Involutive Units
	Joker's Wild
	Kaleidoscopic Diamonds
	Killer Triangle Solution
	Lazy Spline
	Lattice Chasing
	Like an Egyptian
	Local Linear Fraction
	Noncommutative Calculus
	Not Yet Ready
	Odd One Out
	Orange Stack
	Orloj Cog
	Pair of Pairs
	Pentagonal Peculiarity
	Perspective Shift
	Pinching an Impulse
	Polarization
	Prime Generation
	Projector Junction
	Quadratic Pythagorean Triples
	Quadric Query
	Rational Corallary
	Regularization
	Rhopalocera
	Rolling Spheres
	Sākuru
	Sample Energy
	Slope-Intercept Coordinates
	Sphere Gears
	Sporadic Twists
	Squared Cubic Roots
	Striking Gold
	Superexponential
	Synchronicity
	Synthematics
	Tale of Two Tangents
	Thinking Outside the Box
	Totally Tubular
	Transitive Property
	Twenty Four
	Twisted Clothesline
	Trees and Wreaths
	Unequal Booty
	Versorial Validation
	Vexing Vexillology
	Washers in Balance
	Working Backwards
	Yoga of 
	Appendix
	AM-GM
	Bertrand's Postulate
	Bèzier Curves
	Calculus
	Chromatic Polynomials
	Compass & Straightedge
	Computer Aid
	Factoring Polynomials
	Fundamental Counting Principle
	Fundamental Theorem of Arithmetic
	Generating Functions
	Geometric Sums
	Group Theory
	Graph Theory
	Homogenization
	Hopf Bundle
	Hyperbolic Functions
	Induction
	Möbius Transformations
	Pick's Theorem
	Platonic Solids
	Probability Theory
	Polytopes
	Proof without Words
	Pythagorean Theorem
	Quaternions
	Regularization
	Shoelace Formula
	Stereographic Projection
	Symmetric Polynomials
	Tetration
	Triangle Inequality
	Vector Algebra

	Bibliography











































































