ASPECTS OF

GRAPH VULNERABILITY

David Peter Day

Submitted in partial fulfilment of the
requirements for the degree of
Doctor of Philosophy
in the
Department of Mathematics and Applied Mathematics, University of Natal.

Durban
January 1994

To Dèsirée, Michelle and Nicole

Preface

The research on which this thesis was based was carried out in the Department of Mathematics and Applied Mathematics, University of Natal, Durban, from January 1990 to January 1994, under the supervision of Professor Henda C. Swart and the co-supervision of Dr. Ortrud R. Oellermann.

This thesis represents original work by the author and has not been submitted in any other form to another university. Where use was made of the work of others, it has been duly acknowledged.

Acknowledgements

I wish to thank Professor Henda C. Swart and Doctor Ortrud R. Oellermann for their willing and unfailing support, guidance and encouragement during the preparation of this thesis.

Further, I would like to thank my wife and daughters for being so understanding and considerate, and my colleagues for helping to lighten the work load. I also gratefully acknowledge the financial support of Technikon Natal and the Hanno Rund fund of the University of Natal.

Lastly I would like to thank Mrs. Dale Haslop for the typing of this thesis.

Abstract

This dissertation details the results of an investigation into, primarily, three aspects of graph vulnerability namely, ℓ-connectivity, Steiner Distance hereditariness and functional isolation.

Following the introduction in Chapter one, Chapter two focusses on the ℓ-connectivity of graphs and introduces the concept of the strong ℓ connectivity of digraphs. Bounds on this latter parameter are investigated and then the ℓ-connectivity function of particular types of graphs, namely caterpillars and complete multipartite graphs as well as the strong ℓ-connectivity function of digraphs, is explored. The chapter concludes with an examination of extremal graphs with a given ℓ-connectivity.

Chapter three investigates Steiner distance hereditary graphs. It is shown that if G is 2 -Steiner distance hereditary, then G is k-Steiner distance hereditary for all $k \geq 2$. Further, it is shown that if G is k-Steiner distance hereditary ($k \geq 3$), then G need not be $(k-1)$-Steiner distance hereditary. An efficient algorithm for determining the Steiner distance of a set of k vertices in a k-Steiner distance hereditary graph is discussed and a characterization of 2-Steiner distance hereditary graphs is given which leads to an efficient algorithm for testing whether a graph is 2-Steiner distance hereditary. Some general properties about the cycle structure of k-Steiner distance hereditary graphs are established and are then used to characterize 3-Steiner distance hereditary graphs.

Chapter four contains an investigation of functional isolation sequences of supply graphs. The concept of the Ranked supply graph is introduced and both necessary and sufficient conditions for a sequence of positive nondecreasing integers to be a functional isolation sequence of a ranked supply graph are determined.

Contents

1 1
1.1 Measures of graph vulnerability 1
1.2 Graph Theory Nomenclature 5
$2 \mathcal{L}$-Connectivity 7
2.1 Introduction 7
2.2 The ℓ-Connectivity of a Digraph 9
2.2.1 Bounds on the strong ℓ-connectivity of a digraph 10
2.2.2 Strong connectivity sequences of digraphs 12
2.3 The ℓ-connectivity function of certain classes of graphs 15
2.3.1 Caterpillars and complete Multipartite graphs 15
2.4 The strong ℓ-connectivity function of a digraph 26
2.4.1 Generalisation from Graphs 26
2.5 Maximal and Minimal Graphs of given ℓ-connectivity 32
2.5.1 Maximal Graphs 32
2.5.2 Minimal Graphs 33
3 Steiner Distance Hereditary Graphs 54
3.1 Introduction 54
3.2 Generalization of Steiner Distance Hereditary Graphs 55
3.3 The Characterization of 3 -Steiner Distance Hereditary Graphs 63
4 Functional Isolation Sequences 87
$4.1 \quad \mu_{f}$-sequences 88
4.2 The Ranked Supply Graph 89
Bibliography 108

Chapter 1

1.1 Measures of graph vulnerability

Many parameters have been introduced to measure the extent of the damage and disruption caused in a communications network by the loss or failure of vertices or edges in the system.

Earliest investigations of such problems dealt with the connectivity, κ, and edge-connectivity, λ, of a graph which are of overriding importance in cases where the disconnection of the communications network due to vertex or edge failure is deemed to be catastrophic. These parameters have been studied since the twenties and thirties of this century (see [M2] and [W1]) and form the subject of an extensive literature of which we mention but some trends and highlights. Characterizations and properties of n-connected and n-edge connected graphs were obtained (see [M2], [W1], [FF1], [EFS1], [D1], [D2], [T1], [B3], [B1], [B4]).

Relations between κ, λ and other graph-theoretical parameters (p, q, δ, diam, degree sequences) were obtained and the existence of graphs having prescribed values of such parameters was established (in some cases with reference to special classes of graphs, such as line graphs, clique graphs and circulants) (see [W1], [CH1], [H3], [BS2], [BS3], [KQ1], [M3], [M4], [O3], [CS1], [CS2], [BT1], [Z1], [H4], [BT1], [B2], [BT2]). Minimally and
k-critically n-connected graphs were investigated initially in [CKL1], [ES1] and [MS2].

In dealing with practical problems such as the reliability of computer networks, we may be able to assess the probability that vertices or edges will remain operational and to model the network in terms of a probabilistic graph (see[C2] in which an extensive list of references is provided).

If a disconnected graph $G-S$ results when a set S of vertices or edges is removed from a graph G, it is possible that a sufficiently large component of $G-S$ exists to provide a viable communication system. The assessment of this situation requires the introduction of a new parameter which takes into account both the number of elements (vertices or edges) deleted from G and the maximum number of vertices between which communication is still possible:

1. In [BES1] and [BES2] the concepts of the integrity $I(G)$ and edgeintegrity $I^{\prime}(G)$ of a graph G were introduced and initially developed:

$$
\begin{aligned}
& I(G)=\min _{S \subset V(G)}\{|S|+m(G-S)\} \text { and } \\
& I^{\prime}(G)=\min _{S \subseteq E(G)}\{|S|+m(G-S)\},
\end{aligned}
$$

where $m(G)$ denotes the maximum order of a component of a graph G.
2. We shall not present a survey of the results on integrity and edge integrity that have appeared since 1987 and may be found in [BES1], [BES2], [G2], [GS1], [GS2], [GS3], [GS4], [BBLP1], [BBLP2], [BBLP3], [BBLPS1], [BBLPS2], [BBLP5], [BBLPS3], [BGL1], [BGL2], [CEF1], [FS1], [LSP1] as well as in the survey article [BBGLP1]. However, we
shall briefly introduce several related parameters designed to assess the degree to which other desirable properties are retained after the deletion of vertices or edges from a graph:
3. Let $S \subset V(G)$ and, for each $v \in G-S$, let $p_{v}(G-S)$ denote the order of the component of $G-S$ that contains v. The mean integrity of $G, J(G)$, was defined in [CKMO1]:

$$
\begin{aligned}
J(G) & =\min _{S \subset V(G)}\left\{|S|+\left(1 / p(G-S) \sum_{v \in V(G)-S} p_{v}(G-S)\right\}\right. \\
& =\min _{S \subset V(G)}\left\{|S|+\sum(p(H))^{2} / \sum p(H)\right\}
\end{aligned}
$$

where summation takes place over all components H of $G-S$.
4. The pure edge-integrity, $I_{p}(G)$, of G was defined in [BD1] to be

$$
I_{p}(G)=\min _{S \subseteq E(G)}\left\{|S|+m_{e}(G-S)\right\}
$$

where $m_{e}(G-S)$ denotes the maximum size of any component of $G-S$.
5. The tenacity of a graph $G, T(G)$, defined in [CMS1] as

$$
T(G)=\min _{S}\left\{\frac{|S|+m(G-S)}{k(G-S)}\right\}
$$

where the minimum is taken over all vertex cutsets of G, is designed to be used if it is desirable that, after the loss of a cut set of vertices from $G, G-S$ should contain a component of large order and be easily reconnected by virtue of having few components. (See also [MS1] and [CMS1].)
6. The vertex-neighbourhood-integrity of a graph $G, V N I(G)$, is defined in [CW1] by

$$
V N I(G)=\min _{S \subseteq V(G)}\{|S|+m(G-N[S])\}
$$

(see also [WC1] and [WC2]).
7. Related to edge-integrity is the honesty, $h(G)$, of a graph G : A graph G is said to be honest if $\left.I^{\prime \prime} G\right)=p(G)$. The smallest number of edges in a subset of $E(\bar{G})$ whose addition to G yields an honest graph is defined to be $h(G)$ (see [BBLP4]).
8. The toughness of a graph $G, t(G)$, was defined in [C1] to be

$$
t(G)=\min _{S}\{|S| / k(G-S)\}
$$

where the minimum is taken over all cutsets S of G if G is noncomplete and $t\left(K_{p}\right)=\infty$. (The definition was slightly altered in [G2] and [GS4], the minimum being taken over all $S \subset V(G)$ with $\kappa(G-S)=0$, leading to the alteration of $t\left(K_{n}\right)$ from ∞ to $p(G)-1$.) Toughness is of obvious use in assessing the extent of disruption caused by the removal of vertices from a graph in a situation where it is deemed desirable that the resulting disconnected graph should be easily reconnected or that the number of its components should be so small that the structures represented by them can economically be provided with essential services, etc. (cf. [BES1], [G2] and [GS4] in which relations between toughness and other measures of vulnerability are explored). However, many papers dealing with toughness have appeared since 1973, aimed mainly at establishing links between the toughness of a graph and its cycle structure, inspired by conjectures in [C1]: It was conjectured that a constant c exists such that $t(G) \geq c$ implies hamiltonicity (or pancyclicity) of G, that $t(G) \geq 3 / 2$ implies the existence of a two-factor in G and that, for any positive integer k such that $k p(G)$ is even, $t(G) \geq k p(G)$ implies the existence of a k-factor in G. Only the last of these conjectures has been proved [EJKS1] and it would be inappropriate to list all references to progress made in investigating the remaining conjectures. The names of authors currently most prominent in this field may be found in [BS1] and [GS4].
9. The binding number of a graph $G, b(G)=\min _{S}\{|N(S)| /|S|\}$, where the minirrum is taken over all nonempty subsets S of $V(G)$ such that $N(S) \neq S$, was defined in [W2] and further investigated in [BES1], [G2], [GS2], [GS4], [KMH1], [WTL1], [W2], [G3] and [C3].

In the following chapters we shall explore further measures to assess the vulnerability of graphs and digraphs to disruption caused by the removal of vertices and edges.

1.2 Graph Theory Nomenclature

The basic text for the graph theory terminology and symbols used here is Chartrand and Lesniak's Graphs and Digraphs (second edition) [CL1]. However, certain clarification of our conventions is necessary.

All graphs considered are 'simple' graphs; i.e. undirected graphs without loops or multiple edges. Further, we use $p=p(G)$ and $q=q(G)$ to denote the order and size respectively of a graph G.

Recall that $G-S$ denotes the graph formed by the removal of a set of vertices S from G, while $\langle S\rangle$ denotes the vertex-induced subgraph of G with vertex set S.

For sets A and $B,[A, B]$ denotes the set of edges which have one end in A and one in B. We also speak of complete n-partite (or complete multipartite graphs) of the form $K_{p_{1}, p_{2}, \ldots, p_{n}}=K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, with the complete bipartite graphs of the form $K_{1, m}$ being called stars. The symbols $\beta(G)$ and $k(G)$ will denote the independence number and the number of components of G respectively.

The contraction of an edge $e=x y$ of a graph G yields the graph denoted $G \cdot e$, defined by removing e and identifying its ends, i.e. replacing x
and y by one vertex, w say, such that w is adjacent to $v \in V(G)-\{x, y\}$ if and only if $x v$ or $y v$ is an edge of G.

Further, we shall use the symbol \subset to denote strict containment in the comparison of sets, $|S|$ to denote the cardinality of the set S, and $\lfloor x\rfloor$ and $\lceil x\rceil$ to denote the integer part and ceiling of x, respectively.

Chapter 2

\mathcal{L}-Connectivity

2.1 Introduction

The ℓ-connectivity and ℓ-edge connectivity of a graph G, was first introduced in 1984 by Chartrand, Kapoor, Lesniak and Lick [CKLL1] by generalising the concepts of the connectivity and edge-connectivity of a graph.

It is well known that the connectivity $\kappa(G)$ (edge-connectivity $\lambda(G)$) of a graph G is the minimum number of vertices (edges) whose deletion produces a graph with at least two components or the trivial graph. These two parameters have the advantage that they can be computed efficiently. However, there are situations where the connectivity (edge connectivity) is inadequate as a measure of vulnerability.

For example, the star $K_{1, m}$ and the path $P_{m+1}(m \geq 3)$ are both graphs of order $m+1$ and size m that have connectivity 1 , but the deletion of a cut vertex from $K_{1, m}$ produces m components whereas the deletion of a cut vertex from P_{m+1} always produces exactly two components. So in some sense $K_{1, m}$ is more vulnerable (or less reliable) than P_{m+1} (for $m \geq 3$). The ℓ-connectivity and ℓ-edge connectivity provide a differentiation between the vulnerability of these graphs.

In particular, for $\ell \geq 2$, the ℓ-connectivity $\kappa_{\ell}(G)$ (ℓ-edge-connectivity $\lambda_{\ell}(G)$) of a graph G of order $p \geq \ell-1$ is defined as the minimum number
of vertices (edges) that are required to be deleted from G to produce a graph with at least ℓ components or with fewer than ℓ vertices. So $\kappa_{2}(C \vec{x})=$ $\kappa(G)$ and $\lambda_{2}(G)=\lambda(G)$. Since the problem of determining whether the independence number $\beta(G)$ of a graph G, of order $p \geq \ell$, is at least ℓ is NP-complete and since $\beta(G) \geq \ell$ if and only if $\kappa_{\ell}(G) \neq p-\ell+1$, it follows that the problem of determining whether $\kappa_{\ell}(G) \neq p-\ell+1$ is NP-complete. A graph is (n, ℓ)-connected if $\kappa_{\ell}(G) \geq n$. So n-connected graphs are the $(n, 2)$-connected graphs.

Unfortunately there are no known efficient algorithms for computing $\kappa_{\ell}(G)$ or $\lambda_{\ell}(G)$ for a graph G. In [CKLL1] and [O1] sharp bounds for $\kappa_{\ell}(G)$ are established.

It is well-known that with the aid of Menger's Theorem, Whitney [W1] showed that a graph G is n-connected if and only if for every pair u, v of distinct vertices of G, there exist at least n-internally disjoint $u-v$ paths in G. It was pointed out in [M1] and [O1] that no analogous characterization of (n, ℓ)- connected graphs exists. It is well-known that if G is a graph of order p, and n is an integer such that $1 \leq n \leq p-1$, then if $\delta(G) \geq$ $(p+n-1) / 2$, the graph G is n-connected. So for such graphs G, Whitney's theorem implies, that for every pair u, v of vertices of G there exist at least n internally disjoint $u-v$ paths. Hedman [H1] actually showed that for such graphs G and every pair u, v of distinct vertices of G there exist at least n internally disjoint $u-v$ paths each of length at most 2 . An analogue of this result is established in [O1]. For a set S of at least two vertices of a graph G an S-path is a path between a pair of vertices of S whose internal vertices do not belong to S. Two S - paths are internally disjoint if they have no internal vertices in common.

In [O1] it is shown that for a graph G of order $p \geq 2$, and integers $\ell \geq 3$ and $n(1 \leq n \leq p-l+1)$, if

$$
\delta(G) \geq \frac{p+(n-2)(\ell-1)}{\ell}
$$

then for each set S of ℓ vertices of G there exist at least n internally disjoint
S-paths each of length at most 2.
In this chapter, we introduce and study the ' ℓ-connectivity' of a digraph making use of the concept of strong connectedness. We will then consider the ℓ-connectivity function of caterpillars and complete multipartite graphs, and then generalise this to define the strong ℓ-connectivity function of a digraph. Lastly, we consider minimal graphs of a given ℓ connectivity.

2.2 The ℓ-Connectivity of a Digraph

A digraph D is strongly connected if for every two vertices u and v of D there exist both a $u-v$ path and a $v-u$ path in D. A strong component of a digraph is an induced subdigraph that is strongly connected and that is maximal with respect to this property. It is well-known that the strong components of a digraph partition its vertex set. The strong independence number $\beta_{s}(D)$ of a digraph D is the maximum cardinality of a set S of vertices of D so that the subdigraph $\langle S\rangle$ induced by S is acyclic, i.e., every strong component of $\langle S\rangle$ consists of a single vertex. Such a set S is called a strongly independent set. For example, if T is a transitive tournament of order p, then $\beta_{s}(T)=p$ and if C_{p} is a p-cycle, then $\beta_{s}\left(C_{p}\right)=p-1$ whereas the strong independence number of the complete symmetric digraph K_{p}^{*} is 1.

For an integer $\ell \geq 2$, and a digraph D of order p, the strong $\ell-$ connectivity $\kappa_{\ell}(D)\left(\right.$ strong ℓ-arc connectivity $\left.\lambda_{\ell}(D)\right)$ of D is the minimum number of vertices (arcs) whose deletion from D produces a digraph with at least ℓ strong components or a digraph with at most $\ell-1$ vertices. So $\kappa_{\ell}\left(C_{p}\right)=1$ and $\kappa_{\ell}\left(K_{p}^{*}\right)=p-\ell+1$ if $p \geq \ell \geq 3$. Further, $\lambda_{\ell}\left(C_{p}\right)=1$ and $\lambda_{\ell}\left(K_{p}^{*}\right)=(p-\ell+1)(\ell-1)+\binom{\ell-1}{2}=p(\ell-1)-\binom{\ell-1}{2}$ for $p \geq \ell$. Based on the work of Ford and Fulkerson [FF1], [FF2], efficient algorithms for computing the connectivity, i.e., $\kappa_{2}(D)=\kappa(D)$ and the arc-connectivity $\lambda(D)=\lambda_{2}(D)$ of a digraph D have been developed. However, in general no
efficient algorithms for computing $\kappa_{\ell}(D)$ and $\lambda_{\ell}(D)$ exist. For an integer $n \geq 0$ we say that a digraph D is strongly (n, ℓ)-connected if $\kappa_{\ell}(D) \geq n$.

2.2.1 Bounds on the strong ℓ-connectivity of a digraph

Chartrand, Kapoor, Lesniak and Lick [CKLL1] provided the following sufficient condition for a graph to be (n, ℓ)-connected.

Theorem A Let G be a graph of order p with $\beta(G) \geq \ell \geq 2$. If for every vertex v of G

$$
\operatorname{deg} v \geq \frac{p+(\ell-1)(n-2)}{\ell}
$$

then G is (n, ℓ) connected.

This result can be extended to digraphs.

Theorem 2.2.1.1 Let D be a digraph of order $p \geq \ell+n-1$ with $\beta_{s}(D) \geq$ $\ell \geq 2$. If for every vertex v of D

$$
\operatorname{deg}_{D} v=i d_{D} v+o d_{D} v>\frac{p(\ell+1)+n(\ell-1)-3 \ell+1}{\ell}
$$

then D is strongly (n, ℓ)-connected.

Proof Assume, to the contrary, that D is a digraph that satisfies the hypothesis of the theorem but that is not strongly (n, ℓ)-connected. Since $\beta_{s}(D) \geq \ell$, there exists a set S of $n-1$ vertices of D such that $D-S$ has at least ℓ strong components. Thus $D-S$ has a strong component D_{1} of order $p_{1} \leq \frac{p-n+1}{\ell}$.

For any vertex v of D_{1}, we note that if v is adjacent to any vertex w in $V(D)-\left(V\left(D_{1}\right) \cup S\right)$, then v is not adjacent from w. Hence, since

$$
\begin{aligned}
\left|V(D)-\left(V\left(D_{1}\right) \cup S\right)\right| & =p-p_{1}-n+1 \\
\operatorname{deg}_{D} v & \leq 2\left(p_{1}-1\right)+2(n-1)+p-p_{1}-n+1 \\
& =p+p_{1}+n-3 \\
& \leq p+\frac{p-n+1}{\ell}+n-3 \\
& =\frac{p(\ell+1)+n(\ell-1)-3 \ell+1}{\ell} .
\end{aligned}
$$

This contradicts our assumption and therefore completes the proof.

The result of Theorem 2.2.1.1 is best possible as we now show. Let $\ell \geq 2$ be an integer and let m and n be positive integers. For $i=1,2, \ldots, \ell$, let H_{i} be the complete symmetric digraph of order m. Let $H_{\ell+1}$ be a complete symmetric digraph of order $n-1$ if $n \geq 2$. If $n=1$, then let D be obtained from $H_{1} \cup H_{2} \cup \ldots \cup H_{\ell}$ by adding all arcs of the type (x, y) where $x \in V\left(H_{i}\right)$ and $y \in V\left(H_{j}\right)$ and $1 \leq i<j \leq \ell$. If $n \geq 2$, let D be obtained from $H_{1} \cup H_{2} \cup \ldots \cup H_{\ell+1}$ by adding every pair of arcs of the type (x, y) and (y, x) where $x \in V\left(H_{\ell+1}\right)$ and $y \in H_{i}$ for $1 \leq i \leq \ell$ as well as all the arcs of the type (u, v) where $u \in H_{i}, v \in H_{j}$ and $1 \leq i<j \leq \ell$. Then $\kappa_{\ell}(D)=n-1$ and since $p=m \ell+n-1$,

$$
\operatorname{deg}_{D} v \geq(\ell+1) m+2 n-4=\frac{p(\ell+1)+n(\ell-1)-3 \ell+1}{\ell}
$$

for all $v \in V(D)$.
In [O1] another sufficient condition for a graph to be (n, ℓ)- connected is established.

Theorem B Let G be a graph of order $p \geq 2$, the degrees d_{i} of whose vertices satisfy $d_{1} \leq d_{2} \leq \ldots \leq d_{p}$. Suppose n and $\ell \geq 2$ are integers with $1 \leq n \leq p-\ell+1$. If $d_{k} \leq k+n-2 \Rightarrow d_{p-n+1} \geq p-k(\ell-1)$ for each k such that $1 \leq k \leq\lfloor(p-n+1) / \ell\rfloor$, then G is (n, ℓ)-connected.

We now provide an extension of Theorem B to digraphs.

Theorem 2.2.1.2 Let D be a digraph of order $p \geq 2$ and let the degrees d_{i} of the vertices of D satisfy $d_{1} \leq d_{2} \leq \ldots \leq d_{p}$. Suppose n and $\ell \geq 2$ are integers with $1 \leq n \leq p-\ell+1$. If

$$
d_{k} \leq p+k+n-3 \Rightarrow d_{p-n+1} \geq 2 p-k(\ell-1)-1
$$

for each integer k such that $1 \leq k \leq\lfloor(p-n+1) / \ell\rfloor$, then D is strongly (n, ℓ)-connected.

Proof Suppose the strong ℓ-connectivity of D is less than n. Then there is a set S of $n-1$ vertices such that $D-S$ has either at least ℓ strong components or order less than ℓ. Since $|S|=n-1 \leq p-\ell$, it follows that $D-S$ has at least ℓ vertices; so $D-S$ has at least ℓ strong components.

Let D_{1} be a strong component of $D-S$ of minimum order k. Then $k \leq\lfloor(p-n+1) / \ell\rfloor$ and so $p+k+n-3 \leq 2 p-k(\ell-1)-2<2 p-$ $k(\ell-1)-1$. Each vertex in D_{1} has degree at most $p+k+n-3$ in D; so $d_{k} \leq p+k+n-3$. Hence, by the hypothesis, $d_{p-n+1} \geq 2 p-k(\ell-1)-1$. Let $u \in V(D)-\left(S \cup V\left(D_{1}\right)\right)$. Then u is non-adjacent to or from each vertex in at least $\ell-1$ strong components of $D-S$, each of order at least k. Hence $\operatorname{deg}_{D} u \leq 2(p-1)-k(\ell-1)<2 p-k(\ell-1)-1$. It follows that S has at least n elements, contrary to our assumtion.

The digraph following Theorem 2.2.1.1 also serves to illustrate that Theorem 2.2.1.2 is best possible. Further, it is not difficult to see that Theorem 2.2.1.1 follows as a corollary to Theorem 2.2.1.2.

2.2.2 Strong connectivity sequences of digraphs

Let G be a graph of order p. Chartrand, Kapoor, Lesniak and Lick [CKLL1] defined the sequence of numbers $\kappa_{2}(G), \kappa_{3}(G), \ldots, \kappa_{p}(G)$ as the sequence of connectivity numbers of G. They characterized sequences of integers that are connectivity numbers of a graph in the following theorem.

Theorem C A sequence $b_{2}, b_{3}, \ldots, b_{p}$ of nonnegative integers is the connectivity sequence of a graph G of order p if and only if there exists an integer k such that $b_{2} \leq b_{3} \leq \ldots \leq b_{k} \leq b_{k+1}$ and $b_{k+i}=p-(k+i)+1$ for $i=1,2, \ldots, p-k$. Moreover $k=\beta(G)$.

We now study the analogous concept for digraphs. Let D be a digraph of order p. Then the sequence $\kappa_{2}(D), \kappa_{3}(D), \ldots, \kappa_{p}(D)$ is called the sequence of strong connectivity numbers of D. The following lemma will be useful when characterizing these sequences.

Lemma 2.2.2.1 Let D be a digraph of order $p \geq 2$ and strong independence number $\beta_{s}(D)=\beta_{s}$. Then the sequence of strong connectivity numbers has a maximum value $p-\beta_{s}$ at $k=\beta_{s}+1$, i.e. $\kappa_{k}(D)=p-\beta_{s}$.

Proof For $1 \leq i \leq p-\beta_{s}$ we have $\kappa_{\beta_{s}+i}(D)=p-\left(\beta_{s}+i\right)+1$. Clearly the maximum of the subsequence

$$
\kappa_{\beta_{s}+1}(D), \kappa_{\beta_{s}+2}(D), \ldots, \kappa_{p}(D) \text { is } \kappa_{\beta_{s}+1}(D)=p-\beta_{s} .
$$

Since the subsequence $\kappa_{2}(D), \kappa_{3}(D), \ldots, \kappa_{\beta_{s}}(D)$ of the sequence of connectivity numbers is nondecreasing, $\kappa_{\beta_{s}}(D)$ is the maximum value of this subsequence. Since $\kappa_{\beta_{s}}(D) \leq p-\beta_{s}$, the lemma now follows.

Theorem 2.2.2.1 A sequence $b_{2}, b_{3}, \ldots, b_{p}$ of nonnegative integers can be realized as the sequence of strong connectivity numbers of a digraph of order p if and only if there exists an integer k such that $b_{2} \leq b_{3} \leq \ldots \leq b_{k} \leq b_{k+1}$ and $b_{k+i}=p-(k+i)+1$ for $i=1,2, \ldots, p-k$. Moreover $k=\beta_{s}(D)$.

Proof Let D be a digraph of order p. Let $b_{i}=\kappa_{i}(D)$ for $2 \leq i \leq p$ and let $k=\beta_{s}(D)$. Then, by the proof of Lemma 2.2.2.1, $b_{2} \leq b_{3} \leq \ldots \leq b_{k} \leq b_{k+1}$ and for $1 \leq i \leq p-k, b_{k+i}=p-(k+i)+1$.

Suppose now that $b_{2}, b_{3}, \ldots, b_{p}$ is a sequence of nonnegative integers such that for some k the following conditions are satisfied:
(i) $0 \leq b_{i} \leq b_{i+1}$ for $2 \leq i \leq k$ and
(ii) $b_{k+i}=p-(k+i)+1$ for $i=1,2, \ldots, p-k$.

Define a sequence $a_{2}, a_{3}, \ldots, a_{k+1}$ by $a_{2}=b_{2}, a_{3}=b_{3}-b_{2}, a_{4}=b_{4}-$ $b_{3}, \ldots, a_{k+1}=b_{k+1}-b_{k}$. For $2 \leq i \leq k+1$ let H_{i} be the complete symmetric digraph of order a_{i} if $a_{i} \geq 1$. For convenience we will assume that if $a_{i}=0$, then H_{i} has no vertices and edges. Let K denote the complete symmetric digraph of order $p-k-\sum_{i=2}^{k+1} a_{i}=p-k-b_{k+1}$ and let H be the symmetric join of $H_{2}, H_{3}, \ldots, H_{k+1}$ and K. Now let $S=\left\{v_{2}, v_{3}, \ldots, v_{k+1}\right\}$ and construct a digraph D by joining each $v_{r} \in S$ by a symmetric pair of arcs to each vertex in $\cup_{i=2}^{r} H_{i}$. The order of D is p. Since S is a strongly independent set and since $H=\langle V(D)-S\rangle$ is a complete symmetric digraph of order $p-k$ and as each vertex of S is joined to at least one vertex of H by a symmetric pair of arcs, $\beta_{s}(D)=|S|=k$.

For $r=2,3, \ldots, k+1$, let $U_{r}=\cup_{i=2}^{r} V\left(H_{i}\right)$ and observe that the number of strong components of $D-U_{r}$ is at least r. Thus $\kappa_{r}(D) \leq\left|U_{r}\right|=$ $\sum_{i=1}^{r} a_{i}=b_{r}$ for $2 \leq i \leq r+1$. By a straightforward inductive argument it can be shown if S is a set of vertices that does not contain all the vertices of U_{r}, then $D-S$ has at most $r-1$ strong components. So $\kappa_{r}(D) \geq\left|U_{r}\right|=b_{r}$. Thus $\kappa_{i}(D)=b_{i}$ for $i=2,3, . ., k+1$. Further, $\kappa_{k+i}(D)=p-(k+i)+1$ for $1 \leq i \leq p-k$. Hence $b_{\ell}=p-\ell+1=\kappa_{\ell}(D)$ for $\ell=k+1, k+2, \ldots, p$. Thus $b_{2}, b_{3}, \ldots, b_{p}$ is the sequence of strong connectivity numbers of D and $\beta_{s}(D)=k$.

Even though the connectivity and arc-connectivity of a digraph are easily computable measures of reliability of a network the strong connectivity sequence of a digraph provides more information on the reliability of a network. In particular if D_{1} and D_{2} are two digraphs with the same strong connectivity and $k_{i}=\max \left\{\ell \mid \kappa_{\ell}\left(D_{i}\right)=\kappa\left(D_{i}\right)\right\}$, then D_{1} can be considered to be more reliable than D_{2} if $k_{1}<k_{2}$.

2.3 The ℓ-connectivity function of certain classes of graphs

The problem of disconnecting a graph into at least two components by the deletion of both vertices and edges was first considered by Beineke and Harary [BH1]. These concepts were extended in [O2]. Let G be a graph with ℓ-connectivity $\kappa_{\ell}=\kappa_{\ell}(G)$. If $k \in\left\{0,1, \ldots, \kappa_{\ell}(G)\right\}$, then let s_{k} be the minimum ℓ-edge-connectivity among all subgraphs obtained by removing k vertices from G. The ℓ-connectivity function of G is defined by $f_{\ell}(k)=s_{k}$ for $0 \leq k \leq \kappa_{\ell}(G)$. So for $\ell=2$, the ℓ - connectivity function of a graph is its connectivity function, which has been characterized by Beineke and Harary [BH.1]. For $\ell \geq 3$ no characterizations of the ℓ-connectivity function of a graph are known and it appears to be a difficult problem to characterize such functions. In [O2] several necessary conditions for a function to be an ℓ-connectivity function of a graph are established and the ℓ-connectivity function of the complete graph is derived. We study here the ℓ - connectivity function of certain types of trees and the complete n-partite graphs.

2.3.1 Caterpillars and complete Multipartite graphs

In [O2] the following formula for the ℓ-connectivity function of a complete graph is established.

Theorem \mathbf{D} Let $p, \ell \geq 2$ be integers with $p \geq \ell$ and suppose that $G \cong K_{p}$. Then the ℓ - connectivity function of G is given by

$$
f_{\ell}(k)=\left\{\begin{array}{lc}
0 \quad \text { if } k=\kappa_{\ell}(G) \\
(\ell-1)(p-\ell-k+1)+\binom{\ell-1}{2} \text { for } 0 \leq k<\kappa_{\ell}(G)
\end{array}\right.
$$

We now extend this result to complete n-partite graphs.

Theorem 2.3.1.1 Suppose $G \cong K_{m_{1}, m_{2}, \ldots, m_{n}}$ where $m_{1} \leq m_{2} \leq \ldots \leq m_{n}$ and $n \geq 2$. Let $p=\sum_{i=1}^{n} m_{i}$ and let k be an integer with $0 \leq k \leq \kappa_{\ell}(G)$.

If $s=\min \left\{m_{n-1}, \sum_{i=1}^{n-1} m_{i}-k\right\}$, then the ℓ-connectivity function of G is given by
$f_{\ell}(k)= \begin{cases}0 & \text { if } k=\kappa_{\ell}(G) \\ (\ell-1)\left(p-m_{n}-k\right) & \text { if } k \neq \kappa_{\ell}(G) \text { and } \ell \leq m_{n}-s+2 \\ (\ell-1)\left(p-m_{n}-k\right)-\binom{\ell-m_{n}+s-1}{2} & \text { if } k \neq \kappa_{\ell}(G) \text { and } \ell>m_{n}-s+2 .\end{cases}$
To prove this result we begin by establishing a series of lemmas.

Lemma 2.3.1.1 Let $G=K_{r_{1}, r_{2}, \ldots, r_{t}}$ be a complete t-partite graph ($t \geq 2$) of order p and let ℓ be an integer, $2 \leq \ell \leq p$. There exists a set of $\lambda_{\ell}(G)$ edges of G, say E_{ℓ}, such that $G-E_{\ell}$ has ℓ components, at most one of which is non- trivial.

Proof: Let $V_{1}, V_{2}, \ldots, V_{t}$ be the partite sets of G with $\left|V_{i}\right|=r_{i}$ for $i=$ $1,2, \ldots, t$. There exists a set F_{ℓ} of $\lambda_{\ell}(G)$ edges of G such that $G-F_{\ell}$ has ℓ components. Of all such sets F_{ℓ} let E_{ℓ} be one such that $G-E_{\ell}$ has as few non-trivial components as possible. We shall show that $G-E_{\ell}$ has at most one non-trivial component.

Assume, to the contrary, that $G-E_{\ell}$ has at least two non- trivial components, G_{1} and G_{2}, with $V\left(G_{1}\right)=A$ and $V\left(G_{2}\right)=B$. For $i=$ $1,2, \ldots, t$, let $A \cap V_{i}=A_{i}, B \cap V_{i}=B_{i},\left|A_{i}\right|=a_{i}$ and $\left|B_{i}\right|=b_{i}$. Then there exist $i_{1}, i_{2}, j_{1}, j_{2} \in\{1,2, \ldots, t\}$ such that $i_{1} \neq i_{2}, j_{1} \neq j_{2}$ and $a_{i_{1}}, a_{i_{2}}, b_{j_{1}}, b_{j_{2}} \geq$ 1. Letting $H=\langle A \cup B\rangle_{G}$, we note that for $v \in A_{i} \cup B_{i}(i \in\{1,2, \ldots, t\})$

$$
\begin{equation*}
\operatorname{deg}_{H} v=a+b-a_{i}-b_{i} \tag{2.1}
\end{equation*}
$$

Furthermore, the set $[A, B]$ of all edges in H with one end vertex in A, the other in B, has cardinality

$$
\begin{equation*}
|[A, B]|=\sum_{i=1}^{t} a_{i}\left(b-b_{i}\right)=\sum_{i=1}^{t} b_{i}\left(a-a_{i}\right) . \tag{2.2}
\end{equation*}
$$

It follows from our choice of E_{ℓ} that isolating a single vertex of H requires the removal of more edges than separating the components G_{1} and G_{2} in
H; i.e., for $v \in V(H), \operatorname{deg}_{H} v>|[A, B]|$. Hence, for every $i \in\{1,2, \ldots, t\}$ such that $a_{i}+b_{i} \geq 1$,

$$
\begin{equation*}
2 \sum_{\substack{j=1 \\ j \neq i}}^{t}\left(a_{j}+b_{j}\right)=2\left(a+b-a_{i}-b_{i}\right)>\sum_{j=1}^{t} a_{j}\left(b-b_{j}\right)+\sum_{j=1}^{t} b_{j}\left(a-a_{j}\right) . \tag{2.3}
\end{equation*}
$$

Assuming (without loss of generality) that $a_{t}+b_{t} \geq 1$, we obtain from (2.3) with $i=t$

$$
\begin{equation*}
\sum_{j=1}^{t-1} a_{j}\left(b-b_{j}-2\right)+\sum_{j=1}^{t-1} b_{j}\left(a-a_{j}-2\right)+a_{t}\left(b-b_{t}\right)+b_{t}\left(a-a_{t}\right)<0 \tag{2.4}
\end{equation*}
$$

Since $a-a_{j}, b-b_{j} \geq 1$ for all $j \in\{1,2, \ldots, t\}$, it follows from (2.4) that there exists $j \in\{1,2, \ldots, t-1\}$ such that $a_{j} \geq 1$ and $b-b_{j}-2<0$ or $b_{j} \geq 1$ and $a-a_{j}-2<0 ;$ say $b_{1} \geq 1$ and $a-a_{1}<2$. Then $a-a_{1}=1$ and there exists $m \in\{2,3, \ldots, t\}$ such that $a_{m}=1$ and $a_{j}=0$ for all $j \in\{2,3, \ldots, t\}-\{m\}$. We note that $a_{1} \geq 1$.

Since $|[A, B]|<\operatorname{deg}_{H} v$ for $v \in A$, it follows from (2.1) and (2.2) that

$$
a_{1}\left(b-b_{1}\right)+a_{m}\left(b-b_{m}\right)<a-a_{1}+b-b_{1}=1+b-b_{1} ;
$$

hence

$$
\left(a_{1}-1\right)\left(b-b_{1}\right)+b-b_{m}<0
$$

which, with $a_{1}-1 \geq 0, b-b_{1} \geq 1, b-b_{m} \geq 1$, yields a contradiction, thus establishing the validity of the lemma.

For a vertex v in a graph G, let the set of edges of G incident with v be denoted by $E_{G}(v)$.

Lemma 2.3.1.2 Let $G=K_{r_{1}, r_{2}, \ldots, r_{t}}$ with $r_{1} \leq r_{2} \leq \ldots \leq r_{t}, t \geq 2$, $p=p(G)=\sum_{i=1}^{t} r_{i}$ and $\ell \in\{2,3, \ldots, p\}$. Let $V_{1}, V_{2}, \ldots, V_{t}$ be the partite sets of G with $\left|V_{i}\right|=r_{i}$. The following algorithm yields a set E_{ℓ} of edges of G such that $\left|E_{\ell}\right|=\lambda_{\ell}(G)$ and $G-E_{\ell}$ has ℓ components, at least $\ell-1$ of which are trivial:

1. Let $H_{1}=G$ and let v_{1} be a vertex of minimum degree in H_{1}. (i.e., $\left.v_{1} \in V_{t}\right)$. Let $E_{2}=E_{H_{1}}\left(v_{1}\right)$ and $H_{2}=H_{1}-v_{1}$.
2. For $i \in\{2, \ldots, \ell-1\}$, let v_{i} be a vertex of minimum degree in H_{i} and let $E_{i+1}=E_{H_{i}}\left(v_{i}\right) \cup E_{i}, H_{i+1}=H_{i}-v_{i}$.

Proof: The validity of the lemma for $\ell=2$ is an immediate consequence of Lemma 2.3.1.1. Further, the lemma follows if $\ell=p$, in which case $\left|E_{\ell}\right|=q(G)=\lambda_{p}(G)$. Suppose that the lemma does not hold and let m be the smallest value of ℓ for which the algorithm yields a set E_{ℓ} that does not satisfy the requirements of the lemma; so $2<m<p$. Since $G-E_{m}$ certainly contains m components, $m-1$ of which are trivial, it follows that $\left|E_{m}\right|>\lambda_{m}(G)$. Let F_{m} be a set of edges of G such that $\left|F_{m}\right|=\lambda_{m}(G)$, $G-F_{m}$ contains m components of which $m-1$ are trivial.

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{m-1}\right\}$ denote the set of $m-1$ isolated vertices in $G-F_{m}$ and, for $w_{k} \in W$ let $G_{k}=G-\left(W-\left\{w_{k}\right\}\right)$. Let $i=i\left(F_{m}\right)$ be such that $v_{1}, \ldots, v_{i-1} \in W$ and $v_{i} \notin W$. Choose F_{m} such that $i\left(F_{m}\right)$ is as large as possible. Suppose $v_{s}=w_{s}$ for $1 \leq s \leq i-1$. Let $W^{\prime}=$ $W-\left\{v_{1}, \ldots, v_{i-1}\right\}$ and let $v_{i} \in V_{j}$; then $V_{j} \cap W^{\prime}=\emptyset$, since otherwise, if $w_{k} \in V_{j} \cap W^{\prime}$, the set of edges of F_{m} incident with w_{k} in G_{k}, namely $E_{G_{k}}\left(w_{k}\right)$, may be replaced by $E_{G_{k}}\left(v_{i}\right)$ to yield a set F_{m}^{\prime} of edges of G with $\left|F_{m}^{\prime}\right|=\lambda_{m}(G)$ such that $G-F_{m}^{\prime}$ has m components, $m-1$ of which are trivial and $i\left(F_{m}^{\prime}\right)>i\left(F_{m}\right)$, contrary to our choice of F_{m}. Hence the only vertices which are adjacent to v_{i} in H_{i} and not to v_{i} in G_{m-1} are those in $W^{\prime}-\left\{w_{m-1}\right\}$. Consequently $\operatorname{deg}_{G_{m-1}} v_{i}=\operatorname{deg}_{H_{i}} v_{i}-(m-2-i+1)$. Furthermore, $\operatorname{deg}_{G_{m-1}} w_{m-1} \geq \operatorname{deg}_{H_{i}} w_{m-1}-(m-2-i+1)$; so, since $\operatorname{deg}_{H_{i}} w_{m-1} \geq \operatorname{deg}_{H_{i}} v_{i}$, it follows that $\operatorname{deg}_{G_{m-1}} w_{m-1} \geq \operatorname{deg}_{G_{m-1}} v_{i}$. Hence, replacing the subset $E_{G_{m-1}}\left(w_{m-1}\right)$ of F_{m} by $E_{G_{m-1}}\left(v_{i}\right)$, we obtain a set $F_{m}^{\prime \prime}$ of edges of G with $\left|F_{m}^{\prime \prime}\right| \leq\left|F_{m}\right|=\lambda_{m}(G)$ such that $G-F_{m}^{\prime \prime}$ has m components, $m-1$ of which are trivial, and $i\left(F_{m}^{\prime \prime}\right)>i\left(F_{m}\right)$.

Thus the validity of the lemma is established.

Let $G=K_{m_{1}, m_{2}, \ldots, m_{n}}$ with $m_{1} \leq m_{2} \leq \ldots \leq m_{n}(n \geq 2)$ and partite sets V_{1}, \ldots, V_{n}, where $\left|V_{i}\right|=m_{i}$ for $i=1,2, \ldots, n ; p=\sum_{i=1}^{n} m_{i}$. Let S be a proper subset of $V(G)$ such that $|S|=k \in\left\{0,1, \ldots, \kappa_{\ell}(G)\right\}$ and $k<p-m_{n}$, where we note that

$$
\kappa_{\ell}(G)=\left\{\begin{array}{ll}
p-m_{n}=\sum_{i=1}^{n-1} m_{i} & \text { if } \ell \leq \beta(G)=m_{n} \\
p-\ell+1 & \text { if } \ell>m_{n}
\end{array} ;\right.
$$

then $G-S$ is a complete multipartite graph, say $K_{\tau_{1}, \ldots, r_{t}}$. It is an immediate consequence of Lemma 2.3.1.2 that S may be chosen to yield $G-S$ of minimum ℓ-edge connectivity, namely $\lambda_{\ell}(G-S)=f_{\ell}(k)$, by letting S consist of k vertices of maximum degree in G, i.e., for some $j \in\{1,2, \ldots, m$ $1\}, S=\cup_{i=1}^{j} V_{i}^{\prime}$, where $V_{i}^{\prime}=V_{i}$ if $i<j$ and $V_{j}^{\prime} \subseteq V_{j}$. Then $E_{\ell} \subseteq E(G-S)$ may be obtained as prescribed by Lemma 2.3.1.2 to produce $G-S-E_{\ell}$ containing ℓ components, $\ell-1$ of which are trivial.

If $\ell>m_{n}$ or $k=p-m_{n}$, then $f_{\ell}(k)=0$, obviously. Hence we have the following lemma:

Lemma 2.3.1.3 If $G=K_{m_{1}, \ldots, m_{n}}$ with $m_{1} \leq m_{2} \leq \ldots \leq m_{n}(n \geq 2)$, and partite sets V_{1}, \ldots, V_{n} such that $\left|V_{i}\right|=m_{i}$ for $i=1, \ldots, n$, then, for $2 \leq \ell \leq p$ and $0 \leq k \leq \kappa_{\ell}$, there exist $S \subseteq V(G)$ and $E_{\ell} \subseteq E(G-S)$ such that $|S|=k,\left|E_{\ell}\right|=f_{\ell}(k)$, and such that $G-S-E_{\ell}$ contains at least ℓ components, at least $\ell-1$ of which are trivial and, for some $j \in\{1, \ldots, n\}, S=\cup_{i=1}^{j} V_{i}^{\prime}$, where $V_{i}^{\prime}=V_{i}$ for $i<j$ and $V_{j}^{\prime} \subseteq V_{j}$.

Proof of Theorem 2.3.1.1 Clearly if $k=\kappa_{\ell}(G)$, then $f_{\ell}(k)=0$. If $\ell \leq m_{n}-s+2$ then, since the degrees of vertices in V_{n-1} exceed those of vertices in V_{n} by $m_{n}-s$ in $G-S$, the $\ell-1$ vertices isolated in $G-S-E_{\ell}$ occur in V_{n}. (We note that, for $i \in\{1, \ldots, \ell-2\}$, if $w \in V_{n-1}-S$ and $z \in V_{n}$, then, in $G-S-\left\{v_{1}, \ldots, v_{i}\right\}, \operatorname{deg} w \geq \operatorname{deg} z$.) In this case it is obvious that $\left|E_{\ell}\right|=(\ell-1)\left(p-m_{n}-k\right)$.

If $\ell>m_{n}-s+2$ then, applying the algorithm in Lemma 2.3.1.2 to $G-S$, we note that $v_{1}, \ldots, v_{m_{n-s+1}}$ may be chosen from V_{n} and that their isolation requires the removal of $\left(p-m_{n}-k\right)\left(m_{n}-s+1\right)$ edges. The isolation of $v_{m_{n}-s+2}, \ldots, v_{\ell-1}$ requires the removal, successively of $p-m_{n}-k-1, p-$ $m_{n}-k-2, \ldots,\left[\left(p-m_{n}-k\right)-\left(\ell-m_{n}+s-2\right)\right]$ edges. Hence, in this case,

$$
\begin{aligned}
\left|E_{\ell}\right| & =\left(p-m_{n}-k\right)\left(m_{n}-s+1\right)+\sum_{i=1}^{\ell-m_{n}+s-2}\left(p-m_{n}-k-i\right) \\
& =(\ell-1)\left(p-m_{n}-k\right)-\binom{\ell-m_{n}+s-1}{2} \text { if } k \neq \kappa_{\ell}(G) .
\end{aligned}
$$

It is not difficult to see that Theorem D follows as a corollary to Theorem 2.3.1.1.

We next turn our attention to the ℓ-connectivity function of caterpillars. Recall that a caterpillar is a tree that is either isomorphic to K_{1} or K_{2}^{\prime} or has the property that if its end- vertices are deleted, then a path is produced. For a graph G of order p and an integer $k, 0 \leq k<p$, let $c_{k}(G)$ be the maximum number of components that are produced when k vertices are deleted from G. Note that if $\ell \geq 2$ is an integer and T is a tree with independence number $\beta(T) \geq \ell$, then $f_{\ell}(k)=(\ell-1)-c_{k}(T)$ for $0 \leq k<\kappa_{\ell}(T)$. Let $\delta_{\beta}(T)=\min \left\{k \mid c_{k}(T)=\beta(T)\right\}$. The following algorithm finds for a given caterpillar T and every $k, 0 \leq k \leq \delta_{\beta}(T)$, a set V_{k} of k vertices such that $k\left(T-V_{k}\right)=c_{k}$.

Algorithm 1 Let $T \not \neq K_{1}, K_{2}$ be a caterpillar.

1. (a) $F_{0} \leftarrow T$.
(b) $V_{0} \leftarrow \emptyset$.
(c) $S_{0} \leftarrow\left\{v \in V\left(F_{0}\right) \mid \operatorname{deg}_{F_{0}} v=\triangle\left(F_{0}\right)\right\}$
(d) $H_{0} \leftarrow\left\langle S_{0}\right\rangle_{F_{0}}$
(e) $n \leftarrow 0$
(f) Let $P: u_{1}, u_{2}, \ldots, u_{r}$ be the path produced by deleting the end-
vertices of T.
2. Let $T_{1}, T_{2}, \ldots, T_{s}$ be the components of H_{n} and $a_{i}=\left\lceil\frac{p\left(T_{i}\right)}{2}\right\rceil$. Let $U_{n}=\left\{w_{1}^{n}, w_{2}^{n}, \ldots, w_{\beta_{n}}^{n}\right\}$ be a maximum independent set of vertices of $H_{n}\left(\right.$ with $\left.\beta_{n}=\beta\left(H_{n}\right)\right)$ chosen as follows: The vertices $w_{1}^{n}, w_{2}^{n}, \ldots, w_{a_{1}}^{n}$ belong to T_{1}. If $s>1$, then for $i=2, . ., s$, the vertices $w_{a_{1}+\ldots+a_{i-1}+1}^{n}, \ldots$, $w_{a_{1}+\ldots .+a_{i-1}+a_{i}}^{n}$ belong to T_{i} and if $w_{m}^{n}=u_{i_{1}}$ and $w_{r}^{n}=u_{i_{2}}$ belong to some T_{i} and $m<r$, then $i_{1}<i_{2}$. Further, $w_{a_{1}+\ldots+a_{i-1}+1}^{n}$ is an endvertex of T_{i} for $2 \leq i \leq s$ and w_{1}^{n} is an end-vertex of T_{1}.
3. (a) $F_{n+1} \leftarrow F_{n}-U_{n}$.
(b) $n \leftarrow n+1$
(c) $S_{n} \leftarrow\left\{v \in V\left(F_{n}\right) \mid \operatorname{deg}_{F_{n}} v=\triangle\left(F_{n}\right)\right\}$
(d) $H_{n} \leftarrow\left\langle S_{n}\right\rangle_{F_{n}}$
(e) If $\triangle\left(F_{n}\right)>1$, return to Step 2; otherwise let $\delta_{\beta} \leftarrow \sum_{i=1}^{n-1}\left|U_{i}\right|$ and continue.
4. For $k=1,2, \ldots, \delta_{\beta}$ let $v_{1}, v_{2}, \ldots, v_{k}$ denote, in order, the first k vertices in the sequence $w_{1}^{1}, w_{2}^{1}, \ldots, w_{a_{1}}^{1}, w_{1}^{2}, \ldots, w_{a_{2}}^{2}, \ldots$, and define $V_{k}=$ $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.

Theorem 2.3.1.2 Suppose Algorithm 1 is applied to a caterpillar $T \not \approx K_{1}$ or K_{2}. Then

$$
k\left(T-V_{k}\right)=c_{k}(T) \quad \text { for } 0 \leq k \leq \delta_{\beta}
$$

Proof: Suppose the theorem does not hold. Let k be the smallest integer such that $k\left(T-V_{k}\right)<c_{k}$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\} \subseteq V(T)$ such that $k(T-Z)=c_{k}$. If $v_{1} \in Z$, let j be the smallest integer such that $v_{j+1} \notin Z$, otherwise let $j=0$. Among all sets $Z \subseteq V(T)$ satisfying $k(T-Z)=c_{k}$, choose Z such that j is as large as possible. For $i=1,2, \ldots, k$, let $Z_{i}=$ $Z-\left\{z_{i}\right\}$ and suppose the vertices of Z have been labelled in such a way that if $j \geq 1$, then $z_{s}=v_{s}$ for $1 \leq s \leq j$. By our choice of Z, it follows
that for $i=j+1, j+2, \ldots, k$ the vertex z_{i} cannot be replaced by v_{j+1} in Z to form $Z_{i}^{\prime}=Z_{i} \cup\left\{v_{j+1}\right\}$ with $k\left(T-Z_{i}^{\prime}\right)=c_{k}$. Hence

$$
\operatorname{deg}_{T-Z_{\mathrm{i}}} v_{j+1}<\operatorname{deg}_{T-Z_{\mathrm{i}}} z_{i} .
$$

However,

$$
\operatorname{deg}_{T-\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}} v_{j+1} \geq \operatorname{deg}_{T-\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}} z_{i} .
$$

Therefore v_{j+1} has a neighbour in $\left\{z_{j+1}, \ldots, z_{k}\right\}-\left\{z_{i}\right\}$, say z_{m} is such a neighbour. Similarly, v_{j+1} has a neighbour in $\left\{z_{j+1}, \ldots, z_{k}\right\}-\left\{z_{m}\right\}$; say z_{n}.

Note that every vertex of $Z \cup V_{k}$ lies on the path P described in Step 1 (f). Let a and b be neighbours different from v_{j+1} of z_{m} and z_{n}, respectively. We show next that $a, b \notin Z$. Suppose $v_{j+1} \in U_{t}$. Then $\operatorname{deg}_{F_{t}} v_{j+1} \geq$ $\operatorname{deg}_{F_{t}} z_{m}$. Suppose $a \in Z$. Then a lies on P. Therefore

$$
k\left(T-\left(Z_{m} \cup\left\{v_{j+1}\right\}\right)\right) \geq k(T-Z)=c_{k}
$$

which contradicts our choice of Z. So $a \notin Z$, and similarly $b \notin Z$.
Suppose $\operatorname{deg}_{F_{t}} z_{m}<\operatorname{deg}_{F_{t}} v_{j+1}=\triangle\left(F_{t}\right)$. Then once again it follows that

$$
k\left(T-\left(Z_{m} \cup\left\{v_{j+1}\right\}\right)\right) \geq k(T-Z)
$$

which contradicts our choice of Z. Hence $\operatorname{deg}_{F_{t}} z_{m}=\triangle\left(F_{t}\right)$. Similarly $\operatorname{deg}_{F_{t}} z_{n}=\triangle\left(F_{t}\right)$. If $\operatorname{deg}_{F_{t}} a$ and $\operatorname{deg}_{F_{t}} b$ are less than $\Delta\left(F_{t}\right)$, then z_{m} and z_{n} are end vertices of a component of H_{t}, which contradicts our choice of V_{k}. Hence $\operatorname{deg}_{F_{t}} a=\triangle\left(F_{t}\right)$. If $\operatorname{deg}_{F_{t}} b<\triangle\left(F_{t}\right)$, then by the choice of V_{k} it follows since z_{n} is an end vertex of a component of H_{t}, not in V_{k}, a must be v_{j}. This is impossible since $a \notin Z$. Otherwise, if $\operatorname{deg}_{F_{t}} b=\triangle\left(F_{t}\right)$, then a or b is v_{j} which once again produces a contradiction. This completes the proof of the validity of Algorithm 1.

With the aid of Algorithm 1 and Theorem 2.3.1.2 we are now able, in the next two theorems, to characterize the ℓ-connectivity functions of caterpillars.

Theorem 2.3.1.3 For an integer $\ell \geq 2$, a function $f_{\ell}:\left\{0, \ldots, \kappa_{\ell}\right\} \rightarrow \mathrm{N} \cup\{0\}$ is the ℓ-connectivity function of a caterpillar with independence number at least ℓ if and only if
(i) f_{ℓ} is decreasing,
(ii) $f_{\ell}(0)=\ell-1$, and $f_{\ell}\left(\kappa_{\ell}\right)=0$, and
(iii) if $\kappa_{\ell} \geq 2$, then $f_{\ell}(k)-f_{\ell}(k+1) \geq f_{\ell}(k+1)-f_{\ell}(k+2)$ for $0 \leq k<\kappa_{\ell}-2$.

Proof: Suppose first that f_{ℓ} is the ℓ-connectivity function of a caterpillar T. Then $f_{\ell}(k)=\ell-c_{k}(T)$ for $0 \leq k<\kappa_{\ell}(G)=\kappa_{\ell}$. Since $c_{k}(T)<c_{k+1}(T)$ for $0 \leq k<\kappa_{\ell}$, it follows that f_{ℓ} is decreasing. Since every edge of a tree is a bridge, $\ell-1$ edges must be deleted from a tree to produce ℓ components. Hence $f_{\ell}(0)=\ell-1$. Since $\ell \leq \beta(T)$, it follows that there exists a set of $\kappa_{\ell}(T)$ vertices whose deletion produces a graph with at least ℓ components. Hence $f_{\ell}\left(\kappa_{\ell}\right)=0$. Hence (ii) holds.

Observe that if $\kappa_{\ell} \geq 2$, then $f_{\ell}(k)-f_{\ell}(k+1)=c_{k+1}(T)-c_{k}(T)$ and $f_{\ell}(k+1)-f_{\ell}(k+2)=c_{k+2}(T)-c_{k+1}(T)$. Let v_{1}, v_{2}, \ldots be as in Step 4 of Algorithm 1. Suppose $v_{k+1} \in U_{r}$ and $v_{k+2} \in U_{s}$. Then $r \leq s \leq r+1$ and $\operatorname{deg}_{F_{r}} v_{k+1} \geq \operatorname{deg}_{F_{s}} v_{k+2}$. Since $c_{k+1}(T)-c_{k}(T)=\operatorname{deg}_{F_{r}} v_{k+1}-1$ and $c_{k+2}(T)-c_{k+1}(T)=\operatorname{deg}_{F_{s}} v_{k+2}-1$, condition (iii) follows.

For the converse suppose that $f_{\ell}:\left\{0, \ldots, \kappa_{\ell}\right\} \rightarrow \mathrm{N} \cup\{0\}$ is a function that satisfies conditions (i), (ii) and (iii) of Theorem 2.3.1.3. Construct a caterpillar T as follows. Begin with a path $v_{1}, u_{1}, v_{2}, u_{2}, \ldots, u_{\kappa_{\ell}-1}, v_{\kappa_{\ell}}$. Next join $f_{\ell}(0)-f_{\ell}(1)$ new vertices to v_{1} and for $2 \leq i \leq v_{\kappa_{\ell}-1}$ join $f_{\ell}(i-1)-f_{\ell}(i)-1$ new vertices to v_{i}. Finally join $f_{\ell}\left(\kappa_{\ell}-1\right)-f_{\ell}\left(\kappa_{\ell}\right)$ new vertices to $v_{\kappa \ell}$. Let T be the resulting caterpillar. Then it can be shown that T has independence number at least ℓ and its ℓ-connectivity function is f_{ℓ}.

The next result characterizes ℓ-connectivity functions of caterpillars whose independence numbers are less than ℓ.

Theorem 2.3.1.4 For an integer $\ell \geq 2$ a function $f_{\ell}:\left\{0,1, \ldots, \kappa_{\ell}\right\} \rightarrow$ $\mathbf{N} \cup\{0\}$ is the ℓ-connectivity function of a caterpillar T of order $p \geq \ell$, independence number $\beta=\beta(T)<\ell$ and $m=\delta_{\beta}(T)$ if and only if
(i) $f_{\ell}(0)=\ell-1, f_{\ell}\left(\kappa_{\ell}\right)=0$,
(ii) $f_{\ell}(k+1)<f_{\ell}(k)$ for $0 \leq k \leq m-1$ and $f_{\ell}(m)=f_{\ell}(m+1)=\ldots=$ $f_{\ell}\left(\kappa_{\ell}-1\right)=\ell-\beta$.
(iii) $f_{\ell}(k)-f_{\ell}(k+1) \geq f_{\ell}(k+1)-f_{\ell}(k+2)$ for $0 \leq k<\kappa_{\ell}-2$,
(iv) (a) if $f_{\ell}(m-1)-f_{\ell}(m)>1$, then $m<\kappa_{\ell} \leq 2 m-f_{\ell}(m)+2$, otherwise (b) let s be the largest positive integer such that $f_{\ell}(t)-f_{\ell}(t+1)=1$ for $m-s \leq t \leq m-1$, then $m<\kappa_{\ell} \leq 2 m-f_{\ell}(m)-s+2$.

Proof: Suppose f_{ℓ} is the ℓ-connectivity function of a caterpillar with independence number $\beta=\beta(T)$ and $m=\delta_{\beta}(T)$. Then condition (i) clearly holds. As in Theorem 2.3.1.3 $f_{\ell}(k)=\ell-c_{k}(T)$ for $0 \leq k<\kappa_{\ell}$. Since $c_{k}(T)<c_{k+1}(T)$ for $0 \leq k<\delta_{\beta}(T)=m$ it follows that $f_{\ell}(k+1)<f_{\ell}(k)$ for $0 \leq k \leq m-1$. Since $c_{k}(T)=\beta$ for $m=\delta_{\beta}(T) \leq k \leq \kappa_{\ell}-1$, $f_{\ell}(m)=f_{\ell}(m+1)=\ldots=f_{\ell}\left(\kappa_{\ell}-1\right)=\ell-\beta$. Hence condition (ii) holds.

Since $f_{\ell}(k+1)-f_{\ell}(k+2)=0$ and $f_{\ell}(k)-f_{\ell}(k+1) \geq 0$ for $m-$ $1 \leq k<\kappa_{\ell}-2$, condition (iii) holds for $m-1 \leq k<\kappa_{\ell}-2$. Suppose now that $0 \leq k \leq m-2$. Then, as in the proof of Theorem 2.3.1.3, $f_{\ell}(k)-f_{\ell}(k+1) \geq f_{\ell}(k+1)-f_{\ell}(k+2)$. Thus condition (iii) holds.

Let m_{1} be the smallest integer so that if S consists of the first m_{1} vertices selected by Algorithm 1, then the components of $T-S$ are all paths. (Note possibly $m_{1}=m$.) For each of the $m-m_{1}$ vertices $v_{i} \in$ $\left\{v_{m_{1}+1}, \ldots, v_{m}\right\}$ removed next by the algorithm there exists a vertex w_{i} isolated by the removal of v_{i}. Let P be a longest path in T. Let $T_{0}=T$ and for $i=1,2, \ldots, m_{1}-1$ let $T_{i}=T-\left\{v_{1}, \ldots, v_{i}\right\}$. Observe that if vertex v_{j} is deleted from $T_{j-1}\left(1 \leq j \leq m_{1}\right)$, the number of components is increased
by $f_{\ell}(j-1)-f_{\ell}(j)$. Hence at least $f_{\ell}(j-1)-f_{\ell}(j)-1$ vertices not on P are isolated in the process. Let there be k vertices v_{j} for which $f_{\ell}(j-1)-f_{\ell}(j)$ vertices not on P are isolated when v_{j} is deleted from T_{j-1}. Then v_{j} is adjacent with a vertex from the set $\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$. Thus there are exactly $\sum_{j=1}^{m_{1}}\left(f_{\ell}(j-1)-f_{\ell}(j)-1\right)+k=f_{\ell}(0)-f_{\ell}\left(m_{1}\right)-m_{1}+k$ vertices of T not on P. Let S_{1} denote the set of these vertices and $S_{2}=\left\{v_{1}, v_{2}, \ldots, v_{m_{1}}\right\}$. Further, let $S_{3}=\left\{v_{m_{1}+1}, v_{m_{1}+2}, \ldots, v_{m}\right\} \cup\left\{w_{m_{1}+1}, w_{m_{1}+2}, \ldots, w_{m}\right\}$. Note that each component of $T_{m}=T-\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is isomorphic to K_{1} or K_{2}. Let S_{4} be the set of vertices that belong to components isomorphic to K_{2} in T_{m}. Then $\left|S_{4}\right| \leq 2\left(m_{1}+1-k\right)$. To see this note that the deletion of the vertices of S_{2} from T produces a tree with at most $m_{1}+1-k$ nontrivial components. If Algorithm 1 is now applied to $T-S_{2}$ to delete the next $m-m_{1}$ vertices and thus to produce T_{m}, each of the nontrivial components of $T-S_{2}$ corresponds to at most one K_{2} of T_{m}. Thus

$$
\begin{aligned}
p & =\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|+\left|S_{4}\right| \\
& \leq f_{\ell}(0)-f_{\ell}\left(m_{1}\right)-m_{1}+k+m_{1}+2\left(m-m_{1}\right)+2\left(m_{1}+1-k\right) \\
& =2 m-f_{\ell}\left(m_{1}\right)+2 .
\end{aligned}
$$

Since $\kappa_{\ell}=p-\ell+1=p-f_{\ell}(0)$, it follows that $\kappa_{\ell} \leq 2 m-f_{\ell}\left(m_{1}\right)+2$. Clearly $m<\kappa_{\ell}$. Now if $f_{\ell}(m-1)-f_{\ell}(m)>1$, then $m_{1}=m$ so that (iv) (a) follows. Otherwise, $s=m-m_{1}$ and $f_{\ell}\left(m_{1}\right)=f_{\ell}(m)+s$. Hence, in this case, $\kappa_{\ell} \leq 2 m-f_{\ell}(m)-s+2$; thus (iv) (b) follows.

For the converse suppose $f_{\ell}:\left\{0,1, \ldots, \kappa_{\ell}\right\} \rightarrow \mathbf{N} \cup\{0\}$ is a function that satisfies conditions (i) - (iv). Let $p=\kappa_{\ell}+f_{\ell}(0)$. Let $P: u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{m}$, v_{m}, u_{m+1}. Join v_{i} to $f_{\ell}(i-1)-f_{\ell}(i)-1$ new vertices for $1 \leq i \leq m$ and let T^{\prime} be the resulting caterpillar. Observe that the caterpillar constructed thus far has order $f_{\ell}(0)-f_{\ell}(m)+m+1$. Since $f_{\ell}(m) \geq 1$ it follows by (iv) that $p^{\prime}=p-\left(f_{\ell}(0)-f_{\ell}(m)+m+1\right)=\kappa_{\ell}-m+f_{\ell}(m)-1 \geq 0$. If $p^{\prime}=0$, then it can be shown that $T=T^{\prime}$ has f_{ℓ} as its ℓ-connectivity function and independence number β and $\delta_{\beta}(T)=m$. If $p^{\prime}>0$, then $p^{\prime} \leq m+1$ if $f_{\ell}(m-1)-f_{\ell}(m)>1$ and $p^{\prime} \leq m-s+1$ if $f_{\ell}(m-1)-f_{\ell}(m)=1$. Suppose
first that $f_{\ell}(m-1)-f_{\ell}(m)>1$. In this case, if $p^{\prime} \leq m$, subdivide the edges $u_{i} v_{i}$ exactly once for $1 \leq i \leq p^{\prime}$ to obtain T; otherwise subdivide the edges $u_{i} v_{i}$ for $1 \leq i \leq m$ and the edge $v_{m} u_{m+1}$ exactly once to obtain T. Suppose now that $f_{\ell}(m-1)-f_{\ell}(m)=1$. Now subdivide the edges $u_{i} v_{i}$ exactly once $\left(1 \leq i \leq p^{\prime}\right)$ to obtain T. In both cases it can be seen that the corresponding f_{ℓ} is the ℓ-connectivity function of T.

The complex characterizations of the ℓ-connectivity functions of caterpillars given in Theorems 2.3.1.3 and 2.3.1.4 lead one to believe that the problem of characterizing the ℓ - connectivity functions of trees in general is a difficult task. It also remains an open problem to characterize the ℓ-connectivity functions of the n-cube.

2.4 The strong ℓ-connectivity function of a digraph

Let G be a graph with connectivity κ. The function $f:\{0,1, \ldots, \kappa\} \rightarrow \mathrm{N} \cup$ $\{0\}$ defined by $f(r)=\ell_{r}$ where ℓ_{r} is the minimum edge-connectivity among all subgraphs of G obtained by deleting r vertices, $0 \leq r \leq \kappa$, is called the connectivity function of G. Beineke and Harary [BH1] characterized the connectivity functions of graphs in the following theorem.

2.4.1 Generalisation from Graphs

Theorem E Let κ be a positive integer. A function $f:\{0,1, \ldots, \kappa\} \rightarrow$ $\mathbf{N} \cup\{0\}$ is the connectivity function of a graph with connectivity $\kappa \geq 1$ if and only if $f(\kappa)=0$ and f is decreasing.

For a digraph D with strong connectivity κ, the function $f:\{0,1, \ldots, \kappa\} \rightarrow$ $\mathbf{N} \cup\{0\}$ defined by $f(r)=\ell_{r}$ where ℓ_{r} is the minimum arc-connectivity among all subdigraphs of D obtained by deleting r vertices, $0 \leq r \leq \kappa$,
from D is called the connectivity function of D. Theorem E has an immediate extension to digraphs.

Theorem 2.4.1.1 Let κ be a positive integer. A function $f:\{0,1, \ldots, \kappa\} \rightarrow$ $\mathrm{N} \cup\{0\}$ is the connectivity function of a digraph with connectivity $\kappa \geq 1$ if and only if $f(\kappa)=0$ and f is decreasing.

Proof:Suppose f is the connectivity function of a digraph with connectivity κ. Then $f(\kappa)=0$. Suppose $0 \leq k<\kappa$ and that $f(k)=\ell_{k}$. Then D contains a set S of k vertices such that $\lambda(D-S)=\ell_{k}$. Let E be a set of ℓ_{k} edges of $D-S$ so that $D^{\prime}=D-S-E$ has at least two strong components. If $D-S-E$ has a nontrivial strong component D_{1}, then D_{1} contains a vertex v that is incident with an edge of E. Hence $S^{\prime}=S \cup\{v\}$ is a set of $k+1$ vertices so that $\lambda\left(D-S^{\prime}\right) \leq|E|-1=\ell_{k}-1$. If every strong component of $D-S-E$ is trivial, then $D-S-E$ consists of exactly two vertices. Thus D contains a set of $k+1$ vertices and $\ell_{k}-1$ edges whose deletion produces the trivial graph. Therefore in either case $f(k+1) \leq \ell_{k}-1$. Hence f is decreasing.

Suppose now that $f:\{0,1, \ldots, \kappa\} \rightarrow \mathbf{N} \cup\{0\}$ is a decreasing function such that $f(\kappa)=0$. Let $\lambda=f(0)$. Let $H_{0}, H_{1}, \ldots, H_{\kappa}$ be $\kappa+1$ disjoint copies of the complete symmetric digraph K_{λ}^{*}. Denote the vertices of H_{k} by $v_{k, j}$ for $j=1,2, \ldots, \lambda$. Add a vertex u_{0} and join it by a symmetric pair of arcs to every vertex of H_{0}. For $0<k \leq \kappa$, add vertices $u_{k, 1}, u_{k, 2}, \ldots, u_{k, k}$ and join each of these vertices to every vertex of $V\left(H_{k-1}\right) \cup V\left(H_{k}\right)$ by a symmetric pair of arcs. Finally, join $v_{k-1, i}$ and $v_{k, i}$ by a symmetric pair of arcs for $i=1,2, \ldots, f(k)$. Let D be the resulting digraph. It can now be shown that for each $k=1,2, \ldots, \kappa$, the minimum arc-connectivity of a subdigraph obtained by deleting k vertices from D is $\lambda\left(D-\left\{u_{k, 1}, u_{k, 2}, \ldots, u_{k, k}\right\}\right)=\left|\left\{\left(v_{k-1, i}, v_{k, i}\right): 1 \leq i \leq f(k)\right\}\right|=f(k)$. So D has f as its connectivity function.

The digraph D constructed in the proof of Theorem 2.4.1.1 is a symmetric digraph, i.e., if $(u, v) \in E(D)$, then $(v, u) \in E(D)$. Since many digraphs are obtained by assigning directions to the edges of a graph it is natural to consider the connectivity function of an asymmetric digraph. We now characterize the connectivity functions of these digraphs.

Theorem 2.4.1.2 Let κ be a positive integer. A function $f:\{0,1, \ldots, \kappa\} \rightarrow$ $\mathrm{N} \cup\{0\}$ is the connectivity function of an asymmetric digraph with connectivity $\kappa \geq 0$ if and only if $f(\kappa)=0$ and f is decreasing.

Proof:The necessity of the theorem follows as in Theorem 2.4.1.1. Suppose now that $f:\{0,1, \ldots, \kappa\} \rightarrow \mathbf{N} \cup\{0\}$ is a decreasing function with $f(\kappa)=0$.

Let $\lambda=f(0)$. Consider $K_{2 \lambda+1}$. It is well- known that the edge set of this complete graph can be decomposed into λ hamiltonian cycles $G_{1}, G_{2}, \ldots, G_{\lambda}$. Direct the edges of $G_{i}(1 \leq i \leq \lambda)$ in such a way that a directed cycle G_{i}^{\prime} is produced. Let T be the tournament of order $2 \lambda+1$ whose arc set is $\cup\left\{E\left(G_{i}^{\prime}\right) \mid 1 \leq i \leq \lambda\right\}$. Then T has strong connectivity and strong arc connectivity λ. Let $H_{0}, H_{1}, \ldots, H_{\kappa}$ be $\kappa+1$ disjoint copies of T. Denote the vertices of H_{k} by $v_{k, 1}, v_{k, 2}, \ldots, v_{k, \lambda}, w_{k, 1}, w_{k, 2}, \ldots, w_{k, \lambda+1}$. Add a vertex u_{0} and the $\operatorname{arcs}\left(u_{0}, v_{0, i}\right)$ for $1 \leq i \leq \lambda$, as well as the $\operatorname{arcs}\left(w_{0, j}, u_{0}\right)$ for $1 \leq j \leq \lambda+1$. For $0<k \leq \kappa$ add vertices $u_{k, 1}, u_{k, 2}, \ldots, u_{k, k}$ and the $\operatorname{arcs}\left\{\left(v_{k-1, i}, u_{k, j}\right) \mid 1 \leq i \leq \lambda, 1 \leq j \leq k\right\} \cup\left\{\left(u_{k, j}, v_{k, i}\right) \mid 1 \leq i \leq \lambda, 1 \leq\right.$ $j \leq k\} \cup\left\{\left(u_{k, j}, w_{k-1, i}\right) \mid 1 \leq j \leq k, 1 \leq i \leq \lambda+1\right\} \cup\left\{\left(w_{k, i}, u_{k, j}\right) \mid 1 \leq j \leq\right.$ $k, 1 \leq i \leq \lambda+1\}$. Finally, add the $\operatorname{arcs}\left(v_{k-1, i}, v_{k, i}\right)$ for $1 \leq i \leq f(k)$ and $\left(w_{k, j}, w_{k-1, j}\right)$ for $1 \leq j \leq f(k)$. Let D be the resulting asymmetric digraph. As in Theorem 2.4.1.1 it can be shown that f is the connectivity function of this asymmetric digraph.

We turn to the problem of 'discounecting' a digraph into more than two
strong components by the deletion of vertices and arcs.
We have already, in this chapter, dealt with the concept of the ℓ connectivity function of a graph and have established some properties of this function relating to specific graphs. We now investigate this concept for digraphs. Let D be a digraph of order $p \geq \ell-1 \geq 1$ having strong ℓ-connectivity $\kappa_{\ell}(D)=\kappa_{\ell}$. Then the strong ℓ-connectivity function f_{ℓ} of D is defined as follows: $f_{\ell}:\left\{0,1, \ldots, \kappa_{\ell}\right\} \rightarrow \mathbf{N} \cup\{0\}$ and for $0 \leq k \leq \kappa_{\ell}, f_{\ell}(k)=s_{k}$ where s_{k} is the minimum strong ℓ-arc- connectivity among all subdigraphs of D obtained by deleting k vertices from D. Then $f_{\ell}\left(\kappa_{\ell}\right)=0$ and $f_{\ell}(k)>0$ for $0 \leq k<\kappa_{\ell}$. Further, f_{ℓ} is a non-increasing function; for suppose $0 \leq k<\kappa_{\ell}$ and that $f_{\ell}(k)=s_{k}$. Then there exists a set V_{k} of k vertices of D and a set E_{k} of s_{k} edges of D such that $D_{k}=D-V_{k}-E_{k}$ has at least ℓ strong components. If D_{k} has at least $\ell+1$ vertices, then there exists a vertex v of D_{k} such that $D_{k}-\{v\}$ still has at least ℓ strong components. So $V_{k+1}=V_{k} \cup\{v\}$ is a set of $k+1$ vertices such that the number of strong components of $D-V_{k+1}-E_{k}$ is at least ℓ. So in this case $f_{\ell}(k+1) \leq\left|E_{k}\right|=f_{\ell}(k)$. If D_{k} has exactly ℓ vertices then $k+1=\kappa_{\ell}=p-\ell+1$. So in this case $\mathrm{f}_{\ell}(k+1)=0<f_{\ell}(k)$.

While the strong 2 -connectivity function of a digraph is strictly decreasing, this is no longer the case for the strong ℓ - connectivity functions of digraphs for $\ell \geq 3$. For example, if $D \cong K_{2,2}^{*} \cup K_{2}^{*}$, then $\kappa_{3}(D)=2$ and $\{(0,1),(1,1),(2,0)\}$ is the strong 3 -connectivity function of D and is thus not strictly decreasing.

Recall (theorem D, section 2.3.1), it was stated that if $p \geq \ell$, then the ℓ - connectivity function of K_{p} is given by
$f_{\ell}(k)=\left\{\begin{array}{lll}(\ell-1)(p-\ell-k+1)+\binom{\ell-1}{2} & , & \text { for } 0 \leq k<\kappa_{\ell}\left(K_{p}\right) \\ 0 & , & \text { for } k\end{array}\right.$
Using arguments similar to those employed in [O2] it can be shown that the strong ℓ-connectivity function of K_{p}^{*} is also given by the function defined
in (2.4.1).

For an integer $\ell \geq 2$ it was shown in [O2] that if G is a graph and $f_{\ell}(k)=f_{\ell}(k+1)$ for some $k, 0 \leq k<\kappa_{\ell}(G)$, then $f_{\ell}(k) \leq\binom{\ell-1}{2}$. We now establish an analogue for digraphs.

Theorem 2.4.1.3. Let $\ell \geq 2$ and suppose D is a digraph with strong ℓ-connectivity function f_{ℓ} and $\kappa_{\ell}(D)=n$. If $f_{\ell}(k)=f_{\ell}(k+1)$ for some $k, 0 \leq k<n$, then $f_{\ell}(k) \leq\binom{\ell-1}{2}$.

Proof: Let $f_{\ell}(k)=s_{k}$. Then there exists a set V_{k} of k vertices of D and a set E_{k} of s_{k} arcs of D such that $D_{k}=D-V_{k}-E_{k}$ has at least ℓ strong components. If $e=(u, v) \in E_{k}$, then the strong component of D_{k} containing u (and the one containing v) consists of a single vertex, namely u (respectively, v). To see this suppose, to the contrary, that u, say, belongs to a nontrivial strong component of D_{k}. Then $D_{k}-u$ has at least ℓ strong components, that is, $D-\left(V_{k} \cup\{u\}\right)-\left(E_{k}-\{e\}\right)$ has at least ℓ strong components. However, then $f_{\ell}(k+1) \leq\left|E_{k}-\{e\}\right| \leq s_{k}-1=f_{\ell}(k)-1$, which contradicts our assumption. Now since $f_{\ell}(k+1)>0$, it follows that $p(D)-(k+1) \geq \ell$, i.e. $p(D)-k \geq \ell+1$. Hence D_{k} contains at least $\ell+1$ vertices. So since $D_{k}+e$ has at most $\ell-1$ strong components $D_{k}+e$ has at least $\ell-2$ strong components that consist of a single vertex. Further, u and v belong to a nontrivial strong component of $D_{k}+e$. If D_{k} has more than ℓ strong components, then $D_{k}-u$ has at least ℓ strong components so that $D-\left(V_{k} \cup\{u\}\right)-\left(E_{k}-e\right)$ has at least ℓ strong components. However, then $f_{\ell}(k+1)<f_{\ell}(k)$, which contradicts the hypothesis. Hence D_{k} has exactly ℓ strong components. This implies that D_{k} has at most $\ell-1$ trivial strong components. Further, from an earlier argument, no arc of D_{k} joins a vertex from a trivial strong component of D_{k} with a nontrivial strong component of D_{k}. Hence the arcs of D_{k} are only between vertices that
correspond to trivial components of D_{k}. Since at most $\binom{\ell-1}{2}$ arcs need to be deleted from any digraph on at most $\ell-1$ vertices to produce an acyclic digraph, it follows that $\left|E_{k}\right| \leq\binom{\ell-1}{2}$, i.e. $f_{\ell}(k) \leq\binom{\ell-1}{2}$.

From Theorem 2.4.1.3 we know that if D is a digraph such that $f_{\ell}(k)=$ $f_{\ell}(k+1)$ for some $k\left(0 \leq k<\kappa_{\ell}(D)-1\right)$, then $f_{\ell}(k) \leq\binom{\ell-1}{2}$. The next result shows that if in addition $f_{\ell}(k)>\binom{\ell-1}{2}$, then $f_{\ell}(j)$ for $0 \leq j<k$ cannot be arbitrarily large.

Theorem 2.4.1.4 Let D be a digraph with $\kappa_{\ell}(D)=n$, where $\ell \geq 3$ and let f_{ℓ} be as in Theorem 2.4.1.3. If $f_{\ell}(k)=f_{\ell}(k+1)$, for some $k, 0 \leq k<n$, and $\binom{\ell-2}{2}<f_{\ell}(k) \leq\binom{\ell-1}{2}$, then $f_{\ell}(j) \leq(k-j)(\ell-1)+f_{\ell}(k)$ for $0 \leq j \leq k-1$.

Proof Let $f_{\ell}(m)=s_{m}$ for $0 \leq m \leq n$. Since $f_{\ell}(k)=f_{\ell}(k+1)$ it follows from the proof of Theorem 2.4.1.3, that there is a set V_{k} of k vertices and a set E_{k} of s_{k} arcs of D such that $D_{k}=D-V_{k}-E_{k}$ has exactly ℓ components and where every arc of E_{k} is incident, in D, with a pair of vertices that each belong to a trivial strong component of D_{k}. Since $s_{k}>\binom{\ell-2}{2}, D_{k}$ contains more than $\ell-2$ trivial strong components. Since $f_{\ell}(k)=f_{\ell}(k+1)=s_{k+1}>0$, we have $p\left(D_{k}\right) \geq \ell+1$. Hence D_{k} has at least one nontrivial strong component. Thus D_{k} has exactly $\ell-1$ trivial strong components, with vertices say $v_{1}, v_{2}, \ldots, v_{\ell-1}$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{\ell-1}\right\}$. Now every vertex of V_{k} is adjacent to at most $\ell-1$ vertices of V. Hence any set of $k-j$ vertices of $V_{k}, 0 \leq j \leq k-1$, is joined by at most $(k-j)(\ell-1)$ arcs to vertices of V. Let $V_{k}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Then there are at most $(k-j)(\ell-1)$ arcs denoted by E_{j}^{\prime} that join vertices of $\left\{u_{j+1}, u_{j+2}, \ldots, u_{k}\right\}$ to vertices of $V(0 \leq j \leq k-1)$. Hence $D-\left(E_{0}^{\prime} \cup E_{k}\right)$ is disconnected with at least ℓ strong components and for $1 \leq j \leq k-1$, the digraph $D-\left\{u_{1}, u_{2}, \ldots, u_{j}\right\}-\left(E_{j}^{\prime} \cup E_{k}\right)$ has at least ℓ strong components. So $s_{j} \leq(k-j)(\ell-1)+f_{\ell}(k)$ for $0 \leq j \leq k-1$.

It appears to be a difficult problem to characterize all ℓ-connectivity functions of digraphs. However, the following result provides sufficient conditions for a function to be the ℓ-connectivity function of some digraph.

Theorem 2.4.1.5 Let $\ell \geq 2$ be an integer. If f is a decreasing function from $\{0,1, \ldots, \kappa\}, \kappa \geq 1$, to the nonnegative integers such that $f(\kappa)=0$, then f is the strong ℓ-connectivity function of some digraph.

Proof If $\ell=2$, then the result follows from Theorem 2.4.1.1. Let D be the digraph having f as strong 2 -connectivity function. Then for $\ell \geq$ 3, $D \cup \bar{K}_{\ell-2}$ is a digraph with ℓ-connectivity funciton f, that is, $f_{\ell}(k)=f(k)$ for $0 \leq k \leq \kappa$.

2.5 Maximal and Minimal Graphs of given ℓ-connectivity

2.5.1 Maximal Graphs

A connected graph G is (n, ℓ)-maximal if G is not complete, $\kappa_{\ell}(G)=n$ and $\kappa_{\ell}(G+e)>n$ for every edge $e \in E(\bar{G})$.

The largest integer q for which there exists a connected (p, q) graph G of given order p, such that $\kappa_{\ell}(G)=n$ is denoted by $Q_{\pi, \ell}(p)$.

A graph $G=G(p, q)$ with $q=Q_{n, \ell}(p)$ and $\kappa_{\ell}(G)=n$ is called an (n, ℓ)-maximum graph.

The graph $G=K_{n}+\left(K_{p_{1}} \cup K_{p_{2}} \cup \ldots \cup K_{p_{\ell}}\right)$, where $p=p_{1}+p_{2}+\ldots+p_{\ell}+n$, is clearly (n, ℓ)-maximal.

That every (n, ℓ)-maximum graph is of this form may be seen as follows: Let S be a set of n vertices of G such that the number of components

Figure 2.5.2.1
of $G-S$ is $k(G-S)=m \geq \ell$. Let $G_{1}, G_{2}, . ., G_{m}$ be the components of $G-S$, of orders $p_{1}, p_{2}, \ldots, p_{m}$ respectively. Then $\langle S\rangle$ is complete (otherwise, if $e \in\langle S\rangle_{\bar{G}}$, then $k((G+e)-S)=m \geq \ell$, and $|S|=n$. Similarly it follows that $G_{1}, G_{2}, \ldots, G_{m}$ are complete. Furthermore, $m=\ell$ (other wise, if $m>\ell$, let e join a vertex of G_{ℓ} to a vertex of $G_{\ell+1}$ and note that $k((G+e)-S)=m-1 \geq \ell)$. Also, every vertex in S is adjacent to every vertex in $V(G)-S$. So $G=\langle S\rangle+\left(G_{1} \cup \ldots \cup G_{m}\right)$ where $S \cong K_{m}$ and $G_{i} \cong K_{p_{i}}\left(\right.$ with $\left.p_{i}=p\left(G_{i}\right)\right)$.

It follows that in order to obtain an (n, ℓ)-maximum graph of order p, we should choose $p_{1}=p_{2}=\ldots=p_{\ell-1}=1$ and $p_{\ell}=p-n-(\ell-1)=p-n-\ell+1$.

Thus $Q_{n, \ell}(p)=\frac{1}{2}\{(p-n-\ell+1)(p-n-\ell)+n(n-1)\}+n(p-n)$.

2.5.2 Minimal Graphs

Let $n, \ell, p \in \mathbf{N}$ with $\ell \geq 2$ and $p \geq \ell+n$. A graph G is (n, ℓ)-minimal if $\kappa_{\ell}(G)=n$ and $\kappa_{\ell}(G-e)<n$ for every edge $e \in E(G)$. The smallest integer q for which there exists a (p, q) graph G of given order p, such that $\kappa_{\ell}(G)=n$ is denoted by $q_{n, \ell}(p)$.

A graph $G=G(p, q)$ with $q=q_{n, \ell}(p)$ and $\kappa_{\ell}(G)=n$ is called an (n, ℓ) minimum graph and will be denoted by $G_{n, \ell}(p)$
The class of (n, ℓ)-minimum graphs will be denoted by $\mathcal{G}_{n, \ell}$, and $\mathcal{G}_{n, \ell}(p)$ denotes the set of all graphs in $\mathcal{G}_{n, \ell}$ of order p.

By definition (n, ℓ)-minimum graphs are (n, ℓ)-minimal. However, the converse is not true, as can be seen in figure 2.5.2.1 where both graphs are (2,2)-minimal.

The characterisation of graphs of $\mathcal{G}_{n, \ell}$ proves to be more difficult than
that of the (n, ℓ)-maximum graphs characterised above. However, the graphs of $\mathcal{G}_{n, \ell}$ could be useful in designing a network which is deemed to fail if it splinters into ℓ or more components after the simultaneous failure of some of its centres, or if at least n centres fail simultaneously. The graph, with the minimum possible number of links, which represents such a network, will belong to $\mathcal{G}_{n, \ell}$.

We first prove two general results.

Theorem 2.5.2.1 If $p \geq n+3 \geq 5$ and G is an ($n, 3$)-minimal graph of order p, then G contains an edge e for which $\kappa_{\mathbf{3}}(G-e)=n-1$ or G contains at least n vertices b such that $G-b$ is $(n-1,3)$-minimal.

Proof: Let $T \subset V(G)$ such that $k(G-T) \geq 3$ and $|T|=n$. For $e \in E(G), \kappa_{\mathbf{3}}(G-e) \leq n-1 ;$ say $\kappa_{\mathbf{3}}(G-e)=m_{e} \leq n-1$ and denote by S_{e} an m_{e}-set of vertices of G such that $k\left(G-e-S_{e}\right) \geq 3$. We note that $k\left(G-e-S_{e}\right)=3$, otherwise, if $k\left(G-e-S_{e}\right) \geq 4$, it follows that $k\left(G-S_{e}\right) \geq 3$, contrary to the assumption that $\kappa_{3}(G)=n$. Furthermore, e is a bridge of $G-S_{e}$; so either the component (G_{1}, say) of $G-S_{e}$ that contains e is isomorphic to K_{2} or $p\left(G_{1}\right) \geq 3$ and the $(m+1)$-set $S_{e}^{\prime}=S_{e} \cup\{u\}$ (where u is the endvertex of e in a nontrivial component of $\left.G-e-S_{e}\right)$ satisfies $k\left(G-S^{\prime}\right) \geq 3$ which implies that $m_{e}+1 \geq n$. Hence, in this latter case, $\kappa_{\mathbf{3}}(G-e)=n-1$ (and so, if G is $(n, 3)$-minimum, $\left.q_{n-1,3}(p) \leq q(G-e) \leq q_{n, 3}(p)-1\right)$.

We now assume that the statement of the theorem is invalid and that n is the smallest integer ($n \geq 2$) for which G provides a counter-example to the theorem. Then $m_{e} \leq n-2$ for each $e \in E(G)$. Let $b \in T$; then $\kappa_{\mathbf{3}}(G-b) \leq n-1($ as $k(G-b-(T-\{b\})) \geq 3)$ and $\kappa_{\mathbf{3}}(G-b) \geq n-1$ (as $\left.\kappa_{3}(G) \geq n\right)$; hence $\kappa_{3}(G-b)=n-1$. For $e \in E(G-b)$ we note that $\kappa_{\mathbf{3}}(G-e)=m_{e} \leq n-2$ and e joins two trivial components of $G-e-S_{e}$.

Furthermore, either $k\left(G-b-e-S_{e}\right) \geq 3$ or $\langle b\rangle$ is a trivial component of $G-e-S_{e}$ and $k\left(G-e-S_{e}\right)=3$. In the latter case it follows that $G-e-S_{e}$ has (only) three trivial components, whence $p=m_{e}+3<p$, a contradiction. Hence $k\left(G-b-e-S_{e}\right) \geq 3,\left|S_{e}\right| \leq n-2$ for each $e \in E(G-b)$ and $G-b$ is an $(n-1,3)$ graph of order $p-1$.

Theorem 2.5.2.2

$$
q_{n, \ell}(p)<q_{n, \ell-1}(p) .
$$

Proof: Obviously $q_{n, \ell}(p) \leq q_{n, \ell-1}(p)$. Now assume that $q_{n, \ell}(p)=q_{n, \ell-1}(p)$ and let $G \in \mathcal{G}_{n, \ell}(p)$. Let $S \subset V(G)$ such that $|S|=n$ and $k(G-S) \geq$ $\ell>\ell-1$. Then, since G has size $q_{n, \ell}(p)$ it follows that $G \in \mathcal{G}_{n, \ell-1}$. Now let $e \in E(G)$ and let $S^{\prime} \subset V(G-e)$ such that $\left|S^{\prime}\right|=m=\kappa_{\ell}(G-e)$ and $k\left(G-e-S^{\prime}\right) \geq \ell$. Then, as we have seen in the above theorem, $G-e-S^{\prime}$ has exactly ℓ components; so $G-S^{\prime}$ has ℓ or $\ell-1$ components. However, $k\left(G-S^{\prime}\right) \neq \ell$ since $\kappa_{\ell}(G)=n>\left|S^{\prime}\right|$ and $k\left(G-S^{\prime}\right) \neq \ell-1$, since $\kappa_{\ell-1}(G)=n>\left|S^{\prime}\right|$. This contradiction yields the desired result.

Graphs of $\mathcal{G}_{n, 2}$

If $\ell=2, \kappa_{2}(G)=\kappa(G)$ and so $q_{n, \ell}(p)=q_{n, 2}(p)$ is the smallest size of a graph of order p and connectivity n. Harary [H3] has shown that $q_{n, 2}(p)=\left\lceil\frac{p n}{2}\right\rceil$ and has provided the following associated ($p,\left\lceil\frac{p n}{2}\right\rceil$) graphs of connectivity $n, G_{n, 2}(p)=H_{n, p}$.

In all cases, let $V=V\left(H_{m, p}\right)=\{0,1, \ldots, p-1\}, p \geq m+2 \geq 4$.

Case 1: If m is even, say $m=2 r$, then, for $i, j \in V, i, j \in E\left(H_{m, p}\right)$ iff $|i-j| \leq r$ (addition modulo p). Hence, denoting by C_{p} the cycle $0,1, \ldots, p-2, p-1,0$, we note that $H_{2 r, p} \cong C_{p}^{r}$.

Case 2: If m is odd, say $m=2 r+1$ and p is even, say $p=2 a$, then $H_{m, p}$ is obtained from $H_{2 r, p}$ by the insertion of the a edges $i(i+a)$ for $0 \leq i \leq a-1$.

Case 3: If m is odd, say $m=2 r+1$ and p is odd, say $p=2 a+1$, then $H_{m, p}$ is obtained from $H_{2 r, p}$ by the insertion of the $a+1$ edges $0 a, 0(a+1)$ and $i(i+a+1)$ for $1 \leq i \leq a-1$.

We note that $q\left(H_{m, p}\right)=\left\lceil\frac{m p}{2}\right\rceil$ in all cases and next determine the ℓ connectivity of $H_{m, p}$ in each case, where $\ell \geq 2$ and the above notation is retained.

Proposition 2.5.2.3 In Case $1 \kappa_{\ell}\left(H_{2 r, p}\right)= \begin{cases}\ell r & \text { if } p \geq \ell(r+1) \\ p-\ell+1 & \text { if } \ell \leq p<\ell(r+1) .\end{cases}$
Proof: Let $p \geq \ell(r+1)$ and $H=H_{2 r, p}$. That $\kappa_{\ell}(H) \leq \ell r$ follows from the observation that $S=\bigcup_{j=0}^{\ell-1}\{j(r+1)+1, j(r+1)+2, \ldots, j(r+1)+r\}$ is such that $|S|=\ell r$ and $k(H-S)=\ell$, the components of $H-S$ having vertex sets $\{r+1\},\{2(r+1)\}, \ldots,\{(\ell-1)(r+1)\}$ and $\{\ell(r+1), \ell(r+1)+1, \ldots, p-1,0\}$.

To show that $\kappa_{\ell}(H) \geq \ell r$, we assume to the contrary that $\kappa_{\ell}(H)<\ell r$ and let $S \subset V(H)$ such that $|S|<\ell r$ and let $k(H-S) \geq \ell$. Let $i_{0}, i_{1}, \ldots, i_{\ell-1}$ be vertices from ℓ distinct components of $H-S$, labelled so that $0 \leq i_{0}<i_{0}+1<i_{1}<i_{1}+1<\ldots<i_{\ell-1}<p-1$. For $j=0,1, \ldots, \ell-1$, let $S_{j}=\left\{i_{j}, i_{j}+1, \ldots, i_{j+1}\right\}$ (all addition modulo p) and $T_{j}=S_{j} \cap S$. We note that $i_{j}, i_{j+1} \notin T_{j}$; hence, since $\left|\bigcup_{j=0}^{\ell-1} T_{j}\right|=|S|<\ell r$, there exists $j \in\{0,1, \ldots, \ell-1\}$ such that $\left|T_{j}\right|<r$. Consequently there exist vertices $i_{j}=a_{1}, a_{2}, \ldots, a_{s}=i_{j+1}$ in $S_{j}-T_{j}$ such that $a_{1}<a_{2}<\ldots<a_{s}$ and $a_{t+1}-a_{t} \leq r$ for $t=1, \ldots, s-1$. So $a_{1} a_{2} \ldots a_{s}$ is an $i_{j}-i_{j+1}$ path in $H_{2 r, p}-S$, contradicting our assumption that i_{j} and i_{j+1} are in distinct components of $H-S$, whence it follows that $\kappa_{\ell}(H) \geq \ell r$ and so $\kappa_{\ell}(H)=\ell r$. That $\kappa_{\ell}\left(H_{2 r, p}\right)=p-(\ell-1)$ if $\ell \leq p<\ell(r+1)$ follows immediately from the observation that $\beta\left(H_{2 r, p}\right) \leq\left\lfloor\frac{p}{r+1}\right\rfloor$.

Propositon 2.5.2.4 In case 2 , if $\ell \geq 3$ and $p \geq 2 r \ell$ (where p is even) then if $r \geq \ell, \kappa_{\ell}\left(H_{2 r+1, p}\right)= \begin{cases}\ell r+\ell-1 & \text { if } p \geq 2 r \ell+2 \ell \\ \frac{1}{2} p & \text { if } 2 r \ell \leq p \leq 2 r \ell+2 \ell-2 \text { and } \ell \text { is odd } \\ & \text { or } 2 r \ell+2 \leq p \leq 2 r \ell+2 \ell-2 \text { and } \ell \text { is even } \\ r \ell+1 & \text { if } p=2 r \ell \text { and } \ell \text { is even. }\end{cases}$
if $r<\ell, \kappa_{\ell}\left(H_{2 r+1, p}\right)= \begin{cases}\frac{1}{2} p & \text { if } 2 r \ell \leq p \leq 2 r \ell+2 r-2 \text { and } \ell \text { is odd } \\ & \text { or } 2 r \ell+2 \leq p \leq 2 r \ell+2 r-2 \text { and } \ell \text { is even } \\ r \ell+1 & \text { if } p=2 r \ell \text { and } \ell \text { is even } \\ \ell r+r & \text { if } p \geq 2 r \ell+2 r .\end{cases}$
Proof: Let $S=S^{\prime} \cup S^{\prime \prime} \subset V\left(H_{2 r+1, p}\right)$, where $p \geq \ell r+r+\ell$

$$
\begin{aligned}
& S^{\prime}=\bigcup_{j=0}^{\left\lceil\frac{\ell-1}{2}\right\rceil-1}\{j(r+1)+1, \ldots, j(r+1)+r\} \text { and } \\
& S^{\prime \prime}=\bigcup_{j=0}^{\left\lfloor\frac{\ell-1}{2}\right\rfloor+1}\{a+j(r+1), a+j(r+1)+1, \ldots, a+j(r+1)+r-1\}
\end{aligned}
$$

(addition modulo p).

Then $|S|=(\ell+1) r$ and $H_{2 r+1, p}$ contains ℓ components, namely $\ell-1$ isolated components induced by the vertices $r+1,2(r+1), \ldots,\left(\left\lceil\frac{\ell-1}{2}\right\rceil-1\right)(r+$ I) $, r+a, r+a+(r+1), \ldots, r+a+\left\lfloor\frac{\ell-1}{2}\right\rfloor(r+1)$, and a component which is nontrivial if $p>\ell r+r+\ell$, containing the vertices in $A \cup B$, where $A=\left\{\left\lceil\frac{\ell-1}{2}\right\rceil(r+1),\left\lceil\frac{\ell-1}{2}\right\rceil(r+1)+1, . ., a-1\right\}$ and $B=\left\{a+r+\left(\left\lfloor\frac{\ell-1}{2}\right\rfloor+1\right)(r+1), a+r+\left(\left\lfloor\frac{\ell-1}{2}\right\rfloor+1\right)(r+1)+1, \ldots, p-1,0\right\}$
if $a+r+\left(\left\lfloor\frac{\ell-1}{2}\right\rfloor+1\right)(r+1) \leq p$ and $B=\emptyset$ otherwise.
(We note that certainly $r+a+\left\lfloor\frac{\ell-1}{2}\right\rfloor(r+1) \leq p$ and $\left\lceil\frac{\ell-1}{2}\right\rceil(r+1) \leq a$ as $p \geq \ell r+r+\ell$.) So $\kappa_{\ell}\left(H_{2 r+1, p}\right) \leq(\ell+1) r$ if $p \geq \ell r+r+\ell$ and p is even. We next investigate conditions under which $\kappa_{\ell}\left(H_{2 r+1, p)}<(\ell+1) r\right.$ for (even)
values of $p \geq 2 r \ell \geq \ell r+r+\ell$.

Denoting $H_{2 r+1, p}$ by G and $H_{2 r, p}$ by H, let $S \subset V(G)$ with $k(G-S) \geq \ell$ and suppose that $|S|<(\ell+1) r$. Then it follows from the proof of the preceding lemma that $k(H-S)<\ell+1$. Hence, as $k(H-S) \geq k(G-S) \geq \ell$, $k(H-S)=k(G-S)=\ell$. We recall that $H=C_{p}^{r}$, where the vertices of C_{p} are labelled consecutively $0,1, \ldots, p-1$ in, say, the clockwise sense. Denote the consecutive components of $G-S$ by G_{1}, \ldots, G_{ℓ} and let u_{i}, v_{i} be the first and last vertices in G_{i} so that all vertices in G_{i} are contained in $\left\{u_{i}, u_{i+1}, \ldots, v_{i}\right\}(i=1,2, . ., \ell)$ where addition is modulo p. Let $p_{i}=p\left(G_{i}\right)$ and $p_{1}=\max \left\{p_{i} \mid i=1, \ldots, \ell\right\}$.

We consider two cases:

Case (i): If $p_{1}=a+c>a$, let $u_{1}=a-c, v_{1}=2 a-1$; then, as every pair of consecutive components of $G-S$ are separated by at least r vertices on C_{p} and $u_{1} \leq i+a \leq v_{1}$ for each $i \in \bigcup_{j=2}^{\ell} V\left(G_{j}\right)$, it follows that $|S| \geq \ell r+\sum_{i=2}^{\ell} p_{i} \geq \ell r+\ell-1$, with equality iff $p_{i}=1$ for $i=2, \ldots, \ell$. Furthermore, $a-c=\ell r+\sum_{i=2}^{\ell} p_{i} \geq \ell r+\ell-1$, whence

$$
\begin{aligned}
p=2 a & \geq 2(\ell r+\ell-1+c) \\
& \geq 2 \ell(r+1)
\end{aligned}
$$

In this case, as $|S| \leq \ell r+r-1$, it follows that $r \geq \ell$. The bound $|S|=\ell r+\ell-1$ can be attained by letting $V\left(G_{i}\right)=r+(i-2)(r+1)$ for $i=2, \ldots, \ell$ and $V\left(G_{1}\right)=\{r \ell+\ell-1, r \ell+\ell, \ldots, 2 a-1\}-\bigcup_{i=2}^{\ell}(r+(i-2)(r+1)+a)$.

Case (ii): If $p_{1} \leq a$, then, as $i+a \in V-S$ for each $i \in V-S,|S| \geq|V|-|S|$ and so $|S| \geq a=\frac{1}{2} p$. Consequently $p \leq 2|S| \leq 2 \ell r+2 r-2$. We have to consider two subcases, where the notation of Case (i) is retained throughout.

Subcase (ii)(a): If $2 r \ell \leq p \leq 2 r l+2 r-2$ and ℓ is odd, the bound $|S|=a=\frac{1}{2} p$ may be attained (where $a=\ell r+m, 0 \leq m \leq r-1$) by letting S consist of all integers in the following intervals: $[1, r],[2 r+$ $1,3 r], \ldots,\left[\frac{r}{2}(\ell-1)+1, \frac{r}{2}(\ell+1]\right),\left[\frac{r}{2}(\ell+3)+1, \frac{r}{2}(\ell+5)+m\right],\left[\frac{r}{2}(\ell+7)+m+\right.$ $\left.1, \frac{r}{2}(\ell+9)+m\right], \ldots,[p-2 r-m+1, p-r-m]$. If $r \geq \ell$, this bound is as good as or an improvement of the bound obtained in case (i) iff $p \leq 2 r \ell+2 \ell-2$.

Subcase (ii)(b): Let $2 r \ell \leq p \leq 2 r \ell+2 r-2$, where ℓ is even. We shall first show that, if $p=2 r \ell$, then $|S|>\frac{1}{2} p=r \ell$: Suppose, to the contrary, that $|S|=\frac{1}{2} p=r \ell$; then exactly r vertices of S are contained in the interval $\left(v_{i}, u_{i+1}\right)$ and no vertex of S is contained in $\left[u_{i}, v_{i}\right]$, where $i=1,2, . ., \ell$ (additon modulo p). Hence $p_{1}=p_{2}=\ldots=p_{\ell}=r$. Letting $V\left(G_{1}\right)=\{0,1, \ldots, r-1\}$, we note that $V\left(G_{i}\right)=\{2 r i, \ldots, 2 r i+r-1\}$; hence $V\left(G_{\frac{1}{2} \ell}\right)=\{\ell r, \ldots, \ell r+r-1\}$, but, as $a=\ell r$ and $V\left(G_{1}\right)=\{0,1, \ldots, r-1\}$, it follows from the preceding argument that $\{\ell r, \ldots, \ell r+r-1\} \subset S$, a contradiction.

However, the value $|S|=\frac{1}{2} p+1$ may be attained as follows: Let $V\left(G_{i}\right)=\{(2 i-1) r+1, \ldots, 2 i r\}$ for $i=1, \ldots, \frac{1}{2} \ell-1$; $V\left(G_{\frac{1}{2} \ell}\right)=\{\ell r-r+1, \ldots, \ell r+r\}-\{\ell r\} ;$ $V\left(G_{\frac{1}{2} \ell+i}\right)=\{\ell r+2 i r+1, \ldots, \ell r+(2 i+1) r\}$ for $i=1, \ldots, \frac{1}{2} \ell-2$; $V\left(G_{\ell-1}\right)=\{2 \ell r-2 r+1, \ldots, 2 \ell r-r-1\}, V\left(G_{\ell}\right)=\{0\}$.

We note that $p_{i}=r$ for $i=1, \ldots, \frac{1}{2} \ell-1, \frac{1}{2} \ell+1, \ldots, \ell-2$, while $p_{\frac{1}{2} \ell}=$ $2 r-1, p_{\ell-1}=r-1$ and $p_{\ell}=1$; so $\sum_{i=1}^{\ell} p_{i}=\ell r-1$ and $|S|=\ell r+1$.

If $p=2 r \ell+2 m$, where $1 \leq m \leq r-1$, the bound $|S|=\frac{1}{2} p$ may be attained as follows:

Let

$$
V\left(G_{i}\right)=\{(2 i-1) r+1, \ldots, 2 i r\} \text { for } i=1,2, \ldots, \frac{1}{2} \ell ;
$$

$$
\begin{aligned}
V\left(G_{\frac{1}{2} \ell+1}\right)= & \{\ell r+r+1, \ldots, \ell r+m+r\} \\
V\left(G_{\frac{1}{2} \ell+i}\right)= & \{\ell r+m+(2 i-1) r-r+1, \ldots, \ell r+m+(2 i-1) r\} \\
& \text { for } i=1,2, \ldots, \frac{\ell}{2}-1 \\
V\left(G_{\ell}\right)= & \{p-2 r+1, p-2 r+2, \ldots, p-1,0\}
\end{aligned}
$$

with $p_{i}=r$ for $i=1,2, \ldots, \frac{1}{2} \ell, \frac{1}{2} \ell+1, \ldots, \ell-1$, $p_{\frac{1}{2} \ell+1}=m, p_{\ell}=2 r$, hence $\sum_{i=1}^{\ell} p_{i}=\ell r+m$.

As in subcase (ii)(a) above, we note that the bound $|S|=\frac{1}{2} p$ attained in (ii)(b) if $2 r \ell+2 \leq p \leq 2 r \ell+2 r-2$ is as good as or an improvement on the bound $|S|=\ell r+\ell-1$ attained in case (i) iff $p \leq 2 r \ell+2 \ell-2$.

Similar techniques suffice to prove the following proposition.

Proposition 2.5.2.5 In case 3 , if $\ell \geq 3$ and $p \geq 2 r \ell+1$ (where p is odd), then

$$
\text { if } r \geq \ell, \quad \kappa_{\ell}\left(H_{2 r+1, p}\right)=\left\{\begin{array}{lll}
\ell r+\ell-1 & \text { if } \quad p \geq 2 r \ell+2 \ell+1 \\
\frac{1}{2}(p-1) & \text { if } \quad 2 r \ell+1 \leq p \leq 2 r \ell+2 \ell-1 \\
& \text { and } \ell \text { is odd } \\
& \text { or } \quad 2 r \ell+3 \leq p \leq 2 r \ell+2 \ell-1 \\
& \text { and } \ell \text { is even } \\
\frac{1}{2}(p+1) & \text { if } \quad p=2 r \ell+1 \text { and } \ell \text { is even }
\end{array}\right.
$$

and

$$
\text { if } r<\ell, \quad \kappa_{\ell}\left(H_{2 r+1, p}\right)=\left\{\begin{array}{lll}
\frac{1}{2}(p-1) & \text { if } \quad 2 r \ell+1 \leq p \leq 2 r \ell+2 r-1 \\
& \text { and } \ell \text { is odd } \\
& \text { or } & \text { if } 2 r \ell+3 \leq p \leq 2 r \ell+2 r-1 \\
& \text { and } \ell \text { is even } \\
\frac{1}{2}(p+1) & \text { if } & p=2 r \ell+1 \text { and } \ell \text { is even } \\
\ell r+r & \text { if } \quad p \geq 2 r \ell+2 r+1 .
\end{array}\right.
$$

Graphs of $\mathcal{G}_{n, 3}$

a) If $n=1$ and $p \geq 4$ then $q_{1,3}(p)=p-2$ and $\mathcal{G}_{1,3}$ consists of all unions of two trees, $T_{1} \cup T_{2}$, with $p\left(T_{1}\right)+p\left(T_{2}\right)=p$. We note that if G is a connected graph of order p with $\kappa_{3}(G)=1$, then $q(G) \geq p-1$, where equality is attained by all trees G of order p with $\triangle(G) \geq 3$.
b) If $n=2$ and $p \geq 5$, then $q_{2,3}(p)=p-1$ and $\mathcal{G}_{2,3}$ consists of the path P_{p} and of the (disjoint) union of a cycle and a trivial graph, $C_{p-1} \cup K_{1}$ and of the (disjoint) union of a cycle and a complete graph on two vertices, $C_{p-2} \cup K_{2}$.
c) If $n=3$ and $p \geq 6$, then $q_{3,3}(p)=p$ and the $\operatorname{cycle} G_{3,3}(p)=C_{p}$ belongs to $\mathcal{G}_{3,3}$

Theorem 2.5.2.6

If $G \in \mathcal{G}_{3,3}$, then G is connected and is unicyclic.

Proof: Suppose $G=G_{1} \cup G_{2} \in \mathcal{G}_{3,3}$ with $p=p\left(G_{1}\right)+p\left(G_{2}\right), q\left(G_{1}\right)+$ $q\left(G_{2}\right) \leq p$ and $\kappa_{3}(G)=3$, then for each $G_{i}(i \in\{1,2\})$ we have that either G_{i} is complete or $\kappa_{2}\left(G_{i}\right)=3$. However, since $\kappa_{3}(G)=3$ and $p(G) \geq 6, G_{1}$ and G_{2} cannot both be complete.

So, say G_{1} has $p_{1}=p\left(G_{1}\right) \in\{5, \ldots, p-1\}$ and $\kappa_{2}\left(G_{1}\right)=3$ and G_{2} is connected. Hence,

$$
\begin{aligned}
q(G)=q\left(G_{1}\right)+q\left(G_{2}\right) & \geq \frac{3 p_{1}}{2}+p-p_{1}-1 \\
& =p+\frac{p_{1}}{2}-1 \\
& \geq p+\frac{3}{2} \\
& >q\left(C_{p}\right) .
\end{aligned}
$$

Thus it follows that, for $p \geq 6, q_{3,3}(p)$ is realized by a connected graph.

For $\mathrm{i} \geq 3$:

$$
p=4 i-3
$$

$p=4 i-2$
$p=4 i-1$
$p=4 i$

Figure 2.5.2.2

By (a) and (b) above G cannot be a tree and $q(G) \leq p$. Thus G is unicyclic. In fact C_{p} is the only unicyclic graph G with $\kappa_{3}(G)=3$.
d) If $n=4$ and $p \geq 7$, the graphs of figure 2.5.2.2 can be shown to have 3 -connectivity equal to 4 , and thus give upper bounds for $q_{4,3}(p)$. It will be seen that these graphs belong to $\mathcal{G}_{4,3}$.

For $p \geq 9$, the construction of a graph G in figure 2.5.2.2 may be described as follows:-

Let $p=4 i-j(i, j \in \mathrm{~N}, i \geq 3 ; j \in\{0,1,2,3\})$ and let $C^{\prime}, C^{\prime \prime}$ be two disjoint i-cycles $C^{\prime}=u_{1}, u_{2}, . ., u_{i}, u_{1}$ and $C^{\prime \prime}=v_{1}, v_{2}, \ldots, v_{i}, v_{1}$ with $V\left(C^{\prime}\right)=\mathcal{U}$ and $V\left(C^{\prime \prime}\right)=\mathcal{V} . G$ is obtained from $C^{\prime} \cup C^{\prime \prime}$ by connecting
i) u_{m} to v_{m} by a path $P_{4}=u_{m} x_{m} y_{m} v_{m}$ for $m=1, \ldots, i-2$.
ii) u_{i-1} to v_{i-1} by $\begin{cases}u_{i-1} x_{i-1} y_{i-1} v_{i-1} & \text { if } j \leq 2 \\ u_{i-1} x_{i-1} v_{i-1} & \text { if } j=3\end{cases}$
iii) u_{i} to v_{i} by $\begin{cases}u_{i} v_{i} & \text { if } j \geq 2 \\ u_{i} x_{i} v_{i} & \text { if } j=1 \\ u_{i} x_{i} y_{i} v_{i} & \text { if } j=0\end{cases}$

Theorem 2.5.2.7 If G is a graph constructed as above, then $\kappa_{3}(G)=4$.

Proof: For $p \in\{7 ; 8 ; 9\}$ it is easy to show the theorem true.
For $p \geq 9$, since $k\left(G-\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}=3\right.$, it follows that $\kappa_{3}(G) \leq 4$.
Suppose now that $\kappa_{3}(G) \leq 3$, then there exists $S=\left\{s_{1}, s_{2}, s_{3}\right\} \subset V(G)$ such that $k(G-S) \geq 3$. Clearly $|S \cap \mathcal{U}| \leq 1$ or $|S \cap \mathcal{V}| \leq 1$. Suppose $x_{m} \in S$, then either u_{m} is in a trivial component of $G-S$ (and $S=\left\{x_{m}, u_{m-1}, u_{m+1}\right\}$ which is impossible if $k(G-S) \geq 3)$ or $S^{\prime}=\left(S-\left\{x_{m}\right\}\right) \cup u_{m}$ is such that $k\left(G-S^{\prime}\right) \geq 3$.

So we may assume, without loss of generality, that $S \cap X=\emptyset, S \cap$ $Y=\emptyset$ and $|S \cap \mathcal{U}|=1,|S \cap \mathcal{V}|=2$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$ and
$Y=\left\{y_{1}, y_{2}, \ldots, y_{i}\right\}$. Let $S \cap \mathcal{U}=\left\{u_{m}\right\}$; then in $G-S$, all vertices in $\left(\mathcal{U}-\left\{u_{m}\right\}\right) \cup\left(X-\left\{x_{m}\right\}\right) \cup\left(Y-\left\{y_{m}\right\}\right) \cup(V-S)$ are in a single component and x_{m}, y_{m} are in another component which can be $\left\langle\left\{x_{m}, y_{m}\right\}\right\rangle$ if $v_{m} \in S$ or $\left\langle\left\{x_{m}, y_{m}, v_{m}\right\}\right\rangle$ if $\left\{v_{m-1}, v_{m+1}\right\} \subset S$.

However, $G-\left\{u_{m}, v_{m}\right\}$ has as components $\left\langle\left\{x_{m}, y_{m}\right\}\right\rangle \cong K_{2}$ and a 2-connected component $G-\left\{u_{m}, x_{m}, y_{m}, v_{m}\right\}$, so $\left\{u_{m}, v_{m}\right\} \not \subset S$.

Hence $S=\left\{u_{m}, v_{m-1}, v_{m+1}\right\}$ and $k(G-S)=2$, again a contradiction. Thus $\kappa_{3}(G)=4$.

It follows that

$$
q_{4,3}(p) \leq q(G)= \begin{cases}p+3 & \text { if } p \in\{7 ; 8\} \\ p+i & \text { if } p \in\{4 i-3 ; \ldots ; 4 i\}, \quad i \geq 3, i \in \mathbf{N}\end{cases}
$$

Now $p \in\{4 i-3, \ldots, 4 i\}$ if and only if $4 i \in\{p, p+1, p+2, p+3\} \cap \mathbf{N}$ if and only if $i=\left\lceil\frac{p}{4}\right\rceil$.

Hence

$$
q_{4,3}(p) \leq q(G)=\left\{\begin{array}{l}
p+3 \text { if } p \in\{7,8\} \\
p+\left\lceil\frac{p}{4}\right\rceil=\left\lceil\frac{5 p}{4}\right\rceil \text { if } p \geq 9
\end{array}\right.
$$

Theorem 2.5.2.8

For $G \in \mathcal{G}_{4,3}, \quad \kappa(G)=2$.

Proof: We show first that G has no cut vertices. Suppose to the contrary that $k(G-v) \geq 2$ for some $v \in V(G)$. In fact since $G \in \mathcal{G}_{4,3} ; k(G-v)=2$. Let H_{1} and H_{2} be the two components of $G-v$, then clearly $\kappa\left(H_{i}\right) \geq$ $3, i \in\{1,2\}$. If p_{i} is the order of H_{i}, then since $q_{3,2}(p) \geq \frac{3 p}{2}$ it follows that

$$
\begin{aligned}
q_{4,3}(p) \geq q\left(H_{1}\right)+q\left(H_{2}\right)+2 & \geq \frac{3 p_{1}}{2}+\frac{3 p_{2}}{2}+2 \\
& =\frac{3(p-1)}{2}+2
\end{aligned}
$$

$$
>\left\{\begin{array}{lll}
p+3 & \text { if } & p \in\{7,8\} \\
\frac{5 p+3}{4} & \text { if } & p \geq 9
\end{array}\right.
$$

Thus $\kappa(G) \geq 2$.
Suppose $\kappa(G) \geq 3$, then $q_{4,3}(p) \geq q_{3,2}(p) \geq \frac{3 p}{2}$.
Thus $\kappa(G)=2$.

Let G have p_{2} vertices of degree 2 and p_{3} vertices of degree at least 3 forming sets V_{2} and V_{3} respectively. We note that $\left\langle V_{2}\right\rangle$ cannot contain a path $P_{3}: v_{1} v_{2} v_{3}$, otherwise G would contain either a $P_{5}: v_{0} v_{1} v_{2} v_{3} v_{4}$ or a $C_{4}: v_{0} v_{1} v_{2} v_{3} v_{0}$ as an induced subgraph. This would imply that $\kappa_{3}(G)<4$.

Theorem 2.5.2.9

$$
q_{4,3}=\left\{\begin{array}{lll}
p+3 & \text { if } & p \in\{7,8\} \\
\left\lceil\frac{5 p}{4}\right\rceil & \text { if } & p \geq 9
\end{array}\right.
$$

Proof: If $p=7$, then $2 p_{2}+3\left(7-p_{2}\right) \leq 20$, hence $p_{2} \geq 1$. Let $v \in V(G)$ with $\operatorname{deg} v=2, N(v)=\{x, y\}$. Since $P_{3} \not \subset\left\langle V_{2}\right\rangle$, at least one vertex in $\{x, y\}$ is also in V_{3}; say $\operatorname{deg} y \geq 3$. Note that $\kappa_{3}(G-y) \geq 3$ and $p(G-y)=6$. Then $q(G-y) \geq q_{3,3}(6)=6$ and hence $q(G) \geq 6+3=9$ with equality if and only if $q(G-y)=6$ and $\operatorname{deg} y=3$.

Suppose $q=9$. If $\operatorname{deg} x=2$ and $x y \in E(G)$, then y is a cut vertex which is impossible since $\kappa(G)=2$. So either $\operatorname{deg} x \geq 3$ or $x y \notin E(G)$, hence $q(G)=9 \geq q(G-\{x, y, v\})+5$ and so $H=G-\{x, y, v\}$ has $p(H)=4, q(H) \leq 4$, and $\kappa(H) \geq 2$ since H is a component of $G-\{x, y\}$ and $\kappa_{3}(G) \geq 4$. So $q(H) \geq \frac{2(4)}{2}=4$ implying that $q(H)=4$ and H is a 4 -cycle. Furthermore, x is adjacent to exactly one vertex (say w) of H, otherwise $q(G) \geq q(H)+6 \geq 10$.

Now $G-\{w, y\}$ has two components, namely $\langle\{x, y\}\rangle$ and $H-w$ which is a P_{3} with connectivity 1. So $\kappa_{3}(G)=3<4$ which is a contradiction. Thus $q_{4,3}(7)=10$.

If $p=8$, then $2 p_{2}+3\left(8-p_{2}\right) \leq 22$, hence $p_{2} \geq 2$ and $p_{3} \leq 6$.
Let $u, v \in V_{2}$ with $N(u)=\{x, y\}, N(v)=\{w, z\}$ where (since $P_{3} \not \subset\left\langle V_{2}\right\rangle$), $\operatorname{deg} y \geq 3$ and $\operatorname{deg} z \geq 3$ say. Since $\kappa_{3}(G-y) \geq 3, q(G-y) \geq q_{3,3}(7)=7$ and so $q(G) \geq 10$.
Suppose $q(G)=10$. Then $2 p_{2}+3\left(8-p_{2}\right) \leq 20$ and hence $p_{2} \geq 4$ and so there exist $u, v \in V_{2}$ with $u v \notin E(G)$. Since $\kappa_{3}(G)=4$, it follows that $|N(u) \cup N(v)| \geq 4$ and so x, y, w and z are distinct.

If $H=G-\{u, x, y\}$ then, by a similar argument to that used in the case $p=7$, we can show that $q(H)=5$ and $G-\{x, y, u\}$ is a 5 -cycle. Similarly it follows that $G-\{v, w, z\} \cong C_{5}$. Thus two possibilities (G_{1} and G_{2}) for G exist, both of which satisfy $\kappa_{3}(G)=3<4$. Hence $q_{4,3}(8) \geq 11$ and so $q_{4,3}(8)=11$.

If $p \geq 9$, we note first that

$$
\begin{gathered}
2 p_{2}+3 p_{3} \leq 2 q \leq 2\left\lceil\frac{5 p}{4}\right\rceil \\
\Rightarrow \quad 2 p_{2}+3\left(p-p_{2}\right) \leq 2 p+2\left\lceil\frac{p}{4}\right\rceil . \\
\text { Hence } \quad p_{2} \geq p-2\left\lceil\frac{p}{4}\right\rceil . \\
\text { Suppose } \quad q \leq\left\lceil\frac{5 p}{4}\right\rceil-1=p+\left\lceil\frac{p}{4}\right\rceil-1 \text {, then } \\
2 p_{2}+3\left(p-p_{2}\right) \leq 2 p+2\left\lceil\frac{p}{4}\right\rceil-2 \text { and so } \\
p_{2} \geq p+2-2\left\lceil\frac{p}{4}\right\rceil \text { and } p_{3} \leq 2\left\lceil\frac{p}{4}\right\rceil-2 . \\
p_{3}<p_{2} .
\end{gathered}
$$

Now, every vertex in V_{2} is adjacent to at least one vertex in V_{3}. Furthermore, any vertex in V_{3} is adjacent to at most one vertex in V_{2}, otherwise if $u, v \in V_{2}$ with $x u, x v \in E(G)$, then if $u v \in E(G), x$ is a cut vertex of G contradicting $\kappa(G)=2$. Whereas, if $u v \notin E(G)$, then $|N(u) \cup N(v)|<4$ and $\kappa_{3}(G) \leq 3$ contrary to assumption. Hence $p_{3} \geq p_{2}$ which again is a contradiciton. Thus $q_{4,3}(p)=\left\lceil\frac{5 p}{4}\right\rceil$.

For $m \geq 2$ ：
$=6 \mathrm{~m}$

$=6 m+2$

$=6 \mathrm{~m}+4$

$p=6 m+1$

$p=6 m+5$

Clearly the graphs of figure 2.5.2.2 are (4,3)-minimum graphs and hence belong to $\mathcal{G}_{4,3}(p)$.
e) If $n=5$

Theorem 2.5.2.10 The graphs of figure 2.5.2.3 have $\kappa_{3}(G)=5$.

Proof: For $p \in\{8,9,10,11\}$ it is not difficult to see that $\kappa_{3}(G)=5$.

For $m \in \mathbf{N}, m \geq 2$, consider the cubic graph G, obtained from the $6 m$ cycle $C_{6 m}: a_{0} c_{0} b_{0} a_{1} c_{1} b_{1} \ldots a_{2 m-1} c_{2 m-1} b_{2 m-1} a_{0}$ by the insertion of the edges in the set $\left\{a_{i} b_{i}, c_{j} c_{j+m} \mid i=0,1, \ldots, 2 m-1 ; j=0,1, \ldots, m-1\right\}$. Let T_{i} denote the triangle $a_{i} b_{i} c_{i}(i=0, \ldots, 2 m-1)$ and let $C=\left\{c_{i} \mid i=0, \ldots, 2 m-i\right\}$. That $\kappa_{3}(G) \leq 5$ follows from the observation that $k\left(G-\left\{a_{0}, b_{0}, c_{m}, b_{m-1}, b_{m}\right\}\right)=$ 3.

To prove that $\kappa_{3}(G)=5$, we assume the existence of a set $S \subset V(G)$ such that $|S| \leq 4$ and $k(G-S)=3$. Let G_{1}, G_{2}, G_{3} be components of $G-S$ and, without loss of generality, assume that G_{1} contains at least one vertex of T_{0} and none of T_{1}. Note that $H: a_{0} b_{2 m-1} c_{2 m-1} a_{2 m-1} \ldots b_{m+3} c_{m+3} a_{m+3}$ $b_{m+2} a_{m+2} c_{m+2} c_{2} a_{2} b_{2} a_{3} c_{3} b_{c} \ldots a_{m} b_{m} c_{m} c_{0} b_{0} a_{0}$ is a hamiltonian cycle of $G-$ $\left(V\left(T_{1}\right) \cup V\left(T_{m+1}\right)\right)$ whence it follows that $V\left(T_{1}\right) \not \subset S$. (Otherwise, if $V\left(T_{1}\right) \subset S, G-S$ contains at least two components which contain no vertex of $V\left(T_{1}\right) \cup V\left(T_{m+1}\right)$ and are separated on H by at least two vertices of S; so $|S| \geq 5$, a contradiction.) Hence T_{1} contains a vertex of $G-\left(S \cup V\left(G_{1}\right)\right)$, say a vertex of G_{2}. Since $b_{0} a_{1} \in E(G)$ and T_{1} is complete, $\left\{b_{0}, a_{1}\right\} \cap S \neq \emptyset$.

Let i be the smallest index such that $V\left(G_{2}\right) \cap V\left(T_{i+1}\right)=\emptyset$; then it follows as above that $V\left(T_{i+1}\right) \cap V\left(G_{r}\right) \neq \emptyset$ for $r=3$ or 1 . Let j be the smallest index such that $V\left(G_{r}\right) \cap V\left(T_{j+1}\right)=\emptyset$; then $V\left(T_{j+1}\right) \cap V\left(G_{s}\right) \neq \emptyset$ for some $s \in\{1,2,3\}-\{r\}$.

It follows as above that $\left\{b_{i}, a_{i+1}\right\} \cap S \neq \emptyset$ and $\left\{b_{j}, a_{j+1}\right\} \cap S \neq \emptyset$, where $0<i<j<2 m$. Hence $|S \cap C| \leq 1$.

We note that, as $|S| \leq 4$, the graph $C_{6 m}-S$ contains at most four components, with vertex sets (say, without loss of generality) either $V\left(G_{1}\right), V\left(G_{2}\right)$, $V\left(G_{3}\right)$ or $V\left(G_{1}\right), V\left(G_{2}\right), V\left(G_{4}\right), V\left(G_{5}\right)$, where $V\left(G_{4}\right) \cup V\left(G_{5}\right)=V\left(G_{3}\right)$. In the latter case, let k be the smallest index following j such that $V\left(G_{5}\right) \cap$ $V\left(T_{k+1}\right)=\emptyset$, then $\left\{b_{k}, a_{k+1}\right\} \cap S \neq \emptyset$ and $j<k<2 m$, so $S \cap C=\emptyset$. However, it then follows from $c_{0} \in V\left(G_{1}\right)$ and $C \cap S=\emptyset$, as G_{1} is a component of $C_{6 m}-S$ that G_{1} contains all vertices in the set $\left\{c_{m}, b_{m}, a_{m+1}, c_{m+1}, b_{m+1}, \ldots\right.$, $\left.a_{2 m-1}, c_{2 m-1}, b_{2 m-1}, a_{0}, c_{0}\right\}$; however, from $c_{1} \in V\left(G_{2}\right)$ it follows similarly that $c_{m+1} \in V\left(G_{2}\right)$, a contradiction.

So $k\left(C_{6 m}-S\right)=3$ and G_{1}, G_{2}, G_{3} are the three components of $C_{6 m}-S$ (so $r=3$ and $s=1$). As $|S \cap C| \leq 1$, at most one of the vertices c_{0}, c_{1} and c_{i+1} are contained in S; say $c_{0} \in V\left(G_{1}\right)$ and $c_{1} \in V\left(G_{2}\right)$; then a contradiction follows as above. Hence $|S|>4$; i.e. $\kappa_{3}(G)=5$.

Similar methods suffice to prove that each of the other graphs shown in Figure 2.5.2.3 have $\kappa_{3}(G)=5$.

From the above theorem and the graphs of figure 2.5.2.3 it follows that

$$
q_{5,3}(p) \leq\left\{\begin{array}{l}
p+6 \text { if } p \in\{8,9,10\} \\
\left\lceil\frac{6 p}{4}\right\rceil=\left\lceil\frac{3 p}{2}\right\rceil \text { if } p \geq 11
\end{array}\right.
$$

Theorem 2.5.2.11

$$
q_{5,3}(p)=\left\{\begin{array}{l}
p+6 \text { if } p \in\{8,9,10\} \\
\left\lceil\frac{3 p}{2}\right\rceil \text { if } p \geq 11
\end{array}\right.
$$

Proof:

1. Let $p=8$ and suppose that $q_{5,3}(8) \leq 13$. If v is a vertex of maximum degree in G, say $\operatorname{deg} v=\triangle(G) \geq 3$, let $H=G-v$. Then $\kappa_{3}(G) \geq 5$
implies that $\kappa_{3}(H) \geq 4$ and so $q(H) \geq q_{4,3}(7)=10$. But $q(G) \geq$ $q(H)+\Delta(G) \geq 13$. So $q(G)=13$ and hence $\triangle(G)=3$. However, if $q(G)=13$ and $p(G)=8$ with $\triangle(G)=3$, then $q(G) \leq \frac{8(3)}{2}=12$, a contradiction. Hence $q_{5,3}(8)=14$.
2. Suppose next that $q_{5,3}(9) \leq 14$ and let $\operatorname{deg} v=\triangle(G) \geq 3$. Then $H=G-v$ has $p(H)=8, \kappa_{3}(H) \geq 4$, and hence $q(H) \geq q_{4,3}(8)=11$. Consequently $q(G) \geq 11+3=14$, with equality only if $\Delta(G)=3$. Hence $q(G)=14, \triangle(G)=3$ and G has at most 8 vertices of degree 3 , one of degree 2 (since $\triangle(G)=3$) yielding $q(G)=\frac{1}{2}[8(3)+1(2)]=$ $13<14$. Hence $q_{5,3}(9)=15$.
3. Assume that there exists a $(10,15)$ graph G with $\kappa_{3}(G)=5$. Let $V(G)=\left\{v_{1}, \ldots, v_{10}\right\}$. Note that if $\triangle(G) \geq 14$ with (say) deg $v_{1} \geq 4$, then $H=G-v_{1}$ has $p(H)=9, q(H) \leq 11$ and $\kappa_{3}(H) \geq 4$, contradicting the fact that $q_{4,3}(9)=\left\lceil\frac{5(9)}{4}\right\rceil=12$.
Hence, G is a 3-regular graph.

Let $N\left(v_{1}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$ and note that $\triangle\left(\left\langle\left\{v_{2}, v_{3}, v_{4}\right\}\right\rangle\right) \leq 1$, otherwise, if (say) $v_{2} v_{3}, v_{3} v_{4} \in E(G)$, then $G-\left\{v_{2}, v_{4}\right\}$ has two components: $L_{1}=\left\langle\left\{v_{1}, v_{3}\right\}\right\rangle \cong K_{2}$ and L_{2}, where L_{2} is a (6,8)-graph with $\kappa_{2}\left(L_{2}\right) \geq 3$; hence $\delta\left(L_{2}\right) \geq 3$ and $q\left(L_{2}\right) \geq 9$, a contradiction. Since $\left|N\left(\left\{v_{1}, v_{j}\right\}\right)\right| \geq 5$ for $j \in\{5,6,7,8,9,10\}$, it follows that each vertex $v_{j}(j \in\{5, \ldots, 10\})$ is adjacent to at most one vertex in $\left\{v_{2}, v_{3}, v_{4}\right\}$ and to at least two vertices in $\left\{v_{5}, \ldots, v_{10}\right\}$. Without loss of generality, let $N\left(v_{2}\right)=\left\{v_{1}, v_{5}, v_{6}\right\}$ and suppose that $v_{3} v_{4} \in E(G)$. Then, as $\left|N\left(\left\{v_{2}, v_{3}\right\}\right)\right| \geq 5, v_{3}$ is non-adjacent to v_{5} and v_{6}, as is v_{4}. Let $N\left(v_{3}\right)=\left\{v_{1}, v_{4}, v_{7}\right\}$; then $v_{7} v_{4} \notin E(G)$, so let $N\left(v_{4}\right)=\left\{v_{1}, v_{4}, v_{8}\right\}$. If $v_{7} v_{8} \notin E(G)$, then $G-\left\{v_{2}, v_{7}, v_{8}\right\}$ has two components, $L_{3}=\left\langle\left\{v_{1}, v_{3}, v_{4}\right\}\right\rangle$ and $L_{4}=\left\langle\left\{v_{5}, v_{6}, v_{9}, v_{10}\right\}\right\rangle$, where $p\left(L_{4}\right)=4, q\left(L_{4}\right)=15-12=3$; so $\kappa_{2}\left(L_{4}\right) \leq 1$ and $\kappa_{3}(G) \leq 4$, a
contradiction. So $v_{7} v_{8} \in E(G)$, which again produces a contradiction since if we follow the same argument for v_{3} as for v_{1} above, then v_{8} can be adjacent to at most one neighbour of v_{3}. Thus $v_{3} v_{4} \notin E(G)$.

Hence $N\left(v_{3}\right)=\left\{v_{1}, v_{7}, v_{8}\right\}$ and $N\left(v_{4}\right)=\left\{v_{1}, v_{9}, v_{10}\right\}$ (say) and we note that the girth of G is at least 5 . Recall that an n-cage is a 3 regular graph with girth n and smallest possible order (viz. $f(3, n)$; see [CL.1] in which it is shown that $\left.f(3,5)=3^{2}+1=10=p(G)\right)$.

It is also known that the Petersen graph is the unique 5-cage ([CL1], p. 42, Th. 2.9) and so our graph G must be the Petersen graph P for which $\kappa_{3}(P)=4$, producing a contradiction. Thus $q_{5,3}(10) \geq 16$, which together with the above theorem gives $q_{5,3}(10)=16$.
4. For $p \geq 11$ note that if $\delta(G) \geq 3$ then $q_{5,3}(p)=q(G) \geq \frac{3 p}{2}$; hence $q(G) \geq\left\lceil\frac{3 p}{2}\right\rceil$ if $\delta(G) \geq 3$.

Suppose $q(G)<\frac{3 p}{2}$; then $\delta(G) \in\{1,2\}$. If $\delta(G)=1$, let $\operatorname{deg} u=1$, $N(u)=\{v\}$ and note that $H=G-\{u, v\}$ has $\kappa(H) \geq 4$, hence $\delta(H) \geq 4$ and $q(H) \geq 2(p-2)=2 p-4 ;$ so $q(G) \geq 2 p-4+$ $\operatorname{deg} v \geq 2 p-2$. From $q(G)<\frac{3 p}{2}$ we obtain $\frac{p}{2}<2$, whence $p<4$; contrary to assumption.

If $\delta(G)=2$, let $\operatorname{deg} u=2, N(u)=\left\{v_{1}, v_{2}\right\}$ and $J=G-\left\{u, v_{1}, v_{2}\right\}$. From $|N(\{u, w\})| \geq 5$ if $w \notin N[u]$, we obtain $\operatorname{deg} w \geq 3$ if $w \in$ $V(G)-N\left[\left\{v_{1}, v_{2}\right\}\right]$ and $\operatorname{deg} w \geq 4$ if $w \in N\left[\left\{v_{1}, v_{2}\right\}\right]-\left\{u, v_{1}, v_{2}\right\} ;$ furthermore, since $\kappa(J) \geq 3$, we have $\delta(J) \geq 3$ and so $q(J) \geq \frac{3}{2}(p-3)$. Now $q(G) \geq \frac{3}{2}(p-3)+\operatorname{deg} v_{1}+\operatorname{deg} v_{2}-\epsilon$, where
$\epsilon=\left\{\begin{array}{lll}0 & \text { if } & v_{1} v_{2} \notin E(G) \\ 1 & \text { if } & v_{1} v_{2} \in E(G) .\end{array}\right.$
So, if $q(G)<\frac{3 p}{2}$, it follows that $\frac{3 p}{2}>\frac{3 p}{2}-\frac{9}{2}+\operatorname{deg} v_{1}+\operatorname{deg} v_{2}-\epsilon$, whence $\operatorname{deg} v_{1}+\operatorname{deg} v_{2}<\frac{9}{2}+\epsilon$, i.e. $\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \leq 4+\epsilon$. But if $v_{1} v_{2} \notin E(G)$ (so $\epsilon=0$), then $\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \geq 5$, so $v_{1} v_{2} \in E(G)$. Let $\left|N\left(v_{1}\right) \cap V(J)\right|=a_{i} \quad(i=1,2) ;$ then $a_{1}+a_{2}+4=\operatorname{deg} v_{1}+$ $\operatorname{deg} v_{2} \leq 4+1$ and so $a_{1}+a_{2} \leq 1$, but G is connected, so $a_{1}+a_{2} \geq 1$; hence (say) $a_{1}=1$ and $a_{2}=0$, with $N\left(v_{1}\right)=\left\{u, v_{2}, z\right\}$.

Let $L=G-\left\{u, v_{1}, v_{2}, z\right\}$; then $\operatorname{deg} z \geq 4$ (since $|N(\{u, z\})| \geq 5$).
Now $\kappa(L) \geq 4$, so $\delta(L) \geq 4$ and $q(L) \geq 2(p-4)$, whence $q(G) \geq$ $2 p-4+3+4 \geq 2 p-3$. So, as $q(G)<\frac{3 p}{2}$, we have $\frac{3 p}{2}>2 p-3$ and so $p<6$, a contradiction.

So $q_{5,3}(p) \geq\left\lceil\frac{3 p}{2}\right\rceil$ which together with the above theorem gives $q_{5,3}(p)=\left\lceil\frac{3 p}{2}\right\rceil$ for $p \geq 11$.

Clearly, from the above, the graphs of figure 2.5.2.3 belong to $\mathcal{G}_{5,3}$.
f) $n=6$.

We first make the observation that, for $G \in \mathcal{G}_{6,3}$, if $u v \in E(\bar{G})$, then $|N(u) \cup N(v)| \geq 6$.

Also it is known that $\kappa_{3}\left(C_{p}^{2}\right)=6$ for $p \geq 9$; so $q_{6,3}(p) \leq 2 p$ for $p \geq 9$.

Theorem 2.5.2.12 If $G \in \mathcal{G}_{6,3}$, then $\delta(G) \geq 3$.

Proof: It is clear that $\delta(G) \geq 2$, otherwise, if $\operatorname{deg}_{G} u=1$ and $u v \in E(G)$, then $\kappa(G-\{u, v\}) \geq 5$ and so $q(G-\{u, v\}) \geq \frac{5}{2}(p-2)$. But $q(G-\{u, v\} \leq$ $2 p-2$; so $p \leq 6$, a contradiction.

Suppose there exists $u \in V(G)$ with $N(u)=\left\{v_{1}, v_{2}\right\}$, and let $H=G-$ $\left\{u, v_{1}, v_{2}\right\}$. Then $\kappa(H) \geq 4$; hence $\delta(H) \geq 4$ and $q(H) \geq 2(p-3)=2 p-6$.

So the number of edges covered by $\left\{v_{1}, v_{2}\right\}$ is at most 6 , whence it follows that $v_{1} v_{2} \in E(G)$, otherwise, if $v_{1} v_{2} \in E(\bar{G})$, then, $\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)-\{u\}\right| \geq$ 5 and so $\left\{v_{1}, v_{2}\right\}$ covers at least 7 edges, a contradiction. Thus it follows that either $\operatorname{deg}_{G} v_{1} \leq 3$ or $\operatorname{deg}_{G} v_{2} \leq 3$ (say the former).

If $\operatorname{deg}_{G} v_{1}=2$, then $G-v_{2}$ has two components $\left\langle\left\{u, v_{1}\right\}\right\rangle \cong K_{2}$ and H, with $\kappa(H) \geq 5$, hence $q(H) \geq \frac{5}{2}(p-3)$ and so $q(G) \geq \frac{5}{2}(p-3)+4$, but $q(G) \leq 2 p$, whence it follows that $p \leq 7$, a contradiction.

So $\operatorname{deg}_{G} v_{1}=3$ and $\operatorname{deg}_{G} v_{2} \leq 4$. Let $N\left(v_{1}\right)=\left\{u, v_{2}, w\right\}$; then $G-\left\{w, v_{2}\right\}$ has 2 components, $\left\langle\left\{v_{1}, u\right\}\right\rangle \cong K_{2}$ and (say) J, where $\kappa(J) \geq 4$ and so $\delta(J) \geq 4$, whence $q(J) \geq 2(p-4)=2 p-8$; but, as $\delta(H) \geq 4, w$ is adjacent to at least 4 vertices in H and so $q(G) \geq q(J)+3+\left|\left[v_{2}, V(J)\right]\right|+\operatorname{deg}$ $w \geq 2 p-8+3+1+5>2 p$, a contradiction. So $\delta(G) \geq 3$.

Let $G_{3}=\left\langle\left\{v \in V(G) \mid \operatorname{deg} v=3 ; G \in \mathcal{G}_{6,3}\right\}\right\rangle$ and let p_{i} denote the number of vertices in G of degree $i(i \geq 3)$.

Theorem 2.5.2.13 If H is a component of G_{3}, then $|N(V(H))-V(H)| \geq$ 3.

Proof: We note first that each component of G_{3} is complete, otherwise G_{3} contains two vertices, v_{1} and v_{2}, with $d_{G}\left(v_{1}, v_{2}\right)=2$ and $\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)\right| \leq$ 5. So each component of G_{3} is isomorphic to K_{1}, K_{2} or K_{3}.

A similar argument shows that if $w \in V(G)-V\left(G_{3}\right)$, then all vertices in $N(w) \cap V\left(G_{3}\right)$ are contained in a single component of G_{3} (or $N(w) \cap$ $V\left(G_{3}\right)=\emptyset$.

If $V(H)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $N(V(H))-V(H)=\{w\}$, then $G-w$ has two components, viz. H and (say) L_{1} where $\kappa\left(L_{1}\right) \geq 5$ and so $q\left(L_{1}\right) \geq$ $\frac{5}{2} p\left(L_{1}\right)=\frac{5}{2}(p-4) ;$ but $q\left(L_{1}\right) \leq q(G)-7 \leq 2 p-7$ whence $p \leq 6$, a contradiction.

$$
\text { If } N(V(H))-V(H)=\left\{w_{1}, w_{2}\right\} \text {, where (say) } v_{1} w_{1}, v_{2} w_{1} \in E(G) \text { and }
$$

$v_{3} w_{2} \in E(G) ;$ but $v_{3} w_{1} \in E(\vec{G})$, so (as $\operatorname{deg}_{G} v_{3}=3$ and $6 \leq\left|N\left(v_{3}\right) \cup N\left(w_{1}\right)\right|$ $=\operatorname{deg}_{G} v_{3}+\operatorname{deg}_{G} w_{1}-\left|N\left(v_{3}\right) \cap N\left(w_{1}\right)\right|=\operatorname{deg}_{G} w_{1}+1$), it follows that $\operatorname{deg}_{G} w_{1} \geq 5$. Now $G-\left\{w_{1}, w_{2}\right\}$ has two components, viz. H and (say) L_{2}, where $\kappa\left(L_{2}\right) \geq 4$ and so $q\left(L_{2}\right) \geq 2(p-5)=2 p-10$. But $q\left(L_{2}\right) \leq q-11 \leq$ $2 p-11$, a contradiction.

So, if H is a component of G_{3} of order 3, then $|N(V(H))-V(H)| \geq 3$.

If H is a trivial component of G_{3}, then obviously $|N(V(H))-V(H)|=$ $|N(V(H))|=3$.

Finally, if $H \cong K_{2}^{\prime}$ with $V(H)=\left\{v_{1}, v_{2}\right\}$ then, if $|N(V(H))-V(H)|=$ 2, (say $\left.N(V(H))-V(H)=\left\{w_{1}, w_{2}\right\}\right)$, then $G-\left\{w_{1}, w_{2}\right\}$ has two components viz. H and (say) L_{3}, where $\kappa\left(L_{3}\right) \geq 4$, so $\delta\left(L_{3}\right) \geq 4$ and consequently $q\left(L_{3}\right) \geq 2 p\left(L_{3}\right)=2(p-4)=2 p-8$.

However, $q\left(L_{3}\right) \leq q(G)-8 \leq 2 p-8$, with equality if and only if $q=2 p$, $\operatorname{deg} w_{1}=\operatorname{deg} w_{2}=4$ and $w_{1} w_{2} \in E(G)$, which must therefore be valid in this case.

If $\left|N\left(\left\{w_{1}, w_{2}\right\}\right) \cap V\left(L_{3}\right)\right|=1$, let $\{a\}=N\left(\left\{w_{1}, w_{2}\right\}\right) \cap V\left(L_{3}\right)$ and note that $G-a$ has two components, $\left\langle\left\{v_{1}, v_{2}, w_{1}, w_{2}\right\}\right\rangle$ and (say) L_{4}, where $\kappa\left(L_{4}\right) \geq 5, q\left(L_{4}\right) \geq \frac{5}{2}(p-5)$ and $q\left(L_{4}\right) \leq q-10 \leq 2 p-10$; whence $p \leq 5$, a contradiction. If $N\left(\left\{w_{1}, w_{2}\right\}\right) \cap V\left(L_{3}\right)=\left\{a_{1}, a_{2}\right\}$, then $\operatorname{deg} a_{i} \geq 4$ for $i=1,2$ and $G-\left\{a_{1}, a_{2}\right\}$ has two components, $\left\langle\left\{v_{1}, v_{2}, w_{1}, w_{2}\right\}\right\rangle$ and (say) L_{5} where $\kappa\left(L_{5}\right) \geq 4, q\left(L_{5}\right) \geq 2(p-6)=2 p-12$ and $q\left(L_{5}\right) \leq q(G)-13 \leq$ $2 p-13$, a contradiction.

$$
\text { So }|N(V(H))-V(H)| \geq 3
$$

Theorem 2.5.2.14 For $p \geq 9,\left\lceil\frac{7 p}{4}\right\rceil \leq q_{6,3}(p) \leq 2 p$.

Figure 2.5.2.4

Proof: It follows from the above theorem that if $G \in \mathcal{G}_{6,3}$, then $p-p_{3}=$ $\left|V(G)-V\left(G_{3}\right)\right| \geq 3 k\left(G_{3}\right)=3 n_{1}+3 n_{2}+3 n_{3}$ and $p_{3}=3 n_{3}+2 n_{2}+n_{1}$, where n_{i} is the number of components of order i in $G_{3}(i=1,2,3)$.

So $p_{3} \leq p / 2, p-p_{3} \geq p / 2$ and $2 q \geq(3+4) \frac{p}{2}$.
Thus $q \geq \frac{7 p}{4}$.

For the case $p=9, q_{6,3}(9) \leq q\left(C_{9}^{2}\right)=18$. Furthermore, if $S \subset V(G)$ such that $|S|=6$ and $k(G-S)=3$, then $K_{3}(\langle S\rangle) \geq 3$, hence $q(\langle S\rangle) \geq 6$ and each vertex in S is adjacent to at least 2 vertices in $V-S$; hence $|[S, V-S]| \geq 12$ and $q \geq 6+12=18$. Thus $q_{6,3}(9)=q\left(C_{9}^{2}\right)=18$.

Figure 2.5.2.4 shows a graph on 24 vertices and $\left\lceil\frac{7(24)}{4}\right\rceil=42$ edges which is easily seen to have 3 -connectivity equal to 6 .

At this stage it remains open to discover whether or not $q_{6,3}(p)=\left\lceil\frac{7 p}{4}\right\rceil$ for all $p \geq t>9$ and to establish the values of $q_{6,3}(p)$ for $10 \leq p<t$.

Finally we conjecture that, for $p \geq n+\ell$ and $n, \ell \geq 2$, both $q_{n-1, \ell}(p)<$ $q_{n, \ell}(p)$ and $q_{n, \ell}(p-1)<q_{n, \ell}(p)$. It should be noted that the validity of these statements in the case where $\ell=2$ follows from our knowledge of the exact value of $q_{n, 2}(p)\left(=\left\lceil\frac{p n}{2}\right\rceil\right)$ and that the proofs of the above conjectures (if true) may be dependent on the establishment of a corresponding value of $q_{n, \ell}(p)$ for $\ell \geq 3$.

Chapter 3

Steiner Distance Hereditary

Graphs

3.1 Introduction

The distance $d_{G}(u, v)$ between two vertices, u, v of a connected graph G is the length of a shortest $u-v$ path of G. The eccentricity $e(v)$ of a vertex v is $\max \{d(v, u) \mid u \in V(G)\}$. If G is a connected graph and $S \subseteq V(G)$, then the Steiner distance $d_{G}(S)$ is the size of a smallest connected subgraph of G that contains S. Such a subgraph is obviously a tree and is called a Steiner tree for S. If T is a tree then a vertex of degree 1 in T is an end-vertex whilst all other vertices of T are called internal vertices of T.

Howorka [H2] in 1977 defined a graph G to be distance-hereditary if each connected induced subgraph F of G has the property that $d_{F}(u, v)=$ $d_{G}(u, v)$ for each $u, v \in V(F)$. In order to state the characterizations of distance hereditary graphs given by Howorka [H2], we need the following terminology. An induced path of G is a path which is an induced subgraph of G. Let $u, v \in V(G)$. Then a $u-v$ geodesic is a shortest $u-v$ path. Let C be a cycle of G. A path P is an essential part of C if P is a subgraph of C and $\frac{1}{2}|E(C)|<|E(P)|<|E(C)|$. An edge of G that joins two vertices of C that are not adjacent in C is called a diagonal of C. We say that two diag-

Figure 3.2
onals e_{1}, e_{2} of C are skew diagonals, if $C+e_{1}+e_{2}$ is homeomorphic with K_{4}.

Theorem F (Howorka)

The following are equivalent:
(i) G is distance-hereditary;
(ii) every induced path of G is a geodesic;
(iii) no essential part of a cycle is induced;
(iv) each cycle of length at least 5 has at least two diagonals and each 5 -cycle has a pair of skew diagonals.
(v) Each cycle of G of length at least 5 has a pair of skew diagonals.

The definition of the Steiner distance of a set of vertices together with the concept of distance-hereditary graphs suggests a generalization to Steiner distance hereditary graphs. In this chapter we first consider this generalization and then characterize the 3-Steiner Distance Hereditary Graphs.

3.2 Generalization of Steiner Distance Hereditary Graphs

A connected graph is k-Steiner distance hereditary, $k \geq 2$, if for every connected induced subgraph H of G of order at least k and set S of k vertices of $H, d_{H}(S)=d_{G}(S)$. Thus 2-Steiner distance hereditary graphs are distance hereditary. Figure 3.2 (a) shows a graph G that is not 3 -Steiner distance hereditary since $d_{F}(\{u, v, w\}) \neq d_{G}(\{u, v, w\})$ where F is the induced subgraph of G shown in Figure 3.2(b). However, it is not difficult to show that the graph of Figure 3.2(c) is 3-Steiner distance hereditary.

The problem of determining the Steiner distance of a set of vertices in a graph appears to be difficult. In fact the following related decision problem π is NP-complete (see [GJ1 p. 208]).
π : Suppose G is a weighted graph whose edges have positive integer weights. Let $S \subseteq V(G)$ and suppose B is a positive integer. Does there exist a subtree T of G that includes S and is such that the sum of the weights of the edges of T is no more than B ?

Furthermore, the problem remains NP-complete even if G is a graph. This suggests solving the problem in certain special cases. If it is known that a graph is k-Steiner distance hereditary, then $d_{G}(S)$ can easily be determined for every set S of $k \geq 2$ vertices of G as follows:

Let the vertices of $G-S$ be denoted by $v_{1}, v_{2}, \ldots, v_{p-k}$. Let $G_{0}=G$. For each $i(1 \leq i \leq p-k)$, if the vertices of S belong to the same component of $G_{i-1}-v_{i}$, then G_{i} is defined to be $G_{i-1}-v_{i}$, otherwise, let G_{i} be G_{i-1}. Thus G_{p-k} is a connected induced subgraph of G that contains S. Therefore $d_{G_{p-k}}(S)=d_{G}(S)$. However, since the deletion of any vertex of G_{p-k} separates at least two vertices of S, no subgraph with fewer vertices than $p\left(G_{p-k}\right)$ contains S and is connected. Thus G_{p-k} is a connected subgraph of smallest order that contains S. Hence any spanning tree of G_{p-k} is a Steiner tree for S.

Our first result shows that if G is a connected distance hereditary graph, then $d_{G}(S)$ can be determined by the above procedure for any set $S \subseteq V(G)$ of at least two vertices.

Theorem 3.2.1 If G is 2-Steiner distance hereditary, then G is k-Steiner distance hereditary for all $k \geq 3$.

Proof Suppose, to the contrary, there exists a graph G which is 2 -Steiner
distance hereditary, but not k - Steiner distance hereditary for some $k \geq 3$. Let k be as small as possible and let H be a connected induced subgraph of G of smallest order, n say, for which there is a set S of k vertices of H such that $d_{H}(S)>d_{G}(S)$. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. If $|V(H)|=k$, then there exists exactly one set of k vertices in H, namely $V(H)$. However, then every spanning tree of H is a Steiner tree for $V(H)$ in H and has size $k-1$. Since $d_{G}(V(H)) \geq k-1$, it follows that $d_{G}(V(H))=d_{H}(V(H))$ in this case. This contradicts our choice of H. Hence $|V(H)| \geq k+1$. If $d_{H}(S) \leq k-2$ let T be a Steiner tree for S in H and let $H^{\prime}=\langle V(T)\rangle_{G}$. Then $d_{H^{\prime}}(S)=d_{H}(S)>d_{G}(S)$ and $\left|V\left(H^{\prime}\right)\right|<|V(H)|$ which contradicts our choice of H. Hence $d_{H}(S)=n-1$, i.e. a Steiner tree for S in H must contain all the vertices of H. By our choice of $k, d_{H}\left(S-\left\{x_{i}\right\}\right)=$ $d_{G}\left(S-\left\{x_{i}\right\}\right)$ for all $i(1 \leq i \leq k)$.

We now show that no Steiner tree T^{\prime} for S in G contains any $x_{i}(1 \leq i \leq$ $k)$ as an internal vertex. Suppose T^{\prime} contains some x_{i} as internal vertex. Let $T_{1}, T_{2}, \ldots, T_{m}$ be the components of $T^{\prime}-x_{i}$. Let T_{1}^{\prime} be the subgraph of T^{\prime} induced by $V\left(T_{1}\right) \cup\left\{x_{i}\right\}$ and let T_{2}^{\prime} be the subgraph of T^{\prime} induced by $\left(\bigcup_{j=2}^{m} V\left(T_{j}\right)\right) \cup\left\{x_{i}\right\}$. Let $S_{1}=S \cap V\left(T_{1}^{\prime}\right)$ and $S_{2}=S \cap V\left(T_{2}^{\prime}\right)$. Since $2 \leq\left|S_{i}\right|<k$ for $i=1,2$, it follows that $d_{H}\left(S_{i}\right)=d_{G}\left(S_{i}\right)$ for $i=1,2$. Further, $\left|E\left(T_{i}^{\prime}\right)\right|=d_{G}\left(S_{i}\right)$ for $i=1,2$, otherwise we can find a tree with fewer than $q\left(T^{\prime}\right)=d_{G}(S)$ edges that contains S. This is not possible. Let T_{i} be a Steiner tree for S_{i} in $H(i=1,2)$. Then $d_{H}(S) \leq d_{H}\left(S_{1}\right)+$ $d_{H}\left(S_{2}\right)=\left|E\left(T_{1}^{\prime}\right)\right|+\left|E\left(T_{2}^{\prime}\right)\right|=d_{G}(S)$. This again produces a contradiction to the choice of S. Hence, every Steiner tree for S in G has k end-vertices which are precisely the vertices of S. Thus $d_{G}\left(S-\left\{x_{i}\right\}\right)<d_{G}(S)$ for all $i(1 \leq i \leq k)$.

We prove next that every vertex of S has degree 1 in H and is therefore an end-vertex of every Steiner tree for S in H.

Let $x_{i} \in S$ and note that every Steiner tree for $S-\left\{x_{i}\right\}$ in H does not contain x_{i}; otherwise $d_{H}(S)=d_{H}\left(S-\left\{x_{i}\right\}\right)=d_{G}\left(S-\left\{x_{i}\right\}\right)<d_{G}(S)$
which contradicts the fact that $d_{H}(S)>d_{G}(S)$. Let T_{i} be a Steiner tree for $S-\left\{x_{i}\right\}$ in H. Denote by P_{i} a shortest path in H from x_{i} to $V\left(T_{i}\right)$ and note that every vertex in H occurs in $V\left(T_{i}\right) \cup V\left(P_{i}\right)$ for $1 \leq i \leq k$, since $d_{H}(S)=|V(H)|-1$. So P_{i} contains at least one edge. If P_{i} contains an internal vertex, w say, and $\operatorname{deg}_{H} x_{i} \geq 2$, then x_{i} has a neighbour y in H which is contained in $V\left(T_{i}\right)$ and $y \notin V\left(P_{i}\right)$, which produces a contradiction as x_{i}, y is a path from x_{i} to $V\left(T_{i}\right)$, which is shorter than P_{i}. Hence if $\operatorname{deg}_{H} x_{i} \geq 2$, then P_{i} has length 1. Therefore

$$
\begin{aligned}
d_{H}(S) & =d_{H}\left(S-\left\{x_{i}\right\}\right)+1 \\
& =d_{G}\left(S-\left\{x_{i}\right\}\right)+1 \\
& \leq d_{G}(S) ;
\end{aligned}
$$

contrary to our assumption. Hence every $x_{i} \in S$ has degree 1 in H. Therefore every Steiner tree for S in H has k end- vertices.

Next consider T, a Steiner tree for S in H. Let ℓ_{i} be the length of a shortest path Q_{i} (in H) from x_{i} to a vertex v_{i} of degree at least 3 in T for $i=1,2, \ldots, k$. Let $w_{i, 1}$ be the vertex that precedes v_{i} on Q_{i} and observe that except for possibly $w_{i, 1}$ no internal vertex of Q_{i} has degree exceeding 2 in H. We now show that

$$
d_{H}(S)=\left\{\begin{array}{l}
d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i} \text { if } v_{i} \in V\left(T_{i}\right) \tag{3.2.1}\\
d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}+1 \text { if } v_{i} \notin V\left(T_{i}\right)
\end{array}\right.
$$

where T_{i} is a Steiner tree on $S-\left\{x_{i}\right\}$ and where in the latter case $w_{i, 1}$ has degree 2 in H.

We show first that $d_{H}\left(S-\left\{x_{i}\right\}\right) \geq d_{H}(S)-\left(\ell_{i}+1\right)$. If this is not the case, then $d_{H}\left(S-\left\{x_{i}\right\}\right) \leq d_{H}(S)-\ell_{i}-2$ and neither v_{i} nor any of its neighbours in T belongs to T_{i}. Let $w_{i, 2}$ and $w_{i, 3}$ be two vertices distinct from $w_{i, 1}$ that are adjacent with v_{i} in T. Then $T-v_{i} w_{i, 2}$ must contain x_{i} and $w_{i, 3}$ in the same component and thus some vertex $x_{j} \neq x_{i}$ such that the $x_{i}-x_{j}$ path P^{\prime} in T contains $w_{i, 3}$. Then P^{\prime} together with T_{i} produces a connected subgraph of H that contains S but not $w_{i, 2}$. However, then $d_{H}(S)<p(H)-1$, a contradiction. Hence, $d_{H}\left(S-\left\{x_{i}\right\}\right) \geq d_{H}(S)-\left(\ell_{i}+1\right)$.

If $v_{i} \in V\left(T_{i}\right)$, then the length of a shortest path from x_{i} to T_{i} is at most ℓ_{i}. On the other hand we know that it is at least ℓ_{i}. Hence it is exactly ℓ_{i}. So $d_{H}(S)=d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}$ in this case. If $v_{i} \notin V\left(T_{i}\right)$, then some neighbour of v_{i} distinct from $w_{i, 1}$ must belong to T_{i}. Further, v_{i} must be on a shortest path from x_{i} to T_{i}. Therefore $w_{i, 1}$ has degree 2 in H. Hence $d_{H}(S)=d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}+1$ in this case.

Let T^{\prime} be a Steiner tree for S in G and let $H^{\prime}=\left\langle V\left(T^{\prime}\right)\right\rangle_{G}$. Since T^{\prime} has k end-vertices there is some pair x_{i}, x_{j} of vertices of S for which the $x_{i}-x_{j}$ path in T^{\prime} contains exactly one vertex of degree at least 3 in T^{\prime}, say y. Without loss of generality we may assume $x_{i}=x_{1}$ and $x_{j}=x_{2}$. Let $\ell_{1}^{\prime}=d_{T^{\prime}}\left(x_{1}, y\right)$ and $\ell_{2}^{\prime}=d_{T^{\prime}}\left(x_{2}, y\right)$. Observe that $d_{G}\left(x_{1}, x_{2}\right) \leq \ell_{1}^{\prime}+\ell_{2}^{\prime}$ and that $d_{H}\left(x_{1}, x_{2}\right) \geq \ell_{1}+\ell_{2}-1$. Hence $d_{G}\left(x_{1}, x_{2}\right) \geq \ell_{1}+\ell_{2}-1$. We now consider two cases.

Case 1 Suppose $d_{H}\left(x_{1}, x_{2}\right)=\ell_{1}+\ell_{2}-1$. Then $w_{1,1}$ and $w_{2,1}$ must be adjacent in H and further, v_{i} must belong to T_{i} for $i=1,2$, by (3.2.1). Thus $d_{H}(S)=d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}>d_{G}(S) \geq d_{G}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}^{\prime}$ for $i=1,2$. Therefore $\ell_{i} \geq \ell_{i}^{\prime}+1$ for $i=1,2$. Hence

$$
d_{H}\left(x_{1}, x_{2}\right)=\ell_{1}+\ell_{2}-1 \geq \ell_{1}^{\prime}+\ell_{2}^{\prime}+1>d_{G}\left(x_{1}, x_{2}\right)
$$

a contradiction, since G is 2-Steiner distance hereditary and because H is a connected induced subgraph of G.

Case 2 Suppose $d_{H}\left(x_{1}, x_{2}\right) \geq \ell_{1}+\ell_{2}$. Suppose first that $d_{H}\left(x_{1}, x_{2}\right) \geq \ell_{1}+\ell_{2}+$ 1. Since $d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}+1 \geq d_{H}(S)>d_{G}(S) \geq d_{G}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}^{\prime}$, it follows that $\ell_{i} \geq \ell_{i}^{\prime}$ for $i=1,2$. Hence $d_{H}\left(x_{1}, x_{2}\right) \geq \ell_{1}+\ell_{2}+1>\ell_{1}^{\prime}+\ell_{2}^{\prime}$ $\geq d_{G}\left(x_{1}, x_{2}\right)$. This again contradicts the fact that G is 2 -Steiner distance hereditary.

Suppose thus that $d_{H}\left(x_{1}, x_{2}\right)=\ell_{1}+\ell_{2}$. Then $w_{1,1}$ and $w_{2,1}$ are not adjacent in H. If $d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}=d_{H}(S)$ for $i=1,2$, then, by (3.2.1), v_{i} is in the vertex set of T_{i}. Suppose $d_{H}\left(S-\left\{x_{1}\right\}\right)+\ell_{1}=$ $d_{H}(S)$. Then, as before $\ell_{1} \geq \ell_{1}^{\prime}+1$, and $\ell_{2} \geq \ell_{2}^{\prime}$. Hence $d_{H}\left(x_{1}, x_{2}\right)=$
$\ell_{1}+\ell_{2}>\ell_{1}^{\prime}+\ell_{2}^{\prime} \geq d_{G}\left(x_{1}, x_{2}\right)$. This is not possible since G is 2 -Steiner distance hereditary.

So we may assume $d_{H}(S)=d_{H}\left(S-\left\{x_{i}\right\}\right)+\ell_{i}+1$ for $i=1,2$. Thus by (3.2.1), $v_{i} \notin V\left(T_{i}\right)$ for $i=1,2$. We show next that $w_{1,1}$ and $w_{2,1}$ both have degree 2 in H. Suppose $w_{1,1}$ has degree at least 3 in H. Let w be a vertex adjacent with $w_{1,1}$ that does not belong to Q_{1}. Then there is a path P in H from x_{1} to T_{1} that passes through w but does not contain v_{1}. Thus T_{1} together with P produce a connected subgraph of H that contains all the vertices S but not v_{1}. Thus $d_{H}(S)<p(H)-1$, a contradiction. Therefore $w_{1,1}$ and $w_{2,1}$ both have degree 2 in H. Thus $v_{1}=v_{2}$. However, then necessarily $v_{1}\left(=v_{2}\right)$ must belong to T_{1}, so that $d_{H}(S)=d_{H}\left(S-\left\{x_{1}\right\}\right)+\ell_{1}$, which we have already shown cannot happen.

Observe that, for $k \geq 3$, the $(k+2)$-cycle C_{k+2}, is $(k+2)-,(k+1)-$ and k - Steiner distance hereditary but not $(k-1)$-Steiner distance hereditary. Thus the converse of Theorem 3.2.1 does not hold.

Several characterizations of distance hereditary graphs which yield polynomial algorithms that test whether a graph is distance hereditary have been established. In order to state some of these characterizations we define an isolated vertex to be a vertex having degree 0 , and two vertices v and v^{\prime} are twins if they have the same neighbourhood or the same closed neighbourhood.

The following characterization of distance hereditary graphs was discovered independently by Bandelt and Mulder [BM1], D'Atri and Moscarini [DM1] and Hammer and Maffray [HM1].

Theorem G A graph G is distance hereditary if and only if every induced subgraph of G contains an isolated vertex, an end-vertex or a pair of twins.

The result we establish next is another characterization of 2-Steiner distance hereditary graphs and also suggests an efficient algorithm for determining whether a connected graph is 2-Steiner distance hereditary. This result is also a direct consequence of a characterization of distance hereditary graphs obtained independently by Bandelt and Mulder [BM1] and D'Atri and Moscarini [DM1]. We will need the following terminology. Suppose G is a connected graph and $u \in V(G)$. Let $V_{u, i}=\left\{x \in V(G) \mid d_{G}(u, x)=i\right\}$ for $0 \leq i \leq e_{G}(u)$ where $e_{G}(u)$ is the eccentricity of u in G and let $N_{i-1}(u, v)=N(v) \cap V_{u, i-1}$ for $1 \leq i \leq e_{G}(u)$.

Theorem 3.2.2

A connected graph G contains an induced path that is not a geodesic, if and only if there exists a vertex u and an integer $i \geq 2$ such that for some pair x, y of vertices in $V_{u, i}$,
(1) $x y \in E(G)$ and $N_{i-1}(u, x) \neq N_{i-1}(u, y)$ or
(2) $x y \notin E(G), \quad N_{i-1}(u, v) \neq N_{i-1}(u, y)$ and x and y are both adjacent with some vertex z in $V_{u, i+1}$.

Proof Suppose there is some vertex u and an integer $i \geq 2$ such that for some pair $x, y \in V_{u, i}, 3.2 .2 .1$ or 3.2.2.2 holds. Suppose first 3.2.2.1 holds. Since $N_{i-1}(u, x) \neq N_{i-1}(u, y)$, so $N_{i-1}(u, x)-N_{i-1}(u, y) \neq \emptyset$ or $N_{i-1}(u, y)-N_{i-1}(u, x) \neq \emptyset$. Suppose that the former holds. Let $x_{1} \in$ $N_{i-1}(u, x)-N_{i-1}(u, y)$. Let P_{1} be a shortest $u-x$ path that passes through x_{1} and let P_{2} be a shortest $u-y$ path. Let a be the last vertex that P_{1} and P_{2} have in common (possibly $a=u$). Then the vertices on the $a-x$ subpath of P_{1} together with y induce an $a-y$ path P that is longer than the $a-y$ subpath of P_{2}. Hence G contains an induced path that is not a geodesic.

Suppose now that 3.2.2.2 holds. We may again assume that there exists a vertex $x_{1} \in N_{i-1}(u, x)-N_{i-1}(u, y)$. Clearly $x_{1} y \notin E(G)$ and $x_{1} z \notin E(G)$.

As above, let P_{1} be a shortest $u-x$ path that contains x_{1} and P_{2} a shortest $u-y$ path, and a the last vertex that P_{1} and P_{2} have in common. The vertices on the $a-x$ subpath of P_{1} together with z and y induce a path that has length two bigger than the $a-y$ subpath of P_{2} (which is a geodesic).

Hence G contains an induced subpath that is not a geodesic.
For the converse suppose G contains an induced path P (say a $u-v$ path) which is not a geodesic. Then $d_{G}(u, v)>1$. Among the induced paths that are not geodesics let P be one that is as short as possible. We show that P has length at most $d_{G}(u, v)+2$. Suppose $|E(P)|>d_{G}(u, v)+2$. Let $P: u=u_{1}, u_{2}, \ldots, u_{n}=v$. Then $d_{G}\left(u, u_{n-1}\right) \leq d_{G}(u, v)+1$ and $P^{\prime}: u_{1}, u_{2}, \ldots, u_{n-1}$ is a path of length at least $|E(P)|-1 \geq d_{G}(u, v)+2>$ $d_{G}\left(u, u_{n-1}\right)$. However, then P^{\prime} is an induced path that is not a geodesic but has length less than P. This contradicts our choice of P. Hence P has length $d_{G}(u, v)+1$ or $d_{G}(u, v)+2$. Note that the $u-u_{n-1}$ subpath of P must be a geodesic, otherwise we have a contradiction to our choice of P.

Thus if $|E(P)|=d_{G}(u, v)+1$, then $d_{G}\left(u, u_{n-1}\right)=d_{G}(u, v)$. Since the vertex that precedes u_{n-1} on P is not adjacent with $v, N_{i-1}\left(u, u_{n-1}\right) \neq$ $N_{i-1}(u, v)$ where $i=d_{G}(u, v)$. If we let $x=u_{n-1}$ and $y=v$, then it follows that 3.2.2.1 holds.

Suppose now that $|E(P)|=d_{G}(u, v)+2$. Then $d_{G}\left(u, u_{n-1}\right)=d_{G}\left(u, u_{n-1}\right)+$ 1. Let x be u_{n-2} and let $y=v$. Then $x y \notin E(G)$ and the vertex that precedes x on P is not adjacent with y. Thus if $i=d_{G}(u, v)$, then $N_{i-1}(u, x) \neq N_{i-1}(u, y)$. If we now let $z=u_{n-1}$, then $z \in V_{u, i+1}$ and z is adjacent with both x and y. Thus 3.2.2.2 holds.

This result suggests a polynomial algorithm, using a breadth first search technique which has complexity $O\left(|V(G)|^{4}\right)$, for determining whether a (connected) graph is 2-Steiner distance hereditary. Spinrad [S1] has developed an algorithm based on this characterization which has complexity $0\left(|V(G)|^{2}\right)$. Once this is done and the graph has been found to be 2-Steiner
distance hereditary, we can efficiently determine, by Theorem 3.2.1, the Steiner distance of any set of vertices, which was also shown independently in [DM1].

We conjecture here that whenever G is k-Steiner distance hereditary, then G is $(k+1)$-Steiner distance hereditary for $k \geq 3$.

3.3 The Characterization of 3-Steiner Distance Hereditary Graphs

Before proving this characterization we establish some useful properties about the cycle structure of k-Steiner distance hereditary graphs.

Proposition 3.3.1 If G is k-Steiner distance hereditary, then no cycle C of length $\ell \geq k+3$ has two adjacent vertices neither of which is incident with a diagonal of C.

Proof Suppose $C: v_{1}, v_{2}, \ldots, v_{\ell}, v_{1}$ is a cycle of length $\ell \geq k+3$ that has two adjacent vertices neither of which is incident with a diagonal of C. We may assume v_{1} and v_{2} are not incident with diagonals of C. Let $S=\left\{v_{2}, v_{4}, v_{5}, \ldots, v_{k+2}\right\}$. Then $d_{G}(S)=k$ since $\langle S\rangle_{G}$ is not connected and since $\left\langle S \cup\left\{v_{3}\right\}\right\rangle_{G}$ is connected. Let $H=\left\langle V(C)-\left\{v_{3}\right\}\right\rangle_{G}$. Then H contains S and $d_{H}(S)>k$ since a Steiner tree for S in H must contain v_{1} and v_{ℓ}, neither of which belongs to S. Thus $d_{H}(S)>d_{G}(S)$, contrary to hypothesis that G is k-Steiner distance hereditary.

Proposition 3.3.2 If G is k-Steiner distance hereditary, then every cycle $C: v_{1}, v_{2}, \ldots, v_{\ell}, v_{1}$ of length $\ell \geq k+3$ has at least two diagonals not all of which are incident with a single vertex.

Proof Suppose G has a cycle as described in the statement of the proposition and assume, to the contrary, that all the diagonals of C are incident with the same vertex, say v_{1}. Let $S=\left\{v_{2}, \ldots, v_{k}, v_{\ell}\right\}$. Then $\langle S\rangle_{G}$ is not connected. Thus $d_{G}(S) \geq k$. However, since $\left\langle S \cup\left\{v_{1}\right\}\right\rangle$ is connected, $d_{G}(S) \leq k$. Therefore $d_{G}(S)=k$. If $H=\left\langle V(C)-\left\{v_{1}\right\}\right\rangle$, then it follows since every diagonal of C is incident with v_{1} and since $\ell \geq k+3$ that $d_{H}(S) \geq k+1$. This contradicts the fact that G is k-Steiner distance hereditary.

Proposition 3.3.3 If G is k-Steiner distance hereditary, then every cycle $C: v_{1}, v_{2}, \ldots, v_{\ell}, v_{1}$ of length $\ell \geq k+3$ has at least two skew diagonals, or if $\ell=k+3$ and k is odd, then $v_{1}, v_{3}, \ldots, v_{k+2}, v_{1}$ or $v_{2}, v_{4}, \ldots, v_{k+3}, v_{2}$ is a cycle.

Proof Suppose first that $\ell=k+3$ and that C does not have skew diagonals. Then there exists a vertex of C not incident with a diagonal. We show that if v_{i} is incident with a diagonal, then $v_{i} v_{i+2}$ is a diagonal where subscripts are expressed modulo $(k+3)$. Suppose that this is not the case. Then there exists a v_{i} which is incident with a diagonal $v_{i} v_{i+n}(n \geq 3)$ but $v_{i} v_{i+j}$ is not a diagonal for $2 \leq j \leq n$. Let $S=V(C)-\left\{v_{i}, v_{i+1}, v_{i+n}\right\}$.Then $d_{G}(S)=k$. Let $H=\left\langle V(C)-\left\{v_{i+n}\right\}\right\rangle$. Then every connected subgraph of H that contains S must contain v_{i} and v_{i+1}. So $d_{H}(S)=k+1>d_{G}(S)$, contrary to the fact that G is k-Steiner distance hereditary. Since C has no skew diagonals, it follows that k is odd and that either $v_{1}, v_{3}, \ldots, v_{k+2}, v_{1}$ or $v_{2}, v_{4}, \ldots, v_{k+3}, v_{2}$ is a cycle.

Suppose now that $\ell \geq k+4$ and that C does not have skew diagonals. We show again if v_{i} is incident with a diagonal of C, then $v_{i} v_{i+2}$ is a diagonal. Suppose that this is not the case. Then there is a v_{i} such that $v_{i} v_{i+n}$ is a diagonal where $n \geq 3$ and $v_{i} v_{i+j}$ is not a diagonal for
$2 \leq j<n$. If $n-1 \geq k$, let $S=\left\{v_{i+n+1}, v_{i+n-1}, v_{i+n+2}, \ldots, v_{i+n-(k-1)}\right\}$. Otherwise let $S=\left\{v_{i+2}, v_{i+3}, \ldots, v_{i+n-1}\right\} \cup\left\{v_{i+n+1}, v_{i+n+2}, \ldots v_{i+k+2}\right\}$. Then $d_{G}(S)=k$, since $\langle S\rangle$ is disconnected, but $\left\langle S \cup\left\{v_{i+n}\right\}\right\rangle$ is connected. Let $H=\left\langle V(C)-\left\{v_{i+n}\right\}\right\rangle$. Then v_{i} and v_{i+1} must both belong to a Steiner tree for S in H. So $d_{H}(S) \geq k+1$ contrary to the fact that G is k Steiner distance hereditary. Thus if v_{i} is incident with a diagonal, then $v_{i} v_{i+2}$ is a diagonal (subscripts expressed modulo ℓ). By Proposition 3.3.2, C has diagonals. Thus ℓ must be even and either $v_{1}, v_{3}, v_{5}, \ldots, v_{\ell-1}, v_{1}$ or $v_{2}, v_{4}, \ldots, v_{\ell}, v_{2}$ is a cycle, suppose the former. Let $S=\left\{v_{2}, v_{4}, v_{5}, \ldots, v_{k+2}\right\}$. Then $\langle S\rangle_{G}$ is disconnected but $\left\langle S \cup\left\{v_{3}\right\}\right\rangle_{G}$ is connected. Hence $d_{G}(S)=k$.

Let $H=\left\langle V(C)-\left\{v_{3}\right\}\right\rangle_{G}$. Since G is k - Steiner distance hereditary, $d_{H}(S)=k=d_{G}(S)$. Thus $v_{k+2} v_{1}$ is an edge. Now let $S^{\prime}=$ $\left\{v_{\ell}, v_{2}, v_{3}, \ldots, v_{k}\right\}$. Then it is not difficult to see that $d_{G}\left(S^{\prime}\right)=k$. Let $F=\left\langle V(C)-\left\{v_{1}\right\}\right\rangle_{G}$. Since G is k-Steiner distance hereditary, $d_{F}\left(S^{\prime}\right)=k$. So $v_{k} v_{\ell-1}$ must be an edge of G. Thus C has two skew diagonals.

We have already mentioned that, if G is 2 - Steiner distance hereditary, then G is 3 -Steiner distance hereditary, but that the converse of this statement does not hold. The next result shows that if a graph is 3-Steiner distance hereditary but not 2-Steiner distance hereditary, then G has short cycles without skew diagonals.

Proposition 3.3.4 If G is 3-Steiner distance hereditary, but not 2-Steiner distance hereditary, then there exists a 5-cycle in G which does not possess two skew diagonals.

Proof Let G be 3-Steiner distance hereditary, but not 2-Steiner distance hereditary. Then, by Theorem F, G contains a cycle C_{ℓ} of length $\ell \geq 5$ which does not have two skew diagonals. Let $C_{\ell}=v_{1}, v_{2}, \ldots, v_{\ell}, v_{1}$. If $\ell \geq 6$,
then certainly C_{ℓ} contains at least one diagonal, otherwise $C_{\ell}-v_{1}$ is an induced path and $d_{C_{\ell}-v_{1}}\left(\left\{v_{2}, v_{3}, v_{\ell}\right\}\right)>d_{G}\left(\left\{v_{2}, v_{3}, v_{\ell}\right\}\right)$, contradicting the assumption that G is 3 -Steiner distance hereditary. Furthermore, if $\ell \geq 6$ and all the diagonals of C_{ℓ} are incident with a single vertex v_{1} (say), then $C_{\ell}-v_{1}$ is an induced path and once again a contradiction arises to the fact that G is 3 -Steiner distance hereditary. Hence $\ell=5$ or C_{ℓ} contains two diagonals which are independent, but not skew. Suppose the statement of the proposition is false and let $C_{\ell} \quad(\ell \geq 5)$ be a shortest cycle of length $\ell \geq 5$ in G which does not have two skew diagonals. Certainly $\ell \geq 6$ and C_{ℓ} has two nonadjacent diagonals, say $v_{1} v_{i}$ and $v_{j} v_{k}$, where $3 \leq i<j$ and $j+2 \leq k \leq \ell$. Then $C_{m}: v_{1}, v_{i}, v_{i+1}, \ldots, v_{j}, \ldots, v_{k}, \ldots, v_{\ell}, v_{1}$ is a cycle of length $m \geq 5$ (where $m=\ell+2-i$) without two skew diagonals. We note $m \neq 5$ (by assumption), but $m<\ell$, which contradicts our choice of ℓ. The validity of the proposition now follows.

We are now in a position to characterize the graphs that are 3-Steiner distance hereditary.

Theorem 3.3.1 A graph G is 3 -Steiner distance hereditary if and only if it is 2-Steiner distance hereditary or the following conditions hold.
3.3.1.1 Every cycle $C: v_{1}, v_{2}, \ldots, v_{\ell}, v_{1}$ of length $\ell \geq 6$
(a) has at least two skew diagonals, or, if $\ell=6$, then $v_{1}, v_{3}, v_{5}, v_{1}$ or $v_{2}, v_{4}, v_{6}, v_{2}$ is a cycle in $\langle V(C)\rangle$; and
(b) has no two adjacent vertices neither of which is on a diagonal of C.
3.3.1.2 G does not contain an induced subgraph isomorphic to any of the graphs shown in Figure 3.3.1 (any subset of dotted edges may be included in the graph).
Proof Suppose first that G is 3 -Steiner distance hereditary but not 2 Steiner distance hereditary. Then conditions 3.3.1.1(a) and (b) follow from

Figure 3.3.1

Propositions 3.3.1 and 3.3.3. Suppose now that G contains one of the subgraphs shown in Figure 3.3.1 as induced subgraphs. Let $S=\left\{u^{\prime}, v^{\prime}, w^{\prime}\right\}$. Since $\langle S\rangle$ is not connected, $d_{G}(S) \geq 3$. Since $\left\langle\left\{u^{\prime}, v^{\prime}, x, w^{\prime}\right\}\right\rangle$ is a connected graph in all cases, $d_{G}(S)=3$. If we now delete x from any one of the subgraphs shown in Figure 3.3.1 we obtain a connected induced subgraph of G that contains S; but the distance of S in each of these induced subgraphs is $4>d_{G}(S)$. This contradicts the fact that G is 3 -Steiner distance hereditary. Thus G does not contain any of the graphs shown in Figure 3.3.1 as induced subgraphs.

For the converse, we already know from Theorem 3.3.1, that if G is 2-Steiner distance hereditary, then G is 3 -Steiner distance hereditary. Suppose thus that G is not 2-Steiner distance hereditary and that G satisfies conditions 3.3.1.1 and 3.3.1.2 of the theorem. Suppose G is not 3 -Steiner distance hereditary. Then G contains an induced subgraph H and a set $S=\{u, v, w\}$ such that $d_{H}(S)>d_{G}(S)$. Choose H in such a way that $|V(H)|$ is as small as possible. Let T_{S} and T_{S}^{\prime} be Steiner trees for $S=$ $\{u, v, w\}$ in H and G, respectively. By our choice of $H,|V(H)|=\left|V\left(T_{S}\right)\right|$. Moreover $\langle S\rangle$ is not connected.

We now consider several cases.

Case 1 Suppose T_{S} and T_{S}^{\prime} are both paths, but that they do not have the same end-vertices; say T_{S} is a $v-w$ path and T_{S}^{\prime} a $u-w$ path and that no Steiner tree for S in G is a $v-w$ path. Let P and P^{\prime} be the $u-v$ sections in T_{S} and T_{S}^{\prime}, respectively. If the lengths of P and P^{\prime} are the same we may assume $P=P^{\prime}$. Let the length of P^{\prime} be a^{\prime} and of P be a. Note that u cannot be adjacent with w; otherwise there would be a Steiner tree in G that is a $v-w$ path. So the vertex x adjacent with u on the $u-w$ section of T_{S} is distinct from w. Thus if $a>a^{\prime}$, then $d_{H-w}(\{x, u, v\})>d_{G}(\{x, u, v\})$ and so we have a contradiction to our choice of H. Thus $a \leq a^{\prime}$. Clearly
$a^{\prime} \leq a$. Thus $a=a^{\prime}$. By our choice of $H, a=a^{\prime}=1$.
Let $u=x_{0}, x_{1}, \ldots, x_{m}==w$ be the $u-w$ section of T_{S} and $v=y_{0}, y_{1}, \ldots, y_{n}$ $=w$ the $v-w$ section in T_{S}^{\prime}. Then $n \geq 2$ and $m \geq 3$. Observe that the $u-w$ section of T_{S} and the $v-w$ section of T_{S}^{\prime} have no vertex except w in common; otherwise we have a contradiction to our choice of H. Hence, the $u-w$ section of T_{S} and the $v-w$ section of T_{S}^{\prime} and the edge $u v$ form a cycle C of length at least 6 .

If $n=2$ and $m=3$, so that C has length 6 , then neither x_{1}, w, v, x_{1} nor x_{2}, y_{1}, u, x_{2} is a cycle since $x_{1} w$ and $u x_{2}$ are not edges of G. Thus C must have two skew diagonals whether or not C has length 6 , i.e., $x_{i} y_{k}$ and $x_{j} y_{\ell}$ are edges where $1 \leq i<j<m$ and $1 \leq \ell<k<n$. By our choice of $H, d_{G}\left(\left\{x_{j}, u, v\right\}\right)=d_{H}\left(\left\{x_{j}, u, v\right\}\right)$; hence $1+j=d_{H}\left(\left\{x_{j}, u, v\right\}\right)=$ $d_{G}\left(\left\{x_{j}, u, v\right\}\right) \leq \ell+2$. So

$$
j \leq \ell+1 \leq k .
$$

But $n+1=d_{G}(u, v, w) \leq 1+i+1+(n-k)$. So

$$
k \leq 1+i \leq j
$$

From 3.3.1.3 and 3.3.1.4 it follows that $k=j=1+i=\ell+1$. Now $d_{H}\left(\left\{u, x_{i}, w\right\}\right)=m$, whereas $d_{G}\left(\left\{u, x_{i}, w\right\}\right) \leq i+1+n-k=n<m$; so $d_{H-v}\left(\left\{u, x_{i}, w\right\}\right)>d_{G}\left(\left\{u, x_{i}, w\right\}\right)$, contradicting our choice of H. Hence Case 1 cannot occur.

Case 2 Suppose T_{S} and T_{S}^{\prime} are both paths with the same end-vertices, say they are both $u-w$ paths. Then either $u v$ or $v w$ is an edge, otherwise we have a contradiction to our choice of H. Suppose $u v \in E(G)$. Observe then that the $v-w$ sections of T_{S} and T_{S}^{\prime} are internally disjoint otherwise we have a contradiction to our choice of H. So the $v-w$ sections of T_{S} and T_{S}^{\prime} form a cycle C. Suppose $T_{S}: u, v=v_{0}, v_{1}, \ldots, v_{m}=w$ and $T_{S}^{\prime}: u, v=w_{0}, w_{1}, \ldots, w_{n}=w$. Then $n<m$. If C has length 6 , then $m=4$ and $n=2$. Clearly neither $v_{1}, v_{3}, w_{1}, v_{1}$ nor v, v_{2}, w, v is a cycle.

Thus if C has length at least 6 , then C has a pair of skew diagonals. As in Case 1 we obtain a contradiction. Thus we may assume C has length 5. Note $d_{H}(\{u, v, w\})=4$ and $d_{G}(\{u, v, w\})=3$. So $C: v, w_{1}, w, v_{2}, v_{1}, v$. Since v is not adjacent with any vertices of C except v_{1} and w_{1} and since the graphs of Figure 3.3.1(a) are not induced subgraphs of G, it follows that u must be adjacent with at least one vertex in $\left\{w_{1}, v_{1}, v_{2}\right\}$. (Note that $u w \notin E(G)$, since otherwise $d_{H}(\{u, v, w\})=2=d_{G}(\{u, v, w\})$.) If $u v_{2} \in E(G)$, then $d_{H}(\{u, v, w\})=3<4$. So $u w_{1}$ or $u v_{1}$ is an edge of G. If $u w_{1} \notin E(G)$, the 6 -cycle $u, v, w_{1}, w, v_{2}, v_{1}$ cannot have two skew diagonals since $v v_{1}, w_{1} v_{1}$ and $w_{1} v_{2}$ are the only possible diagonals. If $u v_{1} \notin E(G)$, the 6- cycle $u, v, v_{1}, v_{2}, w, w_{1}, u$ also does not have two skew diagonals. So both $u v_{1}$ and $u w_{1} \in E(G)$. Further, $w_{1} v_{2} \in E(G)$; otherwise w and v_{2} are two consecutive vertices on the 6 -cycle w, v_{2}, v_{1}, u, v, w, that are not incident with any diagonal. However, then $\left\langle V\left(T_{S}\right) \cup V\left(T_{S}^{\prime}\right)\right\rangle$ is isomorphic to one of the graphs in Figure 3.3.1(d) which is impossible. Thus Case 2 cannot occur either.

Case 3 Suppose both T_{S} and T_{S}^{\prime} have three end-vertices. Let y and z be the vertices of degree 3 in T_{S} and T_{S}^{\prime}, respectively.

We show first that $V\left(T_{S}\right) \cap V\left(T_{S}^{\prime}\right)=\{u, v, w\}$. Suppose there exists $x \in V\left(T_{S}\right) \cap V\left(T_{S}^{\prime}\right)-\{u, v, w\}$. Without loss of generality we may assume that x is on the $v-y$ path in T_{S}. If x also belongs to the $v-z$ path of T_{S}^{\prime}, then we obtain a contradiction to our choice of H. So we may assume that x belongs to the $w-z$ or $u-z$, path of T_{S}^{\prime}, say the former. Also $x \neq y$ otherwise we again have a contradiction to our choice of H.

Let $d_{T_{s}^{\prime}}(u, z)=\ell_{1}, d_{T_{s}^{\prime}}(z, v)=\ell_{2}, d_{T_{s}^{\prime}}(z, x)=\ell_{3}, d_{T_{s}^{\prime}}(x, w)=\ell_{4}, d_{T_{s}}(u, y)$ $=d_{1}, d_{T_{S}}(y, x)=d_{2}, d_{T_{S}}(x, v)=d_{3}$ and $d_{T_{s}}(y, w)=d_{4}$. By our choice of $H, d_{H}(\{u, x, v\})=d_{G}(\{u, x, v\})$. So $\ell_{1}+\ell_{2}+\ell_{3}=d_{1}+d_{2}+d_{3}$ or $d_{1}+d_{2}+d_{3}-1$.

Suppose first that $\ell_{1}+\ell_{2}+\ell_{3}=d_{1}+d_{2}+d_{3}$. Since $d_{G}(S)<d_{H}(S)$
it follows that $\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}<d_{1}+d_{2}+d_{3}+d_{4}$. Thus $\ell_{4}<d_{4}$. But $d_{H}(\{v, w, y\})=d_{G}(\{v, w, y\})$. So $d_{2}+d_{3}+d_{4} \leq d_{2}+d_{3}+\ell_{4}$, i.e. $d_{4} \leq \ell_{4}$. This produces a contradiction. Hence we may assume that $\ell_{1}+\ell_{2}+\ell_{3}=$ $d_{1}+d_{2}+d_{3}-1$. Since $d_{G}(S)<d_{H}(S)$, it follows that $\ell_{4} \leq d_{4}$. As above it follows that $d_{4} \leq \ell_{4}$. So $\ell_{4}=d_{4}$. Let u_{1}, v_{1} and w_{1} be the neighbours of y in T_{S} that lie on the $y-u, y-v$ and $y-w$ paths, respectively. Since $d_{H}(\{u, x, v\})=d_{1}+d_{2}+d_{3}-1$, it follows that $u_{1} v_{1} \in E(G)$. So $v_{1} w_{1} \notin E(G)$. Hence $d_{H}(x, w)=d_{2}+d_{4}$. Since $x \neq y, d_{2} \geq 1$. Hence $d_{H}(x, w)>d_{4}=\ell_{4} \geq d_{G}(x, w)$. So if x^{\prime} is the neighbour of x on the $x-z$ path in T_{S}^{\prime}, and if H^{\prime} is the subgraph induced by x^{\prime} and the vertices on the $x-w$ path in H, then $d_{H^{\prime}}\left(\left\{x^{\prime}, x, w\right\}\right)>\ell_{4}+1 \geq d_{G}\left(\left\{x^{\prime}, x, w\right\}\right)$. But $p\left(H^{\prime}\right)<p(H)$, so we have a contradiction to our choice of H. Thus we may conclude that

$$
V\left(T_{S}\right) \cap V\left(T_{S}^{\prime}\right)=\{u, v, w\}
$$

Note that $d_{H}(S) \leq d_{G}(S)+2$, otherwise let $a \neq y$ be a vertex on one of the paths from y to $\{u, v, w\}$ in T_{S}, say on the $y-u$ path such that $u a \in E(G)$, and observe that $d_{G}(\{v, w, a\}) \leq d_{G}(\{v, w, u\})+1<$ $d_{H}(\{v, w, u\})-1=d_{H \sim\{u\}}(\{v, w, a\})$, contrary to our choice of H. Let P_{u}, P_{v} and P_{w} be the $y-u, y-v$ and $y-w$ paths in T_{S}, respectively and suppose Q_{u}, Q_{v} and Q_{w} are the $z-u, z-v$ and $z-w$ paths in T_{S}^{\prime}, respectively. We say that P_{u} corresponds to Q_{u}, P_{v} to Q_{u} and P_{w} to Q_{w} in T_{S}^{\prime}. Then, by the above observation, at most two of the paths P_{u}, P_{v} and P_{w} are longer than their corresponding paths in T_{S}^{\prime}. We consider several subcases.

Subcase 3.1 Suppose exactly two of the paths in $\left\{P_{u}, P_{v}, P_{w}\right\}$ are longer than their corresponding paths in T_{S}^{\prime}. Suppose P_{v} and P_{w} are two such paths. Let $C_{v w}$ be the cycle produced by P_{v}, P_{w}, Q_{v} and Q_{w}.

Assume first that the neighbours of y on the P_{v} and P_{w} paths in T_{S} are not adjacent. By our assumption, no vertex of P_{u} is joined to a vertex
of P_{w}. Since G satisfies condition 3.3.1.1(b) of the theorem, it follows, if we consider $C_{v w}$, that some vertex $y^{\prime} \neq v, w$ on the $v-w$ path of T_{S} is joined to some vertex $y^{\prime \prime} \neq v, w$ on the $v-w$ path of T_{S}^{\prime}. But then $d_{H-\{u\}}\left(\left\{y^{\prime}, v, w\right\}\right)>d_{G}\left(\left\{y^{\prime}, v, w\right\}\right)$. This contradicts our choice of H.

Assume thus that the neighbours of y on P_{v} and P_{w} are adjacent. If y is adjacent with any vertex on the $v-w$ path in T_{S}^{\prime} (different from v and w), then $d_{H-\{u\}}(\{v, w, y\})>d_{G}(\{v, w, y\})$, again a contradiction to our choice of H. Note that $q\left(P_{v}\right)=q\left(Q_{v}\right)+1$ and $q\left(P_{w}\right)=q\left(Q_{w}\right)+1$ otherwise we again have a contradiction to our choice of H.

If Q_{v} or Q_{w} has length at least 2 , say Q_{w}, then P_{w} has length at least 3.

Let v^{\prime} and w^{\prime} be the vertices adjacent with y on P_{v} and P_{w}, respectively. Let $C_{v w}^{\prime}$ be the cycle obtained from $C_{v w}$ by deleting y and adding the edge $v^{\prime} w^{\prime}$. Since Q_{w} has length at least $2, C_{v w}^{\prime}$ has length at least 7 . We show next that $C_{v w}^{\prime}$ does not have a pair of skew diagonals, thereby producing a contradiction to condition 3.3.1.1(a).

Observe first that every diagonal of $C_{v w}^{\prime}$ must join a vertex of $V\left(P_{v}\right) \cup$ $V\left(P_{w}\right)-\{y\}$ with a vertex in $V\left(Q_{v}\right) \cup V\left(Q_{w}\right)$. Let x be a vertex of $P_{w}-$ $\{y\}$ that is incident with a diagonal $e=x x^{\prime}$. Let $d_{H}(x, w)=d$. Then $d_{T_{s}^{\prime}}\left(w, x^{\prime}\right) \leq d ;$ otherwise

$$
\begin{aligned}
d_{G}(\{v, w, x\}) & \leq q\left(Q_{v}\right)+q\left(Q_{w}\right) \\
& <q\left(P_{v}\right)+q\left(P_{w}\right)-1 \\
& =d_{H-\{u\}}(v, w, x)
\end{aligned}
$$

which contradicts our choice of H. Similarly if x is a vertex of $P_{v}-\{y\}$ that is incident with a diagonal $e=x x^{\prime}$, then $d_{H}(v, x) \geq d_{T_{s}^{\prime}}\left(v, x^{\prime}\right)$. So the only diagonals of $C_{v w}^{\prime}$ join vertices of $P_{w}-\{y\}$ and Q_{w} or vertices of $P_{v}-\{y\}$ and Q_{v}.

Suppose $a a^{\prime}$ and $b b^{\prime}$ are skew diagonals with $a, b \in V\left(P_{w}-\{y\}\right)$ and $a^{\prime}, b^{\prime} \in V\left(Q_{w}\right)$. Suppose $d_{H}(a, w)>d_{H}(b, w)$. Then necessarily $d=$ $d_{T_{s}^{\prime}}\left(b^{\prime}, w\right)>d_{T_{s}^{\prime}}\left(a^{\prime}, w\right)$. From the earlier observation it follows that $d_{H}(a, w)>$
$d_{H}(b, w) \geq d$; i.e., $d_{H}(a, w) \geq d+1$. If we now take the shortest $v-a$ path in H, together with the edge $a a^{\prime}$ and the $a^{\prime}-w$ path in T_{S}^{\prime} we obtain a tree of size at most $d_{H}(v, a)+d$ that contains v, w and a. So $d_{G}(\{v, w, a\})<d_{H}(v, a)+d$. This contradicts our choice of H. So $C_{v w}^{\prime}$ cannot have two skew diagonals each of which is incident with a vertex of $P_{w}-\{y\}$. Similarly $C_{v w}^{\prime}$ cannot have two skew diagonals each of which is incident with a vertex of $P_{v}-\{y\}$.

Thus Q_{v} and Q_{w} each have length 1 , so that P_{v} and P_{w} each have length 2. Hence $C_{v w}$ has length 6 . We already know that $v^{\prime} w^{\prime}$ is an edge of G where v^{\prime} and w^{\prime} are the neighbours of y on P_{v} and P_{w}, respectively. Note that $v w \notin E(G)$. Also $w v^{\prime} \notin E(G)$ and $v w^{\prime} \notin E(G)$, otherwise $d_{H}(\{u, v, w\})<p(H)-1$. So $C_{v w}$ does not have crossing diagonals. Thus $v^{\prime}, z, w^{\prime}, v^{\prime}$ must be a cycle. Let u^{\prime} be the neighbour of y on P_{u}. Note that u^{\prime} is not adjacent with $v^{\prime}, w^{\prime}, v$ or w, otherwise we obtain a contradiction to our choice of H. If $u^{\prime} z \not \not E E(G)$, then $\left\langle\left\{u^{\prime}, y, v^{\prime}, w^{\prime}, v, z\right\}\right\rangle_{G}$ is isomorphic to one of the graphs shown in Figure 3.3.1a. Since this is not possible, $u^{\prime} z \in E(G)$. However, then $\left\langle\left\{u^{\prime}, y, w^{\prime}, w, v^{\prime}, z\right\}\right\rangle_{G}$ is isomorphic to one of the graphs of Figure 3.3.1(e), which is again impossible.

Subcase 3.2 So exactly one of P_{u}, P_{v} and P_{w} has length greater than their corresponding paths. Suppose P_{w} is longer than Q_{w}.

Subcase 3.2.1 Suppose $q\left(P_{w}\right)=q\left(Q_{w}\right)+1$. Then necessarily $q\left(Q_{v}\right)=$ $q\left(P_{v}\right)$ and $q\left(Q_{u}\right)=q\left(P_{u}\right)$. Let $C_{u v}$ be the cycle induced by the edges of P_{u}, P_{v}, Q_{u} and Q_{v}. Then $C_{u v}$ has even length. Suppose first that $C_{u v}$ has length exceeding 6. Then, by condition 3.3.1.1(a) of the theorem, $C_{u v}$ has a pair of skew diagonals. We show next that the only possible such skew diagonals are $y z$ and $u^{\prime} v^{\prime}$ (where u^{\prime} and v^{\prime} are adjacent with y on P_{u} and P_{v}, respectively) or $y z$ and $u^{\prime \prime} v^{\prime \prime}$ (where $u^{\prime \prime}$ and $v^{\prime \prime}$ are adjacent with z on Q_{u} and Q_{v}, respectively).

Suppose that P_{v} (and hence Q_{v}) has an internal vertex and that some vertex a of P_{v} is adjacent with some vertex a^{\prime} of Q_{v}. Then $d_{P_{v}}(v, a)=$ $d_{Q_{v}}\left(v, a^{\prime}\right)$ as we now see.

If $d_{P_{v}}(v, a)<d_{Q_{v}}\left(v, a^{\prime}\right)$, then the edges of Q_{u} together with those of Q_{w}, the edge $a a^{\prime}$, the edges of the $a-v$ path of P_{v} and those of the $z-a^{\prime}$ path of Q_{v} induce a tree T of size at most $q\left(T_{S}^{\prime}\right)$ that contains u, v and w. Thus T is a Steiner tree for u, v and w. This is impossible since T contains vertices of H other than u, v and w which we have shown is impossible.

Suppose now that $d_{P_{v}}(v, a)>d_{Q_{v}}\left(v, a^{\prime}\right)$. Let T be the tree induced by the edges of P_{u}, P_{w}, the edge $a a^{\prime}$, the edges of the $a-y$ path of P_{v} and those of the $a^{\prime}-v$ path of Q_{v}. If T is a Steiner tree for u, v and w, then T and T_{S} have more vertices in common than only u, v and w. But this is not possible as we have shown.

Thus $q(T)=q\left(T_{S}\right)$. If $H^{\prime}=\langle V(T)\rangle$ contains a Steiner tree for $\{u, v, w\}$, then we again have a contradiction since such a Steiner tree has vertices other than u, v and w in common with T_{S}. So $d_{H^{\prime}}(\{u, v, w\})=$ $d_{H}(\{u, v, w\})$, i.e., H^{\prime} is an induced subgraph of G of the same order as H for which $d_{H^{\prime}}(\{u, v, w\})>d_{G}(\{u, v, w\})$. Once again a Steiner tree for $\{u, v, w\}$ in H^{\prime} contains vertices of T_{S}^{\prime} other than u, v and w which is impossible.

Therefore if $a a^{\prime}$ is a diagonal of $C_{u v}$ where a lies on P_{v} and a^{\prime} on Q_{v}, then $d_{P_{v}}(v, a)=d_{Q_{v}}\left(v, a^{\prime}\right)$. It can be shown similarly if $a a^{\prime}$ is a diagonal of $C_{u v}$ such that a lies on P_{u} and a^{\prime} on Q_{u}, then $d_{P_{u}}(u, a)=d_{Q_{u}}\left(u, a^{\prime}\right)$.

It remains to show that no internal vertex of $P_{v}\left(P_{u}\right)$ is adjacent with an internal vertex of $Q_{u}\left(Q_{v}\right)$. Suppose $a a^{\prime}$ is an edge of G where a is an internal vertex of P_{v} and a^{\prime} is an internal vertex of Q_{u}. Then let T be the tree induced by the edges of Q_{u}, Q_{w}, the $a-v$ path in P_{v} and the edge $a a^{\prime}$. Then $q(T) \leq q\left(T_{S}^{\prime}\right)$. So T must be a Steiner tree for $\{u, v, w\}$. But T has vertices other than u, v and w in common with T_{S}, which we have shown is impossible. Therefore no internal vertex of P_{v} is adjacent with an
internal vertex of Q_{u}. Similarly no internal vertex of P_{u} is adjacent with an internal vertex of Q_{v}.

Hence the only possible candidates for crossing diagonals are $y z$ and $u^{\prime} v^{\prime}$ or $y z$ and $u^{\prime \prime} v^{\prime \prime}$. If $u^{\prime} v^{\prime}$ is a diagonal, then let $C_{u v}^{\prime}$ be the cycle obtained from $C_{u v}$ by deleting y and adding the edge $u^{\prime} v^{\prime}$. Observe that $C_{u v}^{\prime}$ is a cycle of length at least 7 without skew diagonals, contrary to the hypothesis. If $u^{\prime \prime} v^{\prime \prime}$ is a diagonal of $C_{u v}$, then let $C_{u v}^{\prime \prime}$ be the cycle obtained from $C_{u v}$ by deleting z and adding the edge $u^{\prime \prime} v^{\prime \prime}$. Once again it follows that $C_{u v}^{\prime \prime}$ is a cycle of length at least 7 without skew diagonals, contrary to hypothesis.

Therefore we may assume $C_{u v}$ has length at most 6 . Assume first that $C_{u v}$ has length 6 . We may, without loss of generality, assume that P_{v} and Q_{v} each have length 2. Let $C_{u v}$ be $y, v^{\prime}, v, v^{\prime \prime}, z, u, y$. Then it can be shown in a straightforward manner that $z v, y v, u v$ and $z v^{\prime}$ are not diagonals of $C_{u v}$.

Suppose $u v^{\prime \prime}$ is a diagonal of $C_{u v}$. Then the subgraph H^{\prime} induced by $u, y, v^{\prime \prime}, v$ and the vertices of P_{w} either contains a Steiner tree for u, v and w that has more vertices in common with T_{S} than u, v and w or $d_{H^{\prime}}(\{u, v, w\})=d_{H}(\{u, v, w\})$ and a Steiner tree for u, v and w in H^{\prime} has more vertices in common with T_{S}^{\prime} than only u, v and w, which is again impossible. Hence $u v^{\prime \prime} \notin E(G)$. By condition 3.3.1.1(a) it now follows, since neither y, v, z, y nor $v^{\prime}, v^{\prime \prime}, u, v^{\prime}$ is a cycle, that $C_{u v}$ must contain skew diagonals. However, then $u v^{\prime} \in E(G)$. This is again not possible since $u v^{\prime}, u z, v^{\prime} v$ and the edges of Q_{w} induce a Steiner tree for u, v and w that has more vertices in common with T_{S} than only u, v and w.

Hence $C_{u v}$ must have length exactly 4 . Let w^{\prime} be the vertex adjacent with y on P_{w}. If $v w^{\prime}$ is an edge, then $T_{S}-y v+v w^{\prime}$ is a Steiner tree for $\{u, v, w\}$ in H. Using the argument that was used to show that $C_{u v}$ has length 4 it can be shown that $w w^{\prime}$ and $w z$ are edges of G. The induced subgraph $\left\langle\left\{u, v, w, y, z, w^{\prime}\right\}\right\rangle$ thus has edge set $\left\{u y, u z, y v, v z ; v w^{\prime}, y w^{\prime}, w^{\prime} w, w z\right\} \cup$ E where E is any subset of $\left\{z y, z w^{\prime}\right\}$. However, then G has as induced
subgraph one of the graphs of Figure 3.3.1(c) or (e) which is impossible.
Assume thus that $v w^{\prime} \notin E(G)$. Similarly we may assume that $u w^{\prime} \notin$ $E(G)$. We show next that $z w \in E(G)$. If this is not the case, then the cycle $C_{v w}$ induced by the edges of P_{v}, P_{w}, Q_{v} and Q_{w} has length at least 7. Thus by condition 3.3.1.1(a) $C_{v w}$ must have skew diagonals. Using arguments similar to those used before, we can show that the only diagonals of $C_{v w}$ of the type $a a^{\prime}$ where $a \in V\left(P_{w}-y\right), a^{\prime} \in V\left(Q_{w}\right)$ are those where $d_{P_{w}}(w, a)=d_{Q_{w}}\left(w, a^{\prime}\right)$. It is not difficult to see that the only diagonal with which y may be incident is $y z$. Since w cannot be incident with any diagonals of $C_{v w}$, it now follows that $v w^{\prime \prime} \in E(G)$ where $w^{\prime \prime}$ is adjacent with z on Q_{w}. If C is the cycle obtained from $C_{v w}$ by deleting z and adding the edge $v w^{\prime \prime}$, then C has length at least 6 and contains adjacent vertices namely y and w^{\prime}, neither of which is incident with a diagonal. This contradicts condition 3.3.1.1(b). Hence $w z$ must be an edge of G. Thus the induced subgraph $\left\langle\left\{u, v, y, z, w, w^{\prime}\right\}\right\rangle$ has edge set $\left\{u y, u z, v y, v z, w z, w w^{\prime}, w^{\prime} y\right\} \cup E$ where E is any subset of $\left\{z y, z w^{\prime}\right\}$. But then G contains any one of the subgraphs of Figure 3.3.1(b) as induced subgraph which is not possible. Hence subcase 3.2.1 cannot occur.

Subcase 3.2.2 Suppose $q\left(P_{w}\right) \geq q\left(Q_{w}\right)+2$. We have already shown that $q\left(T_{S}\right)=q\left(T_{S}^{\prime}\right)+k$ where $k=1$ or 2 . Furthermore we are assuming that $q\left(P_{u}\right) \leq q\left(Q_{v}\right)$ and $q\left(P_{v}\right) \leq q\left(Q_{v}\right)$. Suppose $q\left(P_{u}\right)=q\left(Q_{u}\right)-\ell$ where ℓ is a non-zero integer. We show now that $k=1$ and that $\ell \leq 1$. Further if $k=1$ and $\ell=1$, then the neighbours of y on P_{ν} and P_{w} are adjacent and $q\left(P_{v}\right)=q\left(Q_{v}\right)$.

To see this let $w^{\prime \prime}$ be the neighbour of w on P_{w} and note that

$$
\begin{aligned}
& d_{H}\left(\left\{v, w, w^{\prime \prime}\right\}\right) \geq q\left(T_{S}\right)-q\left(P_{u}\right)-1 \\
&=q\left(T_{S}\right)-q\left(Q_{u}\right)+\ell-1 \\
& \text { and } \quad \begin{aligned}
d_{G}\left(\left\{v, w, w^{\prime \prime}\right\}\right) & \leq q\left(T_{S}^{\prime}\right)-q\left(Q_{u}\right)+1 \\
& =q\left(T_{S}\right)-k-q\left(Q_{u}\right)+1 . \\
\text { Hence } \quad d_{G}\left(\left\{v, w, w^{\prime \prime}\right\}\right) & <d_{H}\left(\left\{v, w, w^{\prime \prime}\right\}\right) \text { if } k \geq 2 \text { or if } \ell \geq 2 .
\end{aligned} .=2 .
\end{aligned}
$$

This contradicts our choice of H. Hence $k=1$ and $\ell \leq 1$. So $d_{G}\left(\left\{v, w, w^{\prime \prime}\right\}\right)$ $\leq q\left(T_{S}\right)-q\left(Q_{u}\right)$ and $d_{H}\left\{\left(v, w, w^{\prime \prime}\right\}\right) \geq q\left(T_{S}\right)-q\left(Q_{u}\right)+\ell-1$. However, $d_{H}\left(\left\{v, w, w^{\prime \prime}\right\}\right)=q\left(T_{S}\right)-q\left(P_{u}\right)-1$ only if the neighbours of y on P_{v} and P_{w} are adjacent. Since $d_{G}\left(\left\{v, w, w^{\prime \prime}\right\}\right)=d_{H}\left(\left\{v, w, w^{\prime \prime}\right\}\right)$, otherwise we get a contradiction to our choice of H, it follows if $\ell=1$ that the neighbours of y on P_{v} and P_{w} are adjacent and, since $k=1$, this implies that $q\left(P_{v}\right)=q\left(Q_{v}\right)$. Suppose $\ell=1$. Let v^{\prime} and w^{\prime} be the neighbours of y on P_{v} and P_{w}. Let $T=T_{S}+v^{\prime} w^{\prime}-v^{\prime} y$. Then T is a Steiner tree for $\{u, v, w\}$ in H that was considered in Subcase 3.2.1.

So we may assume $\ell=0$ so that $q\left(P_{u}\right)=q\left(Q_{u}\right)$. We may also assume $q\left(P_{v}\right)=q\left(Q_{v}\right)$, otherwise we may repeat the above arguments with P_{v} instead of P_{u} and arrive at a contradiction. In addition we may assume that w^{\prime}, the neighbour of y on P_{w}, is not adjacent with the neighbour of y on either P_{u} or P_{v}. Otherwise we can easily arrive at a case we have already considered. But this contradicts the fact that $k=1$.

Case 4 Suppose T_{S} has three end-vertices, namely u, v and w and that T_{S}^{\prime} is a path, say a $u-w$ path. Let y be the vertex of degree 3 in T_{S} and P_{u}, P_{v} and P_{w} the $u-y, v-y$ and $w-y$ paths in T_{S}. Observe that u, v and w are pairwise nonadjacent. Therefore the $u-v$ path Q_{u} and the $v-w$ path Q_{w} in T_{S}^{\prime} must both have length at least 2 .

We show first that $V\left(T_{S}\right) \cap V\left(T_{S}^{\prime}\right)=\{u, v, w\}$. Suppose this is not the case. Then we may assume that some internal vertex of Q_{u} also belongs to T_{S}. Let x be the first such vertex on Q_{u} after u that also belongs to T_{S}.

Suppose first that x belongs to P_{u}. Let $d_{P_{u}}(u, x)=d$ and $d_{Q_{u}}(u, x)=\ell$. Note first that $d \nless \ell$; otherwise there exists a tree of size less than that of T_{S}^{\prime} which contains u, v and w, which is impossible. Hence $d \geq \ell$. If $d=\ell$, then we obtain a contradiction to our choice of H as follows: We may assume that the $u-x$ subpaths of P_{u} and Q_{u} are the same. If u^{\prime} follows u on these subpaths, then $d_{H-\{u\}}\left(\left\{u^{\prime}, v, w\right\}\right)>d_{G}\left(\left\{u^{\prime}, v, w\right\}\right)$, contrary to our choice of H. Thus we may assume $d>\ell$. If x is an internal vertex of P_{u}, then let x^{\prime} be a vertex of P_{u} that is adjacent with x but does not lie on the $u-x$ subpath of P_{u}. Then $d_{H-w}\left(\left\{u, x, x^{\prime}\right\}\right)=d+1>\ell+1 \geq d_{G}\left(\left\{u, x, x^{\prime}\right\}\right)$, contrary to our choice of H. If $x=y$, then let z be a vertex on P_{v} adjacent with y and observe that $d_{H-w}(\{u, x, z\})>d_{G}(\{u, x, z\})$ contrary to our choice of H. Hence x cannot be on P_{u}.

Suppose next that x is an internal vertex of P_{v}. Let $d_{H}(u, x)=d$ and $d_{Q_{u}}(u, x)=\ell$. Then $d \nless \ell$ since otherwise T_{S}^{\prime} is not a Steiner tree for u, v and w. If $d>\ell$ we have, as before, a contradiction to our choice of H. Suppose thus that $d=\ell$.

If the shortest $u-x$ path in H contains vertices of Q_{u} distinct from u, then we can replace the $u-x$ subpath of Q_{u} with the $u-x$ subpath in H and obtain, as above, a contradiction. Suppose then that the shortest $u-x$ path in H contains no vertex of Q_{u}. Then necessarily u must be adjacent with x and x and u must be neighbours of y. But then

$$
\begin{aligned}
d_{H-u}(\{x, v, w\})=d_{H}(\{u, v, w\})-1 & >d_{G}(\{u, v, w\})-1 \\
& =d_{G}(\{x, v, w\}),
\end{aligned}
$$

contrary to our choice of H. Thus x is not an internal vertex of P_{v}.
Suppose now that x is an internal vertex of P_{w}. As before, let $d=$ $d_{H}(u, x)$ and let $\ell=d_{Q_{u}}(u, x)$. Then it can be shown, using arguments that were used before, that $d \ngtr \ell$ and that $d \nless \ell$, so that $d=\ell$. But again, as in the previous paragraph, it can be argued that in this case necessarily $d_{H-u}(\{x, v, w\})>d_{G}(\{x, v, w\})$ which produces a contradiction to our choice of H. Hence $V\left(T_{S}\right) \cap V\left(T_{S}^{\prime}\right)=\{u, v, w\}$.

We may assume that $d_{H}(v, w)>d_{G}(v, w)=d_{Q w}(v, w)$ and that $d_{H}(u, v)$ $>d_{G}(u, v)=d_{Q_{u}}(u, v)$; otherwise there either exists a Steiner tree for u, v and w that has vertices other than u, v and w in common with T_{S}, which we have shown is impossible, or there exists a tree with fewer edges than T_{S}^{\prime} which contains u, v and w, which is again impossible.

Thus $d_{H}(v, w) \geq d_{G}(v, w)+1$. We show next that $d_{H}(v, w)=d_{G}(v, w)+$ 1. Suppose this is not the case, then $d_{H}(v, w) \geq d_{G}(v, w)+2$. Let v^{\prime} be the vertex adjacent with v on a shortest $v-w$ path in H. Then $d_{H-u}\left(\left\{v, v^{\prime}, w\right\}\right) \geq d_{G}(v, w)+2>d_{G}(v, w)+1 \geq d_{G}\left(\left\{v, v^{\prime}, w\right\}\right)$, contrary to our choice of H. Hence $d_{H}(v, w)=d_{G}(v, w)+1$. Similarly $d_{H}(u, v)=$ $d_{G}(u, v)+1$. Let $d_{1}=d_{H}(u, y), d_{2}=d_{H}(v, y), d_{3}=d_{H}(w, y), \ell_{1}=d_{G}(u, v)$ and $\ell_{2}=d_{G}(v, w)$. Then $d_{1}+d_{2}+d_{3}=d_{H}(\{u, v, w\})>d_{G}(\{u, v, w\})=$ $\ell_{1}+\ell_{2}$, i.e.

$$
d_{1}+d_{2}+d_{3} \geq \ell_{1}+\ell_{2}+1
$$

Since at most one pair of the three pairs of neighbours of y in T_{S} are adjacent,

$$
d_{1}+2 d_{2}+d_{3}-1 \leq \ell_{1}+\ell_{2}+2
$$

So $d_{2} \leq 2$. Let u^{\prime}, v^{\prime} and w^{\prime} be the vertices adjacent with y on P_{u}, P_{v} and P_{w}, respectively.

We show first that we need only consider the case where $d_{2}=1$. Note that d_{2} is the length of the $v-y$ path in T_{S}. If $d_{2}=2$, then it follows from 3.3.1.5 and 3.3.1. 6 that either $u^{\prime} v^{\prime}$ or $v^{\prime} w^{\prime}$ must be an edge of H. Of course, since T_{S} is a Steiner tree for $\{u, v, w\}$ in H, at most one of these two edges belongs to H. Hence exactly one of these edges belongs to H, say $v^{\prime} w^{\prime}$. But then $T=T_{S}+v^{\prime} w^{\prime}-y w^{\prime}$ is a Steiner tree for u, v and w in H for which the distance from v to the vertex of degree 3 in T is 1 .

Suppose thus that $d_{2}=1$. Then $u^{\prime} v^{\prime}=u^{\prime} v$ and $v^{\prime} w^{\prime}=v w^{\prime}$ are not edges of H, otherwise there is a Steiner tree for u, v and w in H which is a $u-w$ path. But this situation was already considered in Case 2 and shown to be impossible. However, then $d_{1}=\ell_{1}+1$ and $d_{2}=\ell_{2}+1$.

Consider the cycle C induced by the edges of P_{v}, P_{w} and Q_{w}. This cycle has odd length, namely length $2 \ell_{2}+1$. Suppose first that C has length at least 7. Then C must have a pair of skew diagonals $z^{\prime} z$ and $x^{\prime} x$ where $z^{\prime}, x^{\prime} \in V\left(Q_{w}\right)$ and $z, x \in V\left(P_{w}\right)$. Note $w \notin\left\{x, x^{\prime}, z, z^{\prime}\right\}$. Suppose $d_{G}\left(w, z^{\prime}\right)>d_{G}\left(w, x^{\prime}\right)$. We show first that $d_{H}(w, x) \geq d_{G}\left(w, x^{\prime}\right)$, otherwise we can replace the $x^{\prime}-w$ subpath of T_{S}^{\prime} by the edge $x^{\prime} x$ followed by the $x-w$ subpath of P_{w} and obtain either a Steiner tree for u, v and w that has more vertices in common with T_{S} than u, v and w or a tree containing u, v and w with fewer edges than T_{S}^{\prime}. Both situations cannot occur. Hence $d_{H}(w, x) \geq d_{G}\left(w, x^{\prime}\right)$. Similarly $d_{H}(w, z) \geq d_{G}\left(w, z^{\prime}\right)$. However, then $d_{H}(w, x) \geq d_{G}\left(w, x^{\prime}\right)+2$. Let T^{\prime} be the tree induced by the edges of P_{u}, the edges of the $y-x$ subpath of P_{w}, the edge $x x^{\prime}$, the edges of the $x^{\prime}-w$ subpath of Q_{w} and the edge of P_{v}. Then T^{\prime} is a tree that contains u, v, w, and has at most $q\left(T_{S}^{\prime}\right)$ edges and contains vertices of T_{S} other than u, v and w. This cannot happen as we have seen before. Hence C cannot have skew diagonals. This contradicts condition 3.3.1.1(a) of the hypothesis. Hence C must have length 5. Suppose $C: y, w^{\prime}, w, w^{\prime \prime}, v, y$. Using arguments similar to those employed earlier, it can be shown that the only potential diagonals of C are $w^{\prime \prime} y$ and $w^{\prime \prime} w^{\prime}$.

Let u^{\prime} be the vertex adjacent with v on Q_{u}. Then $u^{\prime} w \notin E(G)$; otherwise there exists a tree with fewer edges than T_{S}^{\prime} that contains u, v and w. This is impossible. We may also assume that $u^{\prime} w^{\prime \prime}$ is not an edge of G otherwise $T_{S}^{\prime}+u^{\prime} w^{\prime \prime}-u^{\prime} v$ is a Steiner tree for u, v and w having three end vertices. This is a situation already considered in Case 3. We show next that $u^{\prime} w^{\prime} \notin E(G)$. If $u^{\prime} w^{\prime} \in E(G)$, then $T_{S}^{\prime}-w^{\prime \prime}$ together with w^{\prime} and the edges $u^{\prime} w^{\prime}$ and $w^{\prime} w$ is a Steiner tree for u, v and w having three end vertices, again a case we have already considered. If $u^{\prime} y \notin E(G)$, then $\left\langle\left\{u^{\prime}, y, v, w, w^{\prime}, w^{\prime \prime}\right\}\right\rangle_{G}$ is one of the subgraphs shown in Figure 3.3.1(a). This contradicts the hypothesis. So we may assume $u^{\prime} y \in E(G)$. However, then $u^{\prime}, y, w^{\prime}, w, w^{\prime \prime}, v, u^{\prime}$ is a 6 -cycle that does not satisfy condition
3.3.1.1(a), contrary to the hypothesis. This completes the proof of Case 4.

Case 5 Suppose that no Steiner tree for S in H has three end-vertices and that every Steiner tree for S in G has three end-vertices. Suppose T_{S} has u and w as end-vertices. Observe that T_{S} must be an induced path. Let P_{u} be the $u-v$ subpath of T_{S} and P_{w} the $w-v$ subpath of T_{S}. Let z be the vertex of degree 3 in T_{S}^{\prime} and let Q_{u}, Q_{v} and Q_{w} be the $u-z$ subpath, the $v-z$ subpath and the $w-z$ subpath of T_{S}^{\prime}, respectively. Suppose T_{S}^{\prime} has been chosen in such a way that Q_{v} is as short as possible. With this choice of T_{S}^{\prime} it follows that the vertex adjacent with z on Q_{v} is not adjacent with the vertices adjacent with z on Q_{u} or Q_{w}. Let $\ell_{1}=q\left(Q_{u}\right), \ell_{2}=q\left(Q_{w}\right), \ell_{3}=q\left(Q_{v}\right), d_{1}=q\left(P_{u}\right)$ and $d_{2}=q\left(P_{w}\right)$. Observe that $d_{1} \geq \ell_{1}+1$ and $d_{2} \geq \ell_{2}+1$, otherwise there is a Steiner tree for u, v and w that is a path, contrary to our assumption.

We now show that P_{u} and Q_{u} have no vertex in common except u. Suppose this is not the case. Let x be the first vertex after u on Q_{u} that also lies on P_{u}. The $u-x$ subpath of P_{u} cannot be longer than the $u-x$ subpath of Q_{u} otherwise, by choosing u, x and the vertex x^{\prime} following x on P_{u}, we see that $d_{G}\left(\left\{u, x, x^{\prime}\right\}\right)<d_{H-w}\left(\left\{u, x, x^{\prime}\right\}\right)$ contrary to our choice of H. Further, the length of the $u-x$ subpath of P_{u} cannot be less than the length of the $u-x$ subpath of Q_{u}, otherwise we could replace the $u-x$ subpath in T_{S}^{\prime} with the $u-x$ subpath in T_{S} to obtain a tree containing u, v and w which has fewer edges than T_{S}^{\prime} and this is impossible. Hence the $u-x$ subpaths of P_{u} and Q_{u} have the same length. However, then $d_{G}(\{x, v, w\})<d_{H-u}(\{x, v, w\})$ contrary to our choice of H. Thus P_{u} and Q_{u} are vertex disjoint except for u. Similarly P_{w} and Q_{w} are disjoint except for w.

We show next that P_{u} and Q_{u} have at most one vertex distinct from v in common. Suppose x is the first vertex after v on Q_{v} that belongs to both P_{u} and Q_{v}. Clearly $x \neq u$. Then the length of the $v-x$ subpath
of P_{u} cannot exceed the length of the $v-x$ subpath of Q_{v}; otherwise we obtain a contradiction to our choice of H. Further, the length of the $v-x$ subpath in P_{u} cannot be less than the length of the $v-x$ subpath in Q_{v} otherwise we can find a tree of size less than that of T_{S}^{\prime} which contains u, v and w. So $d_{P_{u}}(v, x)=d_{Q_{v}}(v, x)$. If $d_{P_{u}}(v, x) \geq 2$, then

$$
\begin{aligned}
d_{H}(\{u, x, w\}) & =d_{H}(\{u, v, w\}) \\
& \geq d_{G}(\{u, v, w\})+1 \\
& \geq d_{G}(\{u, x, w\})+3
\end{aligned}
$$

which is impossible. Hence $d_{P_{u}}(v, x)=1$.
So the only vertex x of P_{u} distinct from v that can possibly belong to both P_{u} and Q_{v} is the neighbour of v on P_{u} and in this case $d_{H}(\{u, v, w\})=$ $d_{G}(\{u, v, w\})+1$, otherwise $d_{H}(\{u, x, w\})=d_{G}(\{u, x, w\})+3$, which is not possible.

We assume first that P_{u} and Q_{v} have no vertex other than v in common. Consider the cycle C_{u} induced by the edges of P_{u}, Q_{u} and Q_{v}.

Suppose first that C_{u} has length at least 6 . We show that C_{u} cannot possess two skew diagonals. Since u is incident with no diagonals of C_{u}, it follows from condition 3.3.1.1(b) that the vertex x_{1} adjacent with u on P_{u} must be incident with a diagonal of C_{u}. We use this to show that $d_{H}(\{u, v, w\})=d_{1}+d_{2}=d_{G}(\{u, v, w\})+1=\ell_{1}+\ell_{2}+\ell_{3}+1$. If this is not the case, then $d_{H}(\{u, v, w\})=d_{G}(\{u, v, w\})+2$. Let $x_{1} x_{1}^{\prime}$ be a diagonal incident with x_{1}. If x_{1}^{\prime} belongs to Q_{u}, let T be the tree induced by the edges of Q_{w}, Q_{v}, the $x_{1}^{\prime}-z$ path of Q_{u} and $x_{1} x_{1}^{\prime}$. Then $q(T) \leq q\left(T_{S}^{\prime}\right)$. Also $d_{H-u}\left(\left\{x_{1}, v, w\right\}\right)=d_{H}(\{u, v, w\})-1=d_{G}(\{u, v, w\})+1>q(T) \geq$ $d_{G}\left(\left\{x_{1}, v, w\right\}\right)$. This contradicts our choice of H. So $d_{H}(\{u, v, w\})=$ $d_{G}(\{u, v, w\})+1$.

Observe that the diagonals of C_{u} must join internal vertices of P_{u} with vertices of Q_{u} or Q_{v}. Since condition 3.3.1.1(a) holds, it follows that Q_{u} or Q_{v} must have length at least 2.

Suppose first that Q_{u} has length at least 2. Suppose $x x^{\prime}$ is a diagonal of C_{u} where x is an internal vertex of P_{u} and x^{\prime} is a vertex of Q_{u}. If $d_{Q_{u}}\left(u, x^{\prime}\right)>d_{H}(u, x)$, then the $u-x$ subpath of P_{u} together with the edge $x x^{\prime}$, the $x^{\prime}-z$ subpath of Q_{u}, Q_{v} and Q_{w} induces a tree T of size at most $d_{G}(\{u, v, w\})$ that contains u, v and w. Since T cannot have size less than $d_{G}(\{u, v, w\})$, it follows that $d_{Q_{u}}\left(u, x^{\prime}\right)=d_{H}(u, x)+1$. However, then $d_{H-u}(\{x, v, w\})>d_{G}(\{x, v, w\})$, contrary to our choice of H. Hence $d_{Q_{u}}\left(u, x^{\prime}\right) \leq d_{H}(u, x)$. But $d_{Q_{u}}\left(u, x^{\prime}\right)+1 \geq d_{H}(u, x)$. To see this, suppose $d_{H}(u, x) \geq d_{Q_{u}}\left(u, x^{\prime}\right)+2$. Let T be the tree induced by the edges of the $u-x^{\prime}$ subpath of Q_{u}, the edge $x^{\prime} x$, the $x-v$ subpath of P_{u} and the edges of P_{w}. Then T has size (at least) one less than T_{S} and T contains u, v and w. Hence T is a Steiner tree for u, v and w. However, this gives rise to a situation already shown to be impossible in Case 2. Thus if $x x^{\prime}$ is a diagonal of C_{u} where $x \neq u$ is on P_{u} and x^{\prime} on Q_{u}, then $d_{H}(u, x)=d_{Q u}\left(u, x^{\prime}\right)$ or $d_{Q_{u}}\left(u, x^{\prime}\right)+1$. Consequently there is no pair of skew diagonals for which two end-vertices are on Q_{u} and the other two on P_{u}.

Suppose now that Q_{v} has length at least 2. Suppose $x x^{\prime}$ is a diagonal of C_{u} where x is on P_{u} and x^{\prime} on Q_{v}. Then $d_{H}(x, v) \geq d_{Q_{v}}\left(v, x^{\prime}\right)$ unless $d_{Q_{v}}\left(v, x^{\prime}\right)=2$, in which case $d_{H}(v, x)$ may be 1 . Suppose $d_{H}(x, v)=d<$ $d_{Q_{v}}\left(v, x^{\prime}\right)=\ell$ where $\ell \geq 2$. Then the edges of Q_{u}, Q_{w}, those on the $z-x^{\prime}$ subpath of Q_{v} and the edge $x^{\prime} x$ induce a tree of size $\ell_{1}+\ell_{2}+\ell_{3}-\ell+1$ which contains u, x and w. However, $d_{H}(\{u, x, w\})=\ell_{1}+\ell_{2}+\ell_{3}+1$. So $d_{H}(\{u, x, w\})-3 \geq d_{G}(\{u, x, w\})$ if $\ell \geq 3$, which is impossible. So $\ell=2$ if $d_{H}(v, x)<d_{Q_{v}}\left(v, x^{\prime}\right)$ and in this case $d_{H}(v, x)=d_{Q_{v}}\left(v, x^{\prime}\right)-1=1$.

We show next that $d_{H}(x, v) \leq d_{Q_{v}}\left(v, x^{\prime}\right)+1$. Suppose $d_{H}(x, v) \geq$ $d_{Q_{v}}\left(v, x^{\prime}\right)+2$. Then the edges of the $u-x$ subpath of P_{u}, together with the edge $x x^{\prime}$, the edges of the $x^{\prime}-v$ subpath of Q_{v} and P_{w} induce a tree of size $d_{1}+d_{2}-1=d_{G}(\{u, v, w\})$ which is a path and contains u, v and w. This again leads to a situation we have considered in Case 2 and shown to be impossible. So if there are skew diagonals $x x^{\prime}, y y^{\prime}$ of C_{u} such that x

Figure 3.3.2
and y are on P_{u} and x^{\prime} and y^{\prime} are on Q_{v}, then we may assume $d_{Q_{v}}\left(v, x^{\prime}\right)=$ $1, d_{P_{u}}(v, x)=2, d_{Q_{v}}\left(v, y^{\prime}\right)=2$ and $d_{P_{u}}(v, y)=1$. If Q_{u} has length at least 2 , then necessarily the neighbour x_{1} of u on P_{u} must be incident with the diagonal whose other end-vertex is the neighbour of u on Q_{u}. However, then $d_{H-u}\left(\left\{x_{1}, y, w\right\}\right)=d_{1}+d_{2}-1$ and $d_{G}\left(\left\{x_{1}, y, w\right\}\right) \leq d_{G}(\{u, v, w\})-1$. This produces a contradiction to our choice of H. If Q_{u} has length 1, then the neighbour x_{1} of u on P_{u} must be incident with a diagonal whose other end-vertex x_{1}^{\prime} is on Q_{v}. If $x_{1} \neq x$ and so $x_{1}^{\prime} \neq x^{\prime}$, then we still obtain a contradiction to our choice of H. So we may assume $x_{1}^{\prime}=x^{\prime}$. However, then $d_{1}=3$. So since $\ell_{3} \geq 2$, and since $d_{1} \geq \ell_{3}+1$, it follows that $\ell_{3}=2$. So the subgraph induced by the vertices of C_{u} is as shown in Figure 3.3.2. (The dotted line may or may not be in the subgraph.) Let v^{\prime} be the neighbour of v on P_{w}. Then $v^{\prime} \neq x^{\prime}$ since $x x^{\prime}$ is an edge but $x v^{\prime}$ is not an edge. Also $v^{\prime} \neq y^{\prime}$ since $y y^{\prime}$ is an edge but $v^{\prime} y$ is not an edge. If $v^{\prime} x^{\prime}$ is an edge, then $d_{G}\left(\left\{u, x, v^{\prime}\right\}\right)=3$, and $d_{H-w}\left(\left\{u, x, v^{\prime}\right\}\right)=4$. This contradicts our choice of H. Hence $v^{\prime} x^{\prime} \notin E(G)$. If $v^{\prime} y^{\prime} \in E(G)$, then $d_{G}\left(\left\{u, y, v^{\prime}\right\}\right)=3$ and $d_{H-w}\left(\left\{u, y, v^{\prime}\right\}\right)=4$. Once again this contradicts our choice of H. Hence $v^{\prime} y^{\prime} \notin E(G)$.

Note that neither x nor y is on Q_{w}. Also, as it was shown that P_{u} and Q_{u} have no vertices in common, it can be shown that P_{w} and Q_{w} have no vertex in common. Also since $v^{\prime} \neq x^{\prime}, P_{w}$ and Q_{v} have no vertex in common.

Thus the edges of T_{S}, Q_{u} and Q_{w} induce some cycle C of length at least 7. If $y^{\prime} w$ is an edge of G, i.e., if Q_{w} is a path of length 1 , then C has no skew diagonals contrary to condition 3.3.1.1(a). Hence we may assume Q_{w} has length at least 2. Since $\ell_{2}=q\left(Q_{w}\right)>q\left(P_{w}\right)$, the cycle C_{w} induced by the edges of Q_{w}, Q_{v} and P_{w} has length at least 7 and hence by condition 3.3.1.1(a) has skew diagonals. Furthermore, these skew diagonals have two end-vertices that belong to P_{w} and the other two are on Q_{v} or Q_{w}. As was argued in the case of C_{u}, they cannot both be on Q_{w}. Also they cannot
both be on Q_{v}, since in this case C_{w} would have length 6 which it does not. Hence one end-vertex is on Q_{v} and the other one on Q_{w}. Next consider C. Since C has length at least 8 , it must have a pair of skew diagonals. One end- vertex from each of these two skew diagonals must be on T_{S} (call them a and b) and the other two (one from each of the pair of skew diagonals (call them a^{\prime} and b^{\prime}) must be on Q_{w}. Say $a a^{\prime}$ and $b b^{\prime}$ are edges. Note that a and b cannot both be on P_{w} by an earlier observation. So a, say, is an internal vertex of P_{u}. Now $a \neq x$; otherwise the edges of P_{u}, the edge $a a^{\prime}$ and the edges of the $a^{\prime}-w$ subpath of Q_{w} induce a tree of size at most T_{S}^{\prime}. However, then $d_{H-u}(\{x, v, w\})>d_{G}(\{x, v, w\})$, contrary to our choice of H. Since u is not incident with a diagonal of C, x must be incident with a diagonal, which therefore is $x y^{\prime}$. We show next that the only diagonal of C with which y can be adjacent is $y y^{\prime}$. Suppose $y c$ is a diagonal of C where c is an internal vertex of Q_{w}. Then P_{u} together with the edge $y c$ and the $c-w$ subpath of Q_{w} produces a tree T of size at most $q\left(T_{S}^{\prime}\right)=d_{G}(S)$ which contains u, v and w. So T is a Steiner tree for S. But the distance from v to a vertex of degree 3 in T has length less than $\ell_{3}=d_{T_{s}^{\prime}}\left(v, y^{\prime}\right)$, which contradicts our choice of T_{S}^{\prime}. Hence the only diagonal of C with which y can be incident is $y y^{\prime}$. But then C has no skew diagonals.

So we may assume that C_{u} has no skew diagonals with two end- vertices on P_{u} and the other two on Q_{v}. Suppose now that C_{u} has two skew diagonals $x x^{\prime}, y y^{\prime}$ where x, y are on P_{u} and x precedes y on P_{u}, x^{\prime} is on Q_{v} and y^{\prime} on Q_{u}. By the previous cases x^{\prime} and y^{\prime} must be internal vertices of Q_{v} and Q_{u}, respectively. Note that $d_{H}(u, x) \geq \ell_{1}$: Suppose $d_{H}(u, x)<\ell_{1}$. If $d_{H}(u, x) \leq \ell_{1}-2$, then the edges of the $u-x$ subpath of P_{u}, the edge $x x^{\prime}$ and the edges of Q_{v} and Q_{w} induce a tree that contains u, v and w but has fewer edges than T_{S}^{\prime}, which is impossible. If $d_{H}(u, x)=\ell_{1}-1$, then $d_{H-u}(\{x, v, w\})=d_{1}+d_{2}-\ell_{1}+1$ and $d_{G}(\{x, v, w\})=\ell_{2}+\ell_{3}+1=d_{1}+d_{2}-\ell_{1} ;$ contrary to our choice of H. Hence $d_{H}(u, x) \geq \ell_{1}$.

If $d_{P_{u}}(v, y) \leq \ell_{3}-2$, then there is a tree of size less than $d_{G}(\{u, v, w\})$
which contains u, v and w. Since this is not possible we may assume $d_{P_{u}}(v, y) \geq \ell_{3}-1$. If $d_{P_{u}}(v, y)==\ell_{3}-1$, then $d_{1} \geq \ell_{1}+\ell_{3}$. Observe that $d_{2} \geq \ell_{2}+1$, otherwise we can either find a Steiner tree for u, v and w that is a $u-w$ path (a situation considered in Case 2) or a tree of size less than $d_{G}(\{u, v, w\})$ that contains u, v and w, which is again impossible. However, since $d_{1}+d_{2}=\ell_{1}+\ell_{2}+\ell_{3}+1$, it follows that $d_{2}=\dot{\ell}_{2}+1$ and that $d_{1}=\ell_{1}+\ell_{3}$. If we now take the $u-y^{\prime}$ subpath of Q_{u} together with the edge $y^{\prime} y$, the $y-v$ subpath of P_{u} and P_{w}, we obtain a path of length at most $\ell_{1}+\ell_{2}+\ell_{3}$ which contains u, v and w. Again this is a situation considered in Case 2. Hence $d_{P_{u}}(v, y) \geq \ell_{3}$. However, then $d_{1} \geq \ell_{1}+\ell_{3}+1$ and since $d_{2} \geq \ell_{2}+1$, it follows that $d_{1}+d_{2} \geq \ell_{1}+\ell_{2}+\ell_{3}+2$. This contradicts the fact that $d_{1}+d_{2}=\ell_{1}+\ell_{2}+\ell_{3}+1$. So C_{u} cannot contain skew diagonals. However, C_{u} cannot be a 6 -cycle that satisfies the remaining conditions in 3.3.1.1(a) either.

Hence C_{u} is a 5 -cycle or a 4 -cycle. Suppose C_{u} is a 5 -cycle. Since $d_{1} \geq \ell_{1}+1$ and $d_{1} \geq \ell_{3}+1$, it follows that $u z$ and $v z$ are edges and that the path P_{u} has length 3 . Suppose $C_{u}: u, u_{1}, u_{2}, v, z, u$. Let v^{\prime} be the neighbour of v on P_{w}. Then $v^{\prime} \neq z$ since $z u$ is an edge but $v^{\prime} u$ is not an edge. If $v^{\prime} z \notin E(G)$, then the subgraph induced by $V\left(C_{u}\right) \cup\left\{v^{\prime}\right\}$ is one of the forbidden subgraphs shown in Figure 3.3.1(a). If $v^{\prime} z \in E(G)$, then $u, u_{1}, u_{2}, v, v^{\prime}, z, u$ is a 6 -cycle that does not satisfy the conditions in 3.3.1.1(a).

Thus we may assume that C_{u} is a 4 -cycle, say u, u_{1}, v, z, u. Clearly z does not lie on P_{w}. By considering the cycle C_{w} induced by the edges of Q_{v}, Q_{w} and P_{w} and applying the arguments similar to those applied to C_{u}, it can be shown that C_{w} must be a 4 -cycle, say v, v_{1}, w, z, v. However, then $u, u_{1}, v, v_{1}, w, z, u$ is a 6 -cycle that does not satisfy the conditions in 3.3.1.1(a).

If P_{u} and Q_{v} have a vertex in common, then we have shown that it must be the vertex x that precedes v on P_{u}. Since $d_{G}(\{u, x, w\}) \leq$
$d_{G}(\{u, v, w\})-1$ and $d_{H}(\{u, x, w\})=d_{H}(\{u, v, w\})$, it follows that $d_{G}(\{u, x, w\})=d_{H}(\{u, x, w\})-2$. Also Q_{u}, Q_{w} and the $z-x$ subpath of Q_{v} (call it Q_{x}) form a Steiner tree for u, x and w. If we now replace Q_{v} in the preceding arguments with Q_{x}, we once again arrive at a contradiction. Hence Case 5 cannot occur either.

Thus G must be 3-Steiner distance hereditary.

Chapter 4

Functional Isolation

Sequences

The concept of a Supply Graph was introduced by Goldsmith [G1] and was defined to be a connected graph with its vertex set $V(G)$ partitioned into two non-empty subsets $P=P(G)$ and $C=C(G)$, called the sets of producer and consumer vertices respectively. We denote a supply graph by $G=G(P, C)$.

Such a graph could represent a network in which the vertices of P represent producers of commodities or services (e.g. power stations, supply depots, computers with data storage facilities etc.) and the vertices in $V(G)-P(G)=C(G)$ represent consumers of the commodities produced (e.g. users of power, dealers, computers processing data, radio receivers, military outposts, etc.).

Further, Goldsmith [G1] defined the $k^{\text {th }}$-order functional edge-connectivity $\left(\lambda_{j}^{(k)}(G)\right)$ of $G=G(P, C)$ to be the smallest number of edges of G whose removal from G yields a graph with k functionally isolated components (i.e. components containing consumer vertices only).

We introduce here, the parameter $\mu_{f}^{(k)}(G)$ which we define to represent the minimum number of edges in G whose removal ensures that at least k vertices are functionally isolated.

Clearly $\lambda_{f}^{(k)}(G)=\mu_{f}^{(k)}(G)$ whenever the k functionally isolated components existing, after the removal of $\lambda_{f}^{(k)}(G)=\mu_{f}^{(k)}(G)$ edges, consist of single vertices.

$4.1 \quad \mu_{f}$-sequences

Let $G=G(P, C)$ be a supply graph with $|C|=m$; then the sequence $\mu_{f}^{(1)}(G), \mu_{f}^{(2)}(G), \ldots, \mu_{f}^{(m)}(G)$ will be called the μ_{f}-sequence of G.

A non-decreasing sequence of positive integers $A: a_{1}, a_{2}, \ldots, a_{m}$ is a $\mu_{f^{-}}$ sequence if there exists a supply graph $G=G(P, C)$, with $|C|=m$, which has A as its μ_{f}-sequence.

In this chapter we will characterize the μ_{f}-sequence of a Ranked Supply Graph (yet to be defined), and give both necessary and sufficient conditions for a non-decreasing sequence of positive integers to be the μ_{f}-sequence of a Ranked Supply Graph.

First, some general examples:

1. $A: 1,2, \ldots, m$ is the μ_{f}-sequence of $K_{1, m}$ where P consists of the central vertex if $m \geq 2$ or of either vertex if $m=1$.
2. The sequence A where $a_{1}=\ldots=a_{\ell}=1, a_{\ell+1}=\ldots=a_{2 \ell}=$ $2 ; \ldots ; a_{(n-1) \ell+1}=\ldots=a_{n \ell}=n$ is the μ_{f}-sequence of the supply graph obtained by $\ell-1$ subdivisions of each edge of $K_{1, n}$ with P consisting of the central vertex.
3. The sequence A where $a_{1}=\ldots=a_{\ell}=2 ; a_{\ell+1}=\ldots=a_{2 \ell}=$ $4 ; \ldots ; a_{(n-1) \ell+1}=\ldots=a_{n \ell}=2 n$ is the μ_{f}-sequence of the supply
graph obtained from the graph in (2) above by the introduction of a new vertex made adjacent to all end-vertices.
4. If $i_{1}, i_{2}, \ldots, i_{n}$ are positive integers with $i_{1}>i_{2}>\ldots>i_{n} \geq 2$, let G be the graph obtained from the union of the disjoint stars $K_{1, i_{1}-1} ; K_{1, i_{2}-1} ; \ldots ; K_{1, i_{n}-1}$ (with centres x_{1}, \ldots, x_{n} respectively) by the introduction of a new vertex, x_{0}, adjacent to $x_{1}, x_{2}, \ldots, x_{n}$ where $P=\left\{x_{0}\right\}$. The μ_{f}-sequence of G is $\mu_{f}^{(1)}=\mu_{f}^{(2)}=\ldots=\mu_{f}^{\left(i_{1}\right)}=$ $1 ; \mu_{f}^{\left(i_{1}+1\right)}=\ldots=\mu_{f}^{\left(i_{2}\right)}=2 ; \ldots ; \mu_{f}^{\left(i_{n-1}+1\right)}=\mu_{f}^{\left(i_{n}\right)}=n$.
5. If $G=G(P, C) \cong K_{m+k}$, where $|P|=k$ and $|C|=m$, then with $p=m+k$

$$
\begin{aligned}
\mu_{f}^{(\ell)}(G) & =\min \{k(p-k), \ell(p-\ell)\} \\
& = \begin{cases}\ell(p-\ell) & \text { for } 1 \leq \ell \leq k \\
k(p-k) & \text { for } k \leq \ell \leq|C|=m=p-k .\end{cases}
\end{aligned}
$$

4.2 The Ranked Supply Graph

Let $A: a_{1}, \ldots, a_{m}$ be a sequence of positive integers such that
$a_{1}=\ldots=a_{i_{1}}=b_{1}<a_{i_{1}+1}=\ldots=a_{i_{1}+i_{2}}=b_{2}<\ldots<a_{i_{1}+i_{2}+\ldots+i_{j-2}+1}=$ $\ldots=a_{i_{1}+\ldots+i_{j-1}}=b_{j-1}<a_{i_{1}+\ldots+i_{j-1}+1}=\ldots=a_{i_{1}+. .+i_{j}}=b_{j}$ (where $\left.m=i_{1}+\ldots i_{j}\right)$.

Consider the supply graph $G_{R}=G_{R}(P, C)$ (with $|P|=k,|C|=m$) such that 4.1 holds as a μ_{f}-sequence. Let C be partitioned into (disjoint subsets $V_{1}, V_{2}, \ldots, V_{j}$ such that for $t \in\{1, \ldots, j-1\},\left|V_{t}\right|=i_{t}$ and $V_{1} \cup V_{2} \cup . . \cup$ V_{t} can be functionally isolated by the removal of a set E_{t} of $b_{t}=\mu_{\mathrm{f}}^{(s)}\left(G_{R}\right)$ edges where $s=i_{1}+i_{2}+\ldots+i_{t}$ and $E_{t} \subseteq\left[V_{1} \cup \ldots \cup V_{t}, P \cup V_{t+1} \cup \ldots \cup V_{j}\right]$.

Furthermore, for $1 \leq r<j$ the functional isolation of a set of $i_{1}+. .+i_{r}$ vertices containing at least one element from some $V_{n}(n>r)$ requires the
removal of more than b_{r} edges.

We will call G_{R} a Ranked Supply Graph.

For $\ell, m \in\{1,2, \ldots, j\}$ let $s_{\ell}=\left|\left[V_{\ell}, P\right]\right|$ and for $\ell<m$, let $r_{\ell m}=$ $\left|\left[V_{\ell}, V_{m}\right]\right|$.

For $i=1,2, \ldots, j-1$ let

$$
\begin{aligned}
& b_{i}=\sum_{\ell=1}^{i} s_{\ell}+\sum_{\substack{\ell=1, \ldots, i \\
m=i+1, \ldots, j}} r_{\ell m} \text { and } \\
& b_{j}=\sum_{\ell=1}^{j} s_{\ell} .
\end{aligned}
$$

It follows from the above definition that $A_{t-1}: a_{1}, a_{2}, \ldots, a_{i_{1}+i_{2}+\ldots+i_{t-1}}$ is the μ_{f}-sequence of the ranked supply graph $G_{R}^{(t-1)}\left(P^{(t-1)}, C^{(t-1)}\right)$, where $P^{(t-1)}=P \cup V_{t} \cup V_{t+1} \cup \ldots \cup V_{j} ; C^{(t-1)}=V_{1} \cup V_{2} \cup \ldots \cup V_{t-1}$ and $E\left(G_{R}^{(t-1)}\right)=E\left(G_{R}\right)$.

The consumer vertices in a ranked supply graph could represent consumers which have been ranked according to strategic importance with i_{1} vertices of V_{1} being the least important and the i_{j} vertices of V_{j} being the most important. The values of the b_{i} would give an indication of the relative importance of the vertices in V_{i}.

Lemma 4.2.1

If A is the $\mu_{f}^{(k)}$-sequence of the ranked supply graph $G_{R}=G_{R}(P, C)$ then A is also the $\mu_{f}^{(k)}$-sequence of the ranked supply graph $H_{R}=H_{R}(P, C)$ obtained from G_{R} by joining every pair of non-adjacent vertices in $\left\langle V_{\ell}\right\rangle_{G_{R}}$ for $\ell=1,2, \ldots, j$.

For $1 \leq \ell<m \leq j$, the (ℓ, m)-deficiency of $G_{R}, \tau_{\ell m}\left(G_{R}\right)$ and the ℓ deficiency of $G_{R}, \tau_{\ell}\left(G_{R}\right)$, are defined as follows:
$\tau_{\ell m}\left(G_{R}\right)=i_{\ell} i_{m}-r_{\ell m}$ and $\tau_{\ell}\left(G_{R}\right)=\sum_{m=\ell+1}^{j} \tau_{\ell m}\left(G_{R}\right)$. (So $\tau_{\ell m}\left(G_{R}\right)$ is the number of edges in $\left[V_{\ell}, V_{m}\right]_{\bar{G}_{R}}$ and $\tau_{\ell}\left(G_{R}\right)$ is the number of edges in $\left[V_{\ell}, V_{\ell+1} \cup\right.$ $\left.\left.\ldots \cup V_{j}\right]_{\bar{G}_{R}}.\right)$

We introduce now, a ranked supply graph $J_{R}=J_{R}\left(P^{\prime}, C\right)$ obtained from G_{R} as follows:-

Define J_{1} as follows if $j \geq 2$:
a) If $s_{1}=0$ or $\tau_{1}\left(G_{R}\right)=0$, let $J_{1}=G_{R}$.
b) If $s_{1}, \tau_{1}\left(G_{R}\right) \geq 1$, we distinguish between two cases:
(i) If $s_{1} \leq \tau_{1}\left(G_{R}\right)$, let m be the largest integer such that $2 \leq m \leq j$ and $s_{1} \leq \sum_{\ell=m}^{j} \tau_{1 \ell}\left(G_{R}\right)$. Let $s_{1}=t_{m}+t_{m+1}+. .+t_{j}$, where $t_{\ell}=\tau_{1 \ell}\left(G_{R}\right)$ if $m<\ell \leq j$ (and $t_{m} \leq \tau_{1 m}\left(G_{R}\right)$, obviously).
Replace the s_{1} edges in $\left[V_{1}, P\right]$ by s_{1} edges in $\left[V_{1}, V_{m} \cup \ldots \cup\right.$ $\left.V_{j}\right]$, assigning t_{ℓ} edges to $\left[V_{1}, V_{\ell}\right],(\ell=m, . ., j)$ and keeping the degrees of all vertices in V_{1} fixed (i.e. $\operatorname{deg}_{J_{1}} v=\operatorname{deg}_{G_{R}} v \forall v \in V_{1}$). Finally, for each "new" edge vw inserted above between a vertex $v \in V_{1}$ and a vertex $w \in V_{\ell}(m \leq \ell \leq j)$, insert another new edge $w x$, with $x \in P^{\prime}$ (where P^{\prime} is a superset of P, containing
new vertices, not in $V\left(G_{R}\right)$ as required). Hence t_{ℓ} new edges are inserted into $\left[V_{\ell}, P^{\prime}\right], m \leq \ell \leq j$.
(ii) If $s_{1}>\tau_{1}\left(G_{R}\right)$, let $s_{1}-\tau_{1}\left(G_{R}\right)$ edges of $\left[V_{1}, P\right]_{G_{R}}$ be retained and replace the remaining $\tau_{1}\left(G_{R}\right)$ edges in $\left[V_{1}, P\right]_{G_{R}}$ by $2 \tau_{1}\left(G_{R}\right)$ edges as indicated in (i), with $\tau_{1}\left(G_{R}\right)$ replacing s_{1} in (i).

If $j \geq 3$ and J_{1}, \ldots, J_{t-1} have been defined, we introduce J_{t} as follows $(t \in\{2, \ldots, j-1\})$.
a) If $s_{t}=0$ and $\tau_{t}\left(J_{t-1}\right)=0$, let $J_{t}=J_{t-1}$.
b) If $s_{t}>0$ and $\tau_{t}\left(J_{t-1}\right)>0$, we distinguish between two cases:
(i) If $s_{t} \leq \tau_{t}\left(J_{t-1}\right)$, let m be the largest integer such that $t+1 \leq$ $m \leq j$ and $s_{t} \leq \sum_{\ell=m}^{j} \tau_{t \ell}\left(J_{t-1}\right)$. Let $s_{t}=t_{m}+\ldots+t_{j}$, where $t_{\ell}=\tau_{t \ell}\left(J_{t-1}\right)$ for $m<\ell \leq j$ (if $j>m$) (and $t_{m} \leq \tau_{t m}\left(J_{t-1}\right)$, obviously).
Replace the s_{t} edges in $\left[V_{t}, P\right]$ by s_{t} edges in $\left[V_{t}, V_{t+1} \cup \ldots \cup V_{j}\right.$] by assigning t_{ℓ} new edges to $\left[V_{t}, V_{\ell}\right](\ell=m, \ldots, j)$, keeping the degrees of vertices in V_{t} unchanged from their values in J_{t-1} and finally inserting t_{ℓ} new edges into $\left[V_{\ell}, P^{\prime}\right.$], for each edge $v w \in\left[V_{\ell}, V_{m}\right]$ inserted above, introducing a new edge $w x$ with $x \in P^{\prime}$, where P^{\prime} is again a superset of P, if necessary.
(ii) If $s_{t}>\tau_{t}\left(J_{t-1}\right)$, retain $s_{t}-\tau_{t}\left(J_{t-1}\right)$ edges of $\left[V_{t}, P\right]$ and replace the remaining $\tau_{t}\left(J_{t-1}\right)$ edges in $\left[V_{t}, P\right]$ by $\tau_{t}\left(J_{t-1}\right)$ edges in each of $\left[V_{t}, V_{t+1} \cup \ldots \cup V_{j}\right]$ and $\left[V_{t}, P^{\prime}\right]$ as above.

Finally, denote J_{j-1} by $J_{R}=J_{R}\left(P^{\prime}, C\right)$

Lemma 4.2.2

$J_{R}\left(P^{\prime}, C\right)$ is a ranked supply graph (with P^{\prime} and C as sets of producers and consumers, respectively) and $J_{R}\left(P^{\prime}, C\right)$ has A as its μ_{f}-sequence.

Proof: Denote the μ_{f}-sequence of J_{R} by $\mathcal{C}: c_{1} \leq \ldots \leq c_{m}$. Suppose that, for some $i \in\{1, . ., m\}, c_{i} \neq a_{i}$. Let $a_{i}=b_{r} ;$ then $a_{i}=\sum_{\ell=1}^{r} s_{\ell}+\sum_{\substack{\ell=1, \ldots, r \\ m=r+1, \ldots, j}} r_{\ell m}$ and $r \neq j$.

Observe that $V_{1} \cup \ldots \cup V_{r}$ is functionally isolated in G_{R} by the removal of S, the set of $\sum_{\ell=1}^{r} s_{\ell}$ edges from $\left[V_{1} \cup \ldots \cup V_{r}, P\right]_{G_{R}}$ and R, the set of $\sum_{\substack{\ell=1, \ldots, r \\ m=r+1, \ldots, j}} r_{\ell m}$ edges in $\left[V_{1} \cup \ldots \cup V_{r}, V_{r+1} \cup \ldots \cup V_{j}\right]_{G_{R}}$.

In J_{R} the vertices in $V_{1} \cup \ldots \cup V_{r}$ can be functionally isolated by the removal of the set of edges R above as well as the set S^{\prime} of edges in $\left[V_{1} \cup \ldots \cup V_{r}, P^{\prime}\right]_{J_{R}}$ and $S^{\prime \prime}$, the set of all "new" edges incident with a vertex in $V_{1} \cup \ldots \cup V_{r}$ and a vertex in $V_{r+1} \cup \ldots \cup V_{j}$ in J_{R}, i.e. $S^{\prime \prime}=$ $\left[V_{1} \cup \ldots V_{r}, V_{r+1} \cup \ldots \cup V_{j}\right]_{J_{R}}-\left[V_{1} \cup \ldots \cup V_{r}, V_{r+1} \cup \ldots \cup V_{j}\right]_{G_{R}}$. By the definition of J_{R}, if $\ell<m<r$ and $t_{\ell m}$ edges from $\left[V_{\ell}, P\right]$ are replaced by $t_{\ell m}$ edges in $\left[V_{\ell}, V_{m}\right]$ together with $t_{\ell m}$ edges in $\left[V_{m}, P^{\prime}\right]$, then eventually, when J_{m} is defined, each element of the latter set of $t_{\ell m}$ edges in $\left[V_{m}, P^{\prime}\right]_{J_{\ell}}$ is either left unchanged in $\left[V_{m}, P^{\prime}\right]_{J_{m}}$ or is replaced by an edge in $\left[V_{m}, V_{m+1} \cup . . \cup V_{j}\right]_{J_{m}}$ and an edge in $\left[V_{m+1} \cup \ldots \cup V_{j} ; P^{\prime}\right]_{J_{m}}$; consequently $\left|S^{\prime} \cup S^{\prime \prime}\right|=\sum_{i=1}^{r} s_{i}$ and so $V_{1} \cup \ldots \cup V_{r}$ is functionally isolated in J_{R} by the removal of a_{i} edges. It follows that $c_{i}<a$.

Let B be a largest set of vertices in J_{R} functionally isolated by the removal of c_{i} edges from $E\left(J_{R}\right)$, and let $F=[B, V-B]_{J_{R}}$. We note that, by the maximality of $B,|F|=c_{i}$. Let $F_{1}=F \cap E\left(G_{R}\right)$ and $F_{2}=F-F_{1}$. As $c_{i}<a_{i}, B$ is not functionally isolated in $G_{R}-F_{1}$.
Hence, there exists at least one edge $e=v_{1} w_{1} \in[B, V-B]_{G_{R}}$ with $v_{1} \in B$ (say $v_{1} \in V_{\ell_{1}}$) and $w_{1} \in V-B$ such that $v_{1} w_{1} \notin F_{1}$; so $w_{1} \in P$. Furthermore, in the construction of $J_{R}, v_{1} w_{1}$ was replaced by a sequence of edges, say $v_{1} w_{1}$ by $v_{1} v_{2}$ and $v_{2} w_{2}\left(v_{2} \in V_{\ell_{2}}, w_{1} \in P^{\prime}\right)$ in the construction
of $J_{\ell_{1}}, v_{2} w_{1}$ by $v_{2} v_{3}$ and $v_{3} w_{3}\left(v_{3} \in V_{\ell_{3}}, w_{3} \in P_{r}^{\prime}\right)$ in the construction of $J_{\ell_{2}}, \ldots$ etc. until, in J_{R}, the single edge $v_{1} w_{1}$ has been replaced by the edges of a path $v_{1} v_{2} v_{3} \ldots v_{n}$ and an edge $v_{n} w_{n}$, where $v_{i} \in V_{\ell_{i}}, w_{n} \in P^{\prime}$ and $\ell_{1}<\ell_{2}<\ldots<\ell_{n}$.

If $v_{1}, v_{2}, \ldots, v_{n} \in B$, then $v_{n} w_{n} \in F_{2}$ and, if $v_{\ell} \notin B$ for some $\ell \in\{2, \ldots, n\}$ with ℓ as small as possible, then $\ell \geq 2$ and $v_{\ell-1} v_{\ell} \in F_{2}$ (denote by e^{\prime} the appropriate edge $v_{n} w_{n}$ or $\left.v_{\ell-1} v_{\ell}\right)$.

Obviously, if $e_{1} \neq e_{2}$ in $[B, V-B]_{G_{R}}$, then $e_{1}^{\prime} \neq e_{2}^{\prime}$ and so $\left|F_{2}\right| \geq$ $\left|[B, V-B]_{G_{R}}-F_{1}\right|$. So $\left|F_{1} \cup F_{2}\right| \geq\left|[B, V-B]_{G_{R}}\right| \geq a_{i}$, a contradiction.

Hence $a_{i}=c_{i}$ for $i=1, \ldots, m$.

We return now to the ranked supply graph G_{R} and derive some necessary conditions for a non-decreasing sequence of positive integers to be a μ_{f}-sequence for G_{R}.

Lemma 4.2.3

If A is the μ_{f}-sequence of G_{R}, then

$$
\left\lceil\frac{\left(i_{j}-1\right)}{i_{j}}\left(b_{j}-b_{j-1}\right)\right\rceil \leq i_{j}-1
$$

Proof: For $w \in V_{j}$, all the vertices in $V_{1} \cup \ldots \cup V_{j-1} \cup\{w\}$ can be functionally isolated by removing from G_{R} all edges in the set $E^{\prime}=\left[V_{1} \cup \ldots \cup\right.$ $\left.V_{j-1} \cup\{w\}, P \cup\left(V_{j}-\{w\}\right)\right]=\left[V_{1} \cup \ldots \cup V_{j-1} \cup\{w\}, P\right] \cup\left[V_{1} \cup \ldots \cup V_{j-1}, V_{j}-\right.$ $\{w\}] \cup\left[\{w\}, V_{j}-\{w\}\right]$
$\begin{array}{lll}\text { Furthermore } & \left|E^{\prime}\right| \geq b_{j} & 4.2 .3 .2 \\ \text { and } & b_{j-1} & =\sum_{\ell=1}^{j-1}\left(s_{\ell}+r_{\ell j}\right)\end{array} \quad 4.2 .3 .3$

Also

$$
\begin{array}{cc}
\sum_{w \in V_{j}} & \left(|[\{w\}, P]|-\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{j-1}\right]\right|\right) \\
= & \left|\left[V_{j}, P\right]\right|-\left|\left[V_{j}, V_{1} \cup \ldots \cup V_{j-1}\right]\right| \\
= & s_{j}-\sum_{\ell=1}^{j-1} r_{\ell j} ; \text { hence } w \text { can be chosen so that } \\
|[\{w\}, P]|-\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{j-1}\right]\right| \leq\left[\frac{1}{i_{j}}\left(s_{j}-\sum_{\ell=1}^{j-1} r_{\ell j}\right)\right]
\end{array}
$$

Thus from 4.2.3.1; 4.2.3.2; 4.2.3.3 and 4.2.3.4 we obtain

$$
\begin{gather*}
b_{j} \leq\left|E^{\prime}\right| \leq\left(\sum_{\ell=1}^{j-1} s_{\ell}+|[\{w\}, P]|\right)+\left(\sum_{\ell=1}^{j-1} r_{\ell j}-\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{j-1}\right]\right| \mid\right)+\left(i_{j}-1\right) \\
=b_{j-1}+\left(i_{j}-1\right)+\left\lfloor\frac{1}{i_{j}}\left(s_{j}-\sum_{\ell=1}^{j-1} r_{\ell j}\right)\right\rfloor
\end{gather*}
$$

Since $b_{j}-b_{j-1}=\sum_{\ell-1}^{j} s_{j}-\sum_{\ell=1}^{j-1}\left(s_{\ell}-r_{\ell j}\right)=s_{j}-\sum_{\ell=1}^{j-1} r_{\ell j}$, it follows from 4.2.3.5 that

$$
b_{j} \leq b_{j-1}+\left(i_{j}-1\right)+\left\lfloor\frac{b_{j}-b_{j-1}}{i_{j}}\right\rfloor
$$

from which it follows that

$$
\left\lceil\frac{\left(i_{j}-1\right)}{i_{j}}\left(b_{j}-b_{j-1}\right)\right\rceil \leq i_{j}-1
$$

By applying lemma 4.2 .3 to the μ_{f}-sequence of $G_{R}\left(P \cup V_{\ell+1} \cup \ldots \cup V_{j}, C-\right.$ ($\left.V_{\ell+1} \cup \ldots \cup V_{j}\right)$) we obtain the following corollary.

Corollary 4.2.3

If A is the μ_{f}-sequence of $G_{R}(P, C)$, then for $2 \leq \ell \leq j$, $\left\lceil\frac{\left(i_{\ell}-1\right)}{i_{\ell}}\left(b_{\ell}-b_{\ell-1}\right)\right] \leq i_{\ell}-1$.

Lemma 4.2.4

If A is the μ_{f}-sequence of $G_{R}(P, C)$, then for $\ell<j$

$$
b_{\ell+1}-b_{\ell} \leq\left\lfloor\frac{b_{j-1}+b_{j}}{i_{j}}\right\rfloor+i_{j}-1
$$

Proof: For $w \in V_{j}$ and $\ell<j$, the vertices in $V_{1} \cup \ldots \cup V_{\ell} \cup\{w\}$ can be functionally isolated by removing from G_{R} all edges in the set $E^{\prime}=$ $\left[V_{1} \cup \ldots \cup V_{\ell} \cup\{w\}, P \cup V_{\ell+1} \cup \ldots \cup\left(V_{j}-\{w\}\right)\right]=\left[V_{1} \cup \ldots \cup V_{\ell}, V_{\ell+1} \cup \ldots \cup\right.$ $\left.V_{j} \cup P\right]+\left[\{w\}, V_{\ell+1} \cup \ldots \cup V_{j-1} \cup\left(V_{j}-\{w\} \cup P\right]-\left[\{w\}, V_{1} \cup \ldots \cup V_{\ell}\right]\right.$.

Thus

$$
\begin{aligned}
b_{\ell+1} \leq & \sum_{\substack{i \leq \ell \\
t \geq \geq^{\ell+1}}} r_{i t}+\sum_{i \leq \ell} s_{i}+\left|\left[\{w\}, V_{\ell+1} \cup \ldots \cup V_{j-1} \cup\left(V_{j}-\{w\}\right) \cup P\right]\right| \\
& \quad-\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{\ell}\right]\right| \\
= & b_{\ell}+\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{j-1} \cup\left(V_{j}-\{w\}\right) \cup P\right]\right|-2\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{\ell}\right]\right| \\
\leq & b_{\ell}+\left|\left[\{w\}, V_{1} \cup \ldots \cup V_{j-1}\right]\right|+i_{j}-1+|[\{w\}, P]| .
\end{aligned}
$$

Now summing over all $w \in V_{j}$ gives

$$
i_{j}\left(b_{\ell+1}-b_{\ell}\right) \leq\left|\left[V_{j}, V_{1} \cup \ldots \cup V_{j-1}\right]\right|+i_{j}\left(i_{j}-1\right)+s_{j}
$$

and since $b_{j-1}=\left|\left[V_{j}, V_{1} \cup \ldots \cup V_{j-1}\right]\right|+\sum_{i=1}^{j-1} s_{i}$ it follows that

$$
\begin{aligned}
& \qquad i_{j}\left(b_{\ell+1}-b_{\ell}\right) \leq b_{j-1}-\sum_{i=1}^{j-1} s_{i}+i_{j}\left(i_{j}-1\right)+b_{j}-\sum_{i=1}^{j-1} s_{i} \\
& \text { Hence } \quad i_{j}\left(b_{\ell+1}-b_{\ell}\right) \leq b_{j-1}+i_{j}\left(i_{j}-1\right)-2 \sum_{i=1}^{j-1} s_{i}+b_{j} \\
& \leq b_{j-1}+i_{j}\left(i_{j}-1\right)+b_{j} .
\end{aligned}
$$

Thus $\quad b_{\ell+1}-b_{\ell} \leq\left\lfloor\frac{b_{j-1}+b_{j}}{i_{j}}\right\rfloor+i_{j}-1$.

Corollary 4.2.4

If A is the μ_{f}-sequence of $G_{R}(P, C)$, then for $1 \leq t \leq q-1 \leq j-1$,

$$
b_{t}-b_{t-1} \leq i_{q}-1+\left\lfloor\frac{b_{q}+b_{q-1}}{i_{q}}\right\rfloor
$$

Lemma 4.2.5

If A is the μ_{f}-sequence of $G_{R}(P, C)$ for which $j=1$, then $m=1$ or $b_{1} \leq m$.

Proof: Let $A: a_{1}=a_{2}=\ldots=a_{m}=b_{1}$ be the μ_{f}-sequence of G_{R} and let $v \in C$. Since v can be functionally isolated by the removal of the edges incident with v and since there exists $v^{*} \in C$ for which $\left|\left[\left\{v^{*}\right\}, P\right]\right| \leq$ $\frac{\|C, P\|}{m}=\frac{b_{1}}{m}$, it follows that

$$
b_{1} \leq \operatorname{deg} v^{*} \leq m-1+\frac{b_{1}}{m}
$$

hence $b_{1}(m-1) \leq(m-1) m$.
Consequently $m=1$ or $b_{1} \leq m$.

For the ranked supply graph $G_{R}=G_{R}(P, C)$ with A as μ_{f}-sequence with $j \geq 2$, lemma 4.2.5 together with the fact that $a_{1}, a_{2}, \ldots, a_{i_{1}}$ is the μ_{f} sequence of $G_{R}\left(P \cup V_{2} \cup \ldots \cup V_{j}, V_{1}\right)$ leads to the following corollary.

Corollary 4.2.5

For the μ_{f}-sequence of the ranked supply graph $G_{R}(P, C), b_{1} \leq i_{1}$ or $i_{1}=1$.

Lemma 4.2.6

If A is the μ_{f}-sequence of $G_{R}(P, C)$, then

$$
b_{j-1}+b_{j} \geq\left(b_{1}-i_{j}+1\right) i_{j}
$$

Proof: Let $w \in V_{j}$ be a vertex of smallest degree in $G_{R}-E\left(\left\langle V_{j}\right\rangle\right)$, then $\operatorname{deg}_{G_{R}} w \leq i_{j}-1+\left\lfloor\frac{\sum_{i=1}^{j-1} r_{\ell j}+s_{j}}{i_{j}}\right\rfloor$. Hence

$$
b_{1} \leq i_{j}-1+\left\lfloor\frac{\sum_{\ell=1}^{j-1} r_{\ell j}+s_{j}}{i_{j}}\right\rfloor \leq i_{j}-1+\left\lfloor\frac{b_{j-1}+b_{j}}{i_{j}}\right\rfloor
$$

and consequently $\left(b_{1}-i_{j}+1\right) i_{j} \leq b_{j-1}+b_{j}$.

This condition is clearly satisfied if $i_{j} \leq 2$ and since $a_{1}, a_{2}, \ldots, a_{i_{1}+\ldots+i_{\ell}}$ is the μ_{f}-sequence of $G_{R}\left(P \cup V_{\ell+1} \cup \ldots \cup V_{j}, V_{1} \cup \ldots \cup V_{\ell}\right)$ for $\ell \in\{2, \ldots, j\}$ the next corollary follows.

Corollary 4.2.6

If A is the μ_{f}-sequence of $G_{R}(P, C)$ then $b_{\ell-1}+b_{\ell} \geq\left(b_{1}-i_{\ell}+1\right) i_{\ell}$ for $\ell \in\{2, \ldots, j\}$ and $i_{\ell} \geq 3$.

Lemma 4.2.7

If A is the μ_{f}-sequence of $G_{R}(P, C)$, let $2 \leq t+2 \leq n \leq j$ and $a_{m}=b_{r}$ for

$$
\begin{aligned}
& m=\left\{\begin{array}{l}
i_{1}+\ldots+i_{t}+i_{n}+\ldots+i_{j}=\left|V_{1} \cup \ldots \cup V_{t} \cup V_{n} \cup \ldots \cup V_{j}\right| \text { if } t \geq 1 \\
i_{n}+\ldots+i_{j}=\left|V_{n} \cup \ldots \cup V_{j}\right| \text { if } t=0,
\end{array}\right. \text { then } \\
& b_{r}-b_{t}<b_{j}-b_{n-1}+2 i_{n-1} i_{n} \text { if } t \geq 1 \text { and } \\
& b_{r}<b_{j}-b_{n-1}+2 i_{n-1} i_{n} \text { if } t=0 .
\end{aligned}
$$

Proof: If G is a ranked supply graph, the functional isolation of $V_{1} \cup V_{2} U$ $\ldots \cup V_{r}$ requires fewer edge removals than the functional isolation of

$$
S= \begin{cases}V_{1} \cup \ldots \cup V_{t} \cup V_{n} \cup \ldots \cup V_{j} & \text { if } t \geq 1 \\ V_{n} \cup \ldots \cup V_{t} & \text { if } t=0 .\end{cases}
$$

Consequently, if $t \geq 1$

$$
b_{r}<b_{t}+b_{j}-b_{n-1}+2\left|\left[V_{n-1}, V_{n}\right]\right|
$$

whence we obtain

$$
b_{r}-b_{t}<b_{j}-b_{n-1}+2 i_{n-1} i_{n}
$$

and, if $t=0$,

$$
b_{r}<b_{j}-b_{n-1}+2 i_{n-1} i_{n} .
$$

Corollary 4.2.7

If A is the μ_{f}-sequence of $G_{R}(P, C)$ then for $n \leq q \leq j$,

$$
\begin{aligned}
b_{r}-b_{t} & <b_{q}-b_{n-1}+2 i_{n-1} i_{n} \\
b_{r} & \text { if } t \geq 1 \text { and } \\
b_{q}-b_{n-1}+2 i_{n-1} i_{n} & \text { if } t=0 .
\end{aligned}
$$

The necessary conditions for a sequence A, of positive non-decreasing integers, to be the μ_{f}-sequence of a ranked supply graph can be summarized as follows:-
1.) $b_{1} \leq i_{1}$ or $i_{1}=1$.
2) $\left|\frac{\left(i_{\ell}-1\right)}{i_{\ell}}\left(b_{\ell}-b_{\ell-1}\right)\right| \leq i_{\ell}-1 \quad 2 \leq \ell \leq j$
3) $b_{t}-b_{t-1} \leq i_{q}-1+\left\lfloor\frac{b_{q}+b_{q-1}}{i_{q}}\right\rfloor \quad i \leq t \leq q-1 \leq j-1$
4) $b_{\ell-1}+b_{\ell} \geq\left(b_{1}-i_{\ell}+1\right) i_{\ell} \quad 2 \leq \ell \leq j$
5) $b_{\ell-1}-b_{\ell-2} \leq b_{\ell}-b_{\ell-1}+2 i_{\ell} i_{\ell-1} \quad 3 \leq \ell \leq j$

That these conditions are independent can be shown by the following sequences

$$
A_{1}: 1,1,1,3,3,5,5
$$

$A_{2}: 3,3,5,5,7,7$
$A_{3}: 1,1,4,4,7,7$
$A_{4}: a_{1}=1, a_{2}=\ldots=a_{13}=10, a_{14}=\ldots=a_{18}=11$
$A_{5}: a_{1}=\ldots=a_{10}=10 ; a_{11}=\ldots=a_{13}=11 ; a_{14}=\ldots=a_{16}=12$
$A_{6}: 2,2,10,11$
A_{1} satisfies all conditions, A_{2} satisfies all but condition $1, A_{3}$ satisfies all but condition $2, A_{4}$ satisfies all but condition $3, A_{5}$ satisfies all but condition 4 and A_{6} satisfies all but condition 5.

Theorem 4.2.8 If A is a non-decreasing sequence of m positive numbers, $A: a_{1}, a_{2}, \ldots, a_{m}$, where $a_{1}=\ldots=a_{i_{1}}=b_{1}<a_{i_{1}+1}=\ldots=a_{i_{1}+i_{2}}=$
$b_{2}<\ldots<a_{i_{1}+\ldots i_{j-1}+1}=\ldots=a_{i_{1}+\ldots+i_{j-1}+i_{j}}=b_{j}, m=i_{1}+i_{2}+\ldots+i_{j}$, and A satisfies the following conditions

$$
\begin{gather*}
b_{1} \leq i_{1} \text { or } i_{1}=1 \tag{1}\\
\left\lceil\left(i_{\ell}-1\right)\left(b_{\ell}-b_{\ell-1}\right) / i_{\ell}\right\rceil \leq i_{\ell}-1 \text { for } 2 \leq \ell \leq j \tag{2}\\
b_{\ell-1}+b_{\ell} \geq\left(b_{1}-i_{\ell}+1\right) i_{\ell} \text { for } 2 \leq \ell \leq j \tag{3}\\
b_{t}-b_{t-1} \leq i_{q}-1+\left\lfloor\left(b_{q}+b_{q-1}\right) / i_{q}\right\rfloor \text { for } 2 \leq t \leq q-1 \leq j-1 \tag{4}\\
b_{q-1}-b_{q-2} \leq b_{q}-b_{q-1}+2 i_{q} i_{q-1} \text { for } 3 \leq q \leq j, \tag{5}
\end{gather*}
$$

then there exists a ranked supply graph $G_{R}=G_{R}(P, C)$ with $|C|=m$ which has A as its μ_{f}-sequence.

Proof: We construct a sequence of supply graphs, $G_{1}, G_{2}, \ldots, G_{j}$ as follows:
$G_{1}=G_{1}\left(P_{1}, C_{1}\right)$ is a graph with $C_{1}=V_{1}($ say $),\left|V_{1}\right|=i_{1},\left\langle V_{1}\right\rangle \cong K_{i_{1}}$ and each vertex in V_{1} is adjacent to $\left\lfloor b_{1} / i_{1}\right\rfloor$ or $\left\lceil b_{1} / i_{1}\right\rceil$ vertices in P_{1}, so that $\left|\left[V_{1}, P_{1}\right]\right|=b_{1}$. (The only restriction on P_{1} is that $\left|P_{1}\right| \geq\left\lceil b_{1} / i_{1}\right\rceil$. Let $\left\langle P_{1}\right\rangle$ be empty.)

Suppose that G_{1}, \ldots, G_{ℓ} have been defined $(1 \leq \ell \leq j-1)$ where, for $1 \leq h \leq \ell, G_{h}=G_{h}\left(P_{h}, C_{h}\right), C_{h}=V_{1} \cup \ldots \cup V_{h},\left\langle V_{1}\right\rangle_{G_{h}} \cong K_{i_{1}}, \ldots,\left\langle V_{h}\right\rangle_{G_{h}} \cong$ $K_{i_{h}}$, and, for $s_{h}=\left|\left[V_{h}, P_{h}\right]\right|$, each vertex in V_{h} is on $\left\lceil s_{h} / i_{h}\right\rceil$ or $\left\lfloor s_{h} / i_{h}\right\rfloor$ edges of $\left[V_{h}, P_{\ell}\right]$ in G_{ℓ}. Furthermore, $b_{\ell}-\sum_{i=1}^{\ell=1} s_{i}=s_{\ell}$.

We next define $G_{\ell+1}=G_{\ell+1}\left(P_{\ell+1}, C_{\ell+1}\right) ; C_{\ell+1}=V_{1} \cup \ldots \cup V_{\ell} \cup V_{\ell+1}$, where $\left|V_{\ell+1}\right|=i_{\ell}$ and $\left\langle V_{\ell+1}\right\rangle_{G_{\ell+1}} \cong K_{i_{\ell+1}}$. The edge set $E\left(G_{\ell+1}\right)$ consists of all the edges in $E\left(G_{\ell}\right)-\left[V_{\ell}, P_{\ell}\right]$ together with $E\left(\left\langle V_{\ell+1}\right\rangle\right)$ and a set F_{ℓ} defined as follows:

Case (a): If $s_{\ell} \leq i_{\ell} i_{\ell+1}$, then for each edge $e=u v \in\left[V_{\ell}, P_{\ell}\right]$ with $u \in V_{\ell}, v \in P_{\ell}, F_{\ell}$ contains the edges $e^{\prime}=u w$ and $e^{\prime \prime}=w v$ (with
$\left.w \in V_{\ell+1}\right)$, assigned so that each vertex w in $V_{\ell+1}$ is on $\left\lceil s_{\ell} / i_{\ell+1}\right\rceil$ or $\left\lfloor s_{\ell} / i_{\ell+1}\right\rfloor$ such edges of $\left[V_{\ell}, V_{\ell+1}\right]$. Finally a further set of $b_{\ell+1}-b_{\ell}$ edges is inserted into $\left[V_{\ell+1}, P_{\ell+1}\right]$ in F_{ℓ} and $\left|\left[V_{\ell+1}, P_{\ell+1}\right]\right|$ is denoted by $s_{\ell+1}$, where the edges of $\left[V_{\ell+1}, P_{\ell+1}\right]$ are chosen so that each vertex in $V_{\ell+1}$ is on $\left[s_{\ell+1} / i_{\ell+1}\right]$ or $\left\lfloor s_{\ell+1} / i_{\ell+1}\right\rfloor$ edges of $\left[V_{\ell+1}, P_{\ell+1}\right]$. In this case in $G_{\ell+1},\left[V_{\ell}, P_{\ell+1}\right]=\emptyset$ and (in $G_{\ell+1}$) $s_{\ell}=0$ (whereas $s_{\ell}=b_{\ell}-\sum_{i=1}^{\ell-1} s_{i}$ in G_{ℓ}), so $s_{\ell+1}=b_{\ell+1}-b_{\ell}=$ $b_{\ell+1}-\sum_{i=1}^{\ell-1} s_{i}=b_{\ell+1}-\sum_{i=1}^{\ell} s_{i} . P_{\ell+1}$ is equal to P_{ℓ} if $\left\lceil s_{\ell+1} / i_{\ell}\right\rceil \leq\left|P_{\ell}\right|$ and is a superset of P_{ℓ} of size $\left\lceil s_{\ell+1} / i_{\ell+1}\right\rceil$ otherwise, inducing an empty subgraph in $G_{\ell+1}$.

Case (b): If $s_{\ell}>i_{\ell} i_{\ell+1}$, we recall that each vertex in V_{ℓ} is on $\left\lfloor s_{\ell} / i_{\ell}\right\rfloor$ or $\left\lceil s_{\ell} / i_{\ell}\right]$ edges of $\left[V_{\ell}, P_{\ell}\right]$, hence on at least $i_{\ell+1}$ edges of $\left[V_{\ell}, P_{\ell}\right]$ in G_{ℓ}. For each $u \in V_{\ell}$, insert into $F_{\ell}, i_{\ell+1}$ edges in $\left[\{u\}, V_{\ell+1}\right]$ (so $\left\langle V_{\ell} \cup V_{\ell+1}\right\rangle_{G_{\ell+1}} \cong$ $\left.K_{i_{\ell}+i_{\ell+1}}\right)$ as well as the set of $\left\lceil s_{\ell} / i_{\ell}\right\rceil-i_{\ell+1}$ or $\left\lfloor s_{\ell} / i_{\ell}\right\rfloor-i_{\ell+1}$ edges of $\left[\{u\}, P_{\ell}\right]$ remaining after the removal of any edges from $\left[\{u\}, P_{\ell}\right]_{G_{\ell}}$. Finally $s_{\ell+1}=b_{\ell+1}-b_{\ell}+i_{\ell} i_{\ell+1}$ edges of $\left[V_{\ell+1}, P_{\ell+1}\right]$ are inserted into F_{ℓ}, so that each vertex of $V_{\ell+1}$ is on $\left\lfloor s_{\ell+1} / i_{\ell+1}\right\rfloor$ or $\left\lceil s_{\ell+1} / i_{\ell+1}\right\rceil$ of them. The set $P_{\ell+1}$ equals P_{ℓ} if $\left\lceil s_{\ell+1} / i_{\ell+1}\right\rceil \leq\left|P_{\ell}\right|$ and is a superset of P_{ℓ} with $\left|P_{\ell+1}\right|=\left\lceil s_{\ell+1} / i_{\ell+1}\right\rceil$ otherwise, inducing an empty subgraph in $G_{\ell+1}$. Finally the symbol s_{ℓ} is changed to denote $\left|\left[V_{\ell}, P_{\ell+1}\right]_{G_{\ell+1}}\right|$ (i.e. s_{ℓ} in G_{ℓ} is reduced by $i_{\ell} i_{\ell+1}$ to s_{ℓ} in $\left.G_{\ell+1}\right)$. Thereafter $s_{\ell+1}=b_{\ell+1}-b_{\ell}+i_{\ell} i_{\ell+1}=b_{\ell+1}-\left(b_{\ell}-i_{\ell} i_{\ell+1}\right)=b_{\ell+1}-\sum_{i=1}^{\ell} s_{i}$. Note that in $G_{\ell+1}$, for $1 \leq h \leq \ell+1$, each vertex of V_{h} is on $\left\lceil s_{h} / i_{h}\right\rceil$ or $\left\lfloor s_{h} / i_{h}\right\rfloor$ edges in [$\left.V_{h}, P_{\ell+1}\right]$, as required in the inductive definition.

Note that in this case, as in (a), it may be said that each edge $e=$ $u v \in\left[V_{\ell}, P_{\ell}\right]_{G_{\ell}}-\left[V_{\ell}, P_{\ell+1}\right]_{G_{\ell+1}}\left(u \in V_{\ell}, v \in P_{\ell}\right)$ is replaced by $e^{\prime}=u w \in$ $\left[V_{\ell}, V_{\ell+1}\right]_{G_{\ell+1}}$ and $e^{\prime \prime}=w v \in\left[V_{\ell+1}, P_{\ell+1}\right]_{G_{\ell+1}}$ and we shall say that $e^{\prime}, e^{\prime \prime}$ correspond to e.

Now let $G_{R}(P, C)=G_{j}\left(P_{j}, C_{j}\right)$ and denote the μ_{f}-sequence of $G_{\ell}\left(P_{\ell}, C_{\ell}\right)$
by $D^{\ell}: d_{1}^{\ell}, d_{2}^{\ell}, \ldots, d_{i_{1}+\ldots+i_{\ell}}^{\ell}$. We shall prove by induction on ℓ that D^{ℓ} is $a_{1}, a_{2}, \ldots, a_{i_{1}+\ldots+i_{\ell}}:$

Let $\ell=1$. The i_{1} vertices in V_{1} can be functionally isolated in $G_{1}\left(P_{1}, C_{1}\right)$ by the removal of the b_{1} edges in $\left[V_{1}, P_{1}\right]$. If $i_{1} \geq 2$, then the fundamental isolation of exactly k vertices of V_{1} in $G_{1}\left(P_{1}, C_{1}\right)$ (for $1 \leq k<i_{1}$) requires the removal of at least $n_{k}=k\left(i_{1}-k\right)+k\left\lfloor b_{1} / i_{1}\right\rfloor$ edges. We recall that in this case, by condition (1), $b_{1} \leq i_{1}$. However, the use of elementary calculus yields $n_{k} \geq i_{1}-1+\left\lfloor b_{1} / i_{1}\right\rfloor$. Hence $n_{k} \geq b_{1}$ for $k=1, \ldots, i_{1}-1$ and so $d_{1}^{1}=\ldots=d_{i_{1}}^{1}=b_{1}$, as required.

We now assume that D^{n} is $a_{1}, a_{2}, \ldots, a_{i_{1}+\ldots+i_{r}}$ for all integers r satisfying $1 \leq r \leq \ell$ and that $V_{1} \cup \ldots \cup V_{r}$ can be isolated by the removal of b_{r} edges. To show that $D^{\ell+1}$ is $a_{1}, a_{2}, \ldots, a_{i_{1}+. .+i_{\ell}+i_{\ell+1}}$, we establish a few lemmas.

Lemma 4.2.9 If $\ell \in\{1,2, \ldots, j-1\}$ and $S \subseteq C_{\ell}$, the minimum number of edges required to be removed in G_{ℓ} and in $G_{\ell+1}$ for the functional isolation of S are equal.

Proof: Let the minimum number of edges whose removal from G_{ℓ} (or $G_{\ell+1}$) functionally isolates S be α (or β, respectively) and let $F^{\prime} \subseteq E\left(G_{\ell}\right), F^{\prime \prime} \subseteq$ $E\left(G_{\ell+1}\right)$ such that $\left|F^{\prime}\right|=\alpha,\left|F^{\prime \prime}\right|=\beta$ and S is functionally isolated in both $G_{\ell}-F^{\prime}$ and $G_{\ell+1}-F^{\prime \prime}$. Then, by replacing each edge e in $F^{\prime} \cap\left[V_{\ell}, P_{\ell}\right]-E\left(G_{\ell+1}\right)$ by a corresponding edge e^{\prime} in $\left[V_{\ell}, V_{\ell+1}\right]$, we obtain from F^{\prime} a set $F^{\prime \prime \prime} \subseteq E\left(G_{\ell+1}\right)$ with $\left|F^{\prime \prime \prime}\right|=\left|F^{\prime}\right|=\alpha$ such that S is functionally isolated in $G_{\ell+1}$. Hence $\beta \leq \alpha$. Conversely, by replacing every edge $e^{\prime} \in F^{\prime \prime} \cap\left[V_{\ell}, V_{\ell+1}\right]$ or $e^{\prime \prime} \in F^{\prime \prime} \cap\left[V_{\ell+1}, P_{\ell+1}\right]$ by the corresponding edge e in $\left[V_{\ell}, P_{\ell}\right]$, we obtain a set $F^{I V}$ from $F^{\prime \prime}$ with $\left|F^{I V}\right| \leq\left|F^{\prime \prime}\right|$ such that S is functionally isolated in $G_{\ell}-F^{I V}$. So $\alpha \leq\left|F^{I V}\right| \leq\left|F^{\prime \prime}\right|=\beta$ and hence $\alpha=\beta$.

We now suppose that $D^{\ell+1} \neq a_{1}, a_{2}, \ldots, a_{i_{1}+\ldots+i_{\ell+1}}$ and let i be the largest index for which $a_{i} \neq d_{i}^{\ell+1}$; say $a_{i}=b_{r}$. Let $S \subseteq C_{\ell+1}$ such that $|S|=i$ and S can be functionally isolated in $G_{\ell+1}$ by the removal of a set F of $d_{i}^{\ell+1}$ edges of $G_{\ell+1}$. For $i=1,2, \ldots, \ell+1$, let $V_{i} \cap S=S_{i}$ and $V_{i}-S_{i}=T_{i}$.

Lemma 4.2.10

a) $i<i_{1}+\ldots+i_{\ell+1}=\left|C_{\ell+1}\right|$,
b) $a_{i}<d_{i}^{\ell+1}$,
c) $d_{i}^{\ell+1}<d_{i+1}^{\ell+1}$,
d) $S \cap V_{\ell+1} \neq \emptyset$.

Proof: That (a) holds is obvious, as the functional isolation of all vertices in $C_{\ell+1}$ requires removal of the $\sum_{i=1}^{\ell+1} s_{i}\left(=b_{\ell+1}\right)$ edges in $\left[C_{\ell+1}, P_{\ell+1}\right]$. Furthermore, as the set $V_{1} \cup \ldots \cup V_{r}$ of $i_{1}+\ldots+i_{r}(\geq i)$ vertices can be functionally isolated by the removal from $G_{\ell+1}$ of the b_{r} edges in $\left[V_{1} \cup \ldots \cup\right.$ $\left.V_{r}, V_{\ell+1} \cup P_{\ell+1}\right]$, it follows that $d_{i}^{\ell+1} \leq b_{r}=a_{i}$ and so $d_{i}^{\ell+1}<a_{i}$. From our choice of i it follows that $d_{i+1}^{\ell+1}=a_{i+1}$ and so $d_{i}^{\ell+1}<a_{i} \leq a_{i+1}=d_{i+1}^{\ell+1}$, whence (c) follows. If $S \cap V_{\ell+1}=\emptyset$, then $S \subseteq C_{\ell}$ and so, by Lemma 4.2.9 and the inductive hypothesis, $d_{i}^{\ell+1}=d_{i}^{\ell}=a_{i}$, a contradiction.

Lemma 4.2.11 If $S \cap V_{1} \neq \emptyset$, then $V_{1} \subseteq S$, i.e., $V_{1}=S_{1}$.

Proof: If $i_{1}=1$, this is obvious. So assume that $i_{1} \geq 2$. Note that $i_{1} \geq b_{1}$ and let F^{\prime} be the set of edges obtained from F by replacing the set of all edges in F covered by V_{1} by $\left[V_{1}, V_{2}\right]_{G_{\ell+1}}$. Then, if $S_{1} \neq V_{1},\left|F^{\prime}\right| \leq|F|$. (This is obvious if $b_{1}<i_{1}$, whereas, if $b_{1}=i_{1}$, each vertex of V_{1} is on an edge in [$\left.V_{1}, V_{2}\right]$ and so at least one of the b_{1} edges in $\left[V_{1}, V_{2}\right]$ is contained in F, at most $b_{1}-1$ in $F^{\prime}-F$, whereas $F-F^{\prime}$ contains at least $i_{1}-1\left(\geq b_{1}-1\right)$ edges.) However, the set of vertices functionally isolated in $G_{\ell+1}-F^{\prime}$ is a
proper superset of S, viz. $S \cup V_{1}$, which contradicts Lemma 4.2.10(c). So, if $S \cap V_{1} \neq \emptyset$, then $V_{1} \subseteq S$.

Lemma 4.2.12 If t is the smallest index for which $V_{t} \neq S_{t}$, then $S_{t}=\emptyset$.

Proof: The statement is obviously true if $i_{t}=1$. So assume that $i_{t} \geq 2$ and suppose that $\emptyset \neq S_{t} \neq V_{t}$; then $t \geq 2$. Furthermore, if $t=\ell+1$, then $V_{1} \cup \ldots \cup V_{\ell} \subset S$ and it is a consequence of condition (2) and the maximality of i that $S_{t}=V_{t}$, a contradiction. So $2 \leq t \leq \ell$.

Let F_{t} denote the subset of F covered by $V_{1} \cup \ldots \cup V_{t-1} \cup S_{t}$; then $V_{1} \cup . . \cup V_{t-1} \cup S_{t}$ is functionally isolated in $G_{\ell+1}-F_{t}$ by the removal of $h_{t}=\left|F_{t}\right|$ edges. By Lemma 4.2.9, $V_{1} \cup \ldots \cup V_{t-1} \cup S_{t}$ can be functionally isolated in G_{t} by the removal of $h_{t}^{\prime} \leq h_{t}$ edges. By the inductive hypothesis all vertices in $V_{1} \cup . . \cup V_{t-1} \cup V_{t}$ can be functionally isolated in G_{ℓ} (hence, by Lemma 4.2.9, in $G_{\ell+1}$) by the removal of b_{t} edges and $b_{t} \leq h_{t}^{\prime} \leq h_{t}=\left|F_{t}\right|$. So $S \cup T_{t}$ can be functionally isolated in $G_{\ell+1}$ by the removal of the $d_{i}^{\ell+1}-h_{t}+b_{t}\left(\leq d_{i}\right)$ edges in $\left(F-F_{t}\right) \cup\left[V_{1} \cup, \ldots, \cup V_{t}, V_{t+1} \cup P_{\ell+1}\right]$. But $S \cup T_{t}$ is a proper superset of S and so Lemma 4.2.10(c) is contradicted. Hence it follows that $S_{t}=\emptyset$.

For the following Lemma t is defined as above, so $t \leq \ell$, and we note that, as $S_{\ell+1} \neq \emptyset$, there exists some $q \geq t+1$ for which $S_{q} \neq \emptyset$.

Lemma 4.2.13 If q is the smallest index such that $q \geq t+1$ and $S_{q} \neq \emptyset$, then $S_{q}=V_{q}$.

Proof: Denote by n_{1} and n_{2} the smallest number of edges of G_{q} the removal of which functionally isolates the sets $V_{1} \cup \ldots \cup V_{t-1} \cup S_{q}$ and $V_{1} \cup . . \cup V_{t-1} \cup V_{q}$. Suppose that $S_{q} \neq V_{q}$; then $i_{q} \geq 2$ and, by Lemma 4.2.10(c), $n_{1}<n_{2}$. We note that in $G_{q},\left|\left[V_{q}, V_{q-1}\right]\right|=b_{q-1}-\sum_{i=1}^{q-1} s_{i}$ and $\left|\left[V_{q}, P_{q}\right]\right|=b_{q}-\sum_{i=1}^{q-1} s_{i}$; so, for
$x \in S_{q},\left|\left[S_{q}, V_{q-1} \cup P_{q}\right]\right| \geq\left|\left[\{x\}, V_{q-1} \cup P_{q}\right]\right| \geq\left\lfloor\left(b_{q-1}+b_{q}-2 \sum_{i=1}^{q-1} s_{i}\right) / i_{q}\right\rfloor$.

$$
\text { Now } \begin{aligned}
n_{1} & =b_{t-1}+\left|\left[S_{q}, V_{q-1} \cup T_{q} \cup P_{q}\right]\right| \\
& =b_{t-1}+\left|S_{q}\right|\left|T_{q}\right|+\left|\left[S_{q}, V_{q-1} \cup P_{q}\right]\right| \\
& \geq b_{t-1}+i_{q}-1+\left\lfloor\left(b_{q-1}+b_{q}-2 \sum_{i=1}^{q-1} s_{i}\right) / i_{q}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
n_{2} & =b_{t-1}+\left|\left[V_{q-1}, V_{q} \cup P_{q}\right]\right| \\
& =b_{t-1}+b_{q-1}+b_{q}-2 \sum_{i=1}^{q-1} s_{i} .
\end{aligned}
$$

So, as $n_{2} \geq n_{1}+1$,

$$
\begin{align*}
b_{q}+b_{q-1}-2 \sum_{i=1}^{q-1} s_{i} & \geq i_{q}+\left\lfloor\left(b_{q-1}+b_{q}-2 \sum_{i=1}^{q-1} s_{i}\right) / i_{q}\right\rfloor \\
& >i_{q}-1+\left(b_{q-1}+b_{q}-2 \sum_{i=1}^{q-1} s_{i}\right) / i_{q} \tag{4.2.13.1}
\end{align*}
$$

But, by condition (4),

$$
\begin{equation*}
b_{q}+b_{q-1} \leq i_{q}-1+\left(b_{q-1}+b_{q}-2 \sum_{i=1}^{q-1} s_{i}\right) / i_{q} . \tag{4.2.13.2}
\end{equation*}
$$

Now (4.2.13.2)-(4.2.13.1) yields $\sum_{i=1}^{q-1} s_{i}<\left(\sum_{i=1}^{q-1} s_{i}\right) / i_{q}$, a contradiction, from which it follows that $S_{q}=V_{q}$.

By applying the conditions (1) to (5) and the techniques used in the proofs of Lemma 4.2.12 and Lemma 4.2.13 in the obvious manner, we obtain the following result:

Lemma 4.2.14 If, for $i \in\{1, . ., \ell+1\}, S_{i} \neq \emptyset$, then $S_{i}=V_{i}$.

Lemma 4.2.15 If S is chosen to yield the largest possible value of t, then $S=V_{1} \cup \ldots \cup V_{x} \cup V_{y} \cup \ldots \cup V_{\ell+1}$ for some indices x, y satisfying $1 \leq x<x+2 \leq y \leq \ell+1$.

Proof: Let y be the largest number in $\{1, \ldots, \ell+1\}$ for which $S_{y-1} \neq V_{y-1}$ (i.e., $S_{y-1}=\emptyset$). Then $V_{y} \cup . . \cup V_{\ell+1} \subset S$ and we note that, as observed in the proof of Lemma 4.2.12, $V_{1} \cup \ldots \cup V_{\ell} \not \subset S$, so y exists and, by Lemma 4.2.10, $y \geq t+1$.

Let $S^{\prime}=S-\left(V_{x} \cup \ldots \cup V_{\ell+1}\right),\left|S^{\prime}\right|=i^{\prime}$ and $a_{i^{\prime}}=b_{x}$, then $\left|V_{1} \cup \ldots \cup V_{x}\right| \geq$ $\left|S^{\prime}\right|=i^{\prime}$.

Denote by $f, f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ the smallest numbers of edges whose removal from $G_{\ell+1}$ functionally isolates $S, S^{\prime}, V_{1} \cup \ldots \cup V_{x}$ and $V_{1} \cup \ldots \cup V_{x} \cup V_{y} \cup$ $\ldots \cup V_{\ell+1}$, respectively. Then $f=f^{\prime}+f^{\prime \prime}$ and $f^{\prime \prime \prime}=f^{\prime \prime}+b_{x}$.

Note that $f^{\prime} \geq a_{i^{\prime}}=b_{x}$ (by the inductive hypothesis and Lemma 4.2.9). By our choice of $S, f \leq f^{\prime \prime \prime}$ and, if $S^{\prime} \neq V_{1} \cup \ldots \cup V_{x}$, then $f<f^{\prime \prime \prime}$; hence $f^{\prime}<b_{x}$, a contradiction. So $S^{\prime}=V_{1} \cup \ldots \cup V_{x}$.

Lemma 4.2.16 $S=V_{1} \cup \ldots \cup V_{t} \cup V_{n} \cup \ldots \cup V_{\ell+1}$, where $1 \leq t<n \leq \ell+1$.

Proof: Let $S^{\prime \prime}=S-\left(V_{n} \cup \ldots \cup V_{\ell+1}\right)$ and $i^{\prime \prime}=\left|S^{\prime \prime}\right|$; then $S^{\prime \prime} \subset C_{\ell}$ and so, by Lemma 4.2.9 and the inductive hypothesis, the functional isolation of $S^{\prime \prime}$ in G_{ℓ} (and in $G_{\ell+1}$) requires the removal of at least $a_{i^{\prime \prime}}$ edges. Let $a_{i^{\prime \prime}}=b_{m}$ and let $f^{\prime \prime}=\left|\left[S^{\prime \prime}, V\left(G_{\ell}\right)-S^{\prime \prime}\right]\right|$. Then $f^{\prime \prime} \geq b_{m}$ with equality attained if and only if $S^{\prime \prime}=V_{1} \cup \ldots \cup V_{m}$ (as $m \geq\left|S^{\prime \prime}\right|=i^{\prime \prime}$ and i is maximal).

Furthermore, as $\left|V_{1} \cup \ldots \cup V_{m} \cup V_{n} \cup \ldots \cup V_{\ell+1}\right| \geq i$ and the functional isolation of $V_{1} \cup \ldots \cup V_{m} \cup V_{n} \cup \ldots \cup V_{\ell+1}$ is accomplished by the removal of $b_{m}+r_{n-1}+\sum_{i=n}^{\ell+1} s_{i}$ edges, it follows that $d_{i}^{\ell+1} \leq b_{m}+r_{n-1}+\sum_{i=n}^{\ell+1} s_{i}$. However, $d_{i}^{\ell+1}=f^{\prime \prime}+r_{n-1}+\sum_{i=n}^{\ell+1} s_{i}$; so $f^{\prime \prime}<b_{m}$ and consequently $f^{\prime \prime}=b_{m}$. It follows that $S^{\prime \prime}=V_{1} \cup \ldots \cup V_{m}$ and $m=t$, as required.

We are now able to complete the proof of the theorem:

If $r_{n-1}=i_{n-1} i_{n}$, then $d_{i}^{\ell+1}=b_{t}+i_{n-1} i_{n}+\sum_{i=n}^{\ell+1} s_{i}=b_{t}+b_{\ell+1}-b_{n-1}+2 i_{n-1} i_{n} ;$ so $b_{r}>d_{i}^{\ell+1}=b_{t}+b_{\ell+1}-b_{n-1}+2 i_{n-1} i_{n}$, which contradicts condition (5).

Hence $r_{n-1}<i_{n-1} i_{n}$ and (by the definition of $G_{\ell+1}$) $s_{n-1}=0$. We note that $1 \leq b_{n-1}-b_{n-2}=r_{n-1}+s_{n-1}-r_{n-2}=r_{n-1}-r_{n-2}$ and so $r_{n-1}>r_{n-2}$. It now follows that the functional isolation of $S \cup V_{n-1}=$ $V_{1} \cup \ldots \cup V_{t} \cup V_{n-1} \cup V_{n} \cup \ldots \cup V_{\ell+1}$ in $G_{\ell+1}$ may be accomplished by the removal of $b_{t}+r_{n-2}+\sum_{i=n}^{\ell+1} s_{i}<b_{t}+r_{n-1}+\sum_{i=n}^{\ell+1} s_{i}=b_{i}^{\ell+1}$ edges, which is impossible, as $\left|S \cup V_{n-1}\right|>|S|=i$ and $b_{i+1}^{\ell+1}>b_{i}^{\ell+1}$. This contradiction completes the proof of the theorem.

We conclude this chapter with the conjecture:

Every supply graph is a ranked supply graph.

Bibliography

[BBGLP1] Bagga, K.S. Beineke, L.W., Goddard, W.D., Lipman, M.J. and Pippert, R.E., A Survey of Integrity, Discrete Applied Math. (to appear)
[BBLP1] K.S. Bagga, L.W. Beineke, M.J. Lipman and R.E. Pippert, On the edge-integrity of graphs. Congressus Numerantium $60(1987), 141-144$.
[BBLP2] K.S. Bagga, L.W. Beineke, M.J. Lipman, and R.E. Pippert, The integrity of the prism (Preliminary report). Abstracts Amer. Math. Soc. 10(1989), 12. Abstract 847-05-469.
[BBLP3] K.S. Bagga, L.W. Beineke, M.J. Lipman, and R.E. Pippert, Some bounds and an algorithm for the edge-integrity of trees. (Submitted).
[BBLP4] K.S. Bagga, L.W. Beineke, M.J. Lipman, and R.E. Pippert, On the honesty of complementary graphs. To appear: Discrete App. Maths.
[BBLPS1] K.S. Bagga, L.W. Beineke, M.J. Lipman, R.E. Pippert, and R.L. Sedlmeyer, A good algorithm for the computation of the edge-integrity of trees. Congressus Numerantium 67(1988), 225-232.
[BBLPS2] K.S. Bagga, L.W. Beineke, M.J. Lipman, R.E. Pippert, and R.L. Sedlmeyer, Extensions of an algorithm for computing the edge-integrity of trees.
[BBLP5] K.S. Bagga, L.W. Beineke, M.J. Lipman, and R.E. Pippert, Edge-Integrity: A Survey (to appear).
[BBLPS3] K.S. Bagga, L.W. Beineke, M.J. Lipman, R.E. Pippert, and R.L. Sedlmeyer, Some Bounds and an Algorithm for EdgeIntegrity of Trees, J. Combin. Math. Combin. Comput. (To appear).
[BD1] K.S. Bagga, and J.S. Deogun, A Variation on the EdgeIntegrity (to appear).
[BD2] K.S. Bagga and J.S. Deogun, Pure Edge-Integrity - A New Measure of Integrity (under preparation).
[BM1] H.J. Bandelt and H.M. Mulder, Distance-hereditary graphs. J. Combin. Theory B 41(1986), 183-208.
[BES1] C.A. Barefoot, R. Entringer, and H.C. Swart, Vulnerability in graphs - A comparative survey. J. Combin. Math. Combin. Comput. 1(1987), 12-22.
[BES2] C.A. Barefoot, R. Entringer, and H.C. Swart, Integrity of trees and powers of cycles. Congressus Numerantium 58(1987), 103-114.
[BS1] D. Bauer and E. Schmeichel, Toughness and the cycle structure of graphs, Quo Vadis, Graph Theory? (Eds. J. Gimbel, J.W. Kennedy and L.V. Quintas), Annals of Discr: Math. 55(1993), 145-152.
[BT1] D. Bauer and R. Tindell, Graphs with prescribed connectivity and line graph connectivity. J. Graph Theory 3(1979) 393395.
[BGL1] L.W. Beineke, W. Goddard, and M.J. Lipman, Edge-integrity and the diameter of a graph. (in preparation).
[BGL2] L.W. Beineke, W. Goddard, and M.J. Lipman, On the edgeintegrity of graph products (in preparation).
[BH1] L.W. Beineke, and F. Harary, The connectivity function of a graph, Mathematika 14(1967), 197-202.
[B1] F.T. Boesch, The strongest monotone degree condition for n-connectedness of a graph. J. Combin. Theory 16B(1974) 162-165.
[B2] F.T. Boesch, Synthesis of reliable networks. IEEE Trans. on Reliability (1986) 240-246.
[BS2] F.T. Boesch and C.L. Suffel, Realizability of p-point graphs with prescribed minimum degree, maximum degree, and lineconnectivity. J. Graph Theory 4(1980) 363-370.
[BS3] F.T. Boesch and C.L. Suffel, Realizability of p-point graphs with prescribed minimum degree, maximum degree, and point-connectivity. Discrete Applied Math. 3(1981) 9-18.
[BT1] F.T. Boesch and R. Tindell, Circulants and their connectivities. J. Graph Theory 8(1984) 487-499.
[BT2] F.T. Boesch and R. Tindell, Connectivity and symmetry in graphs. Graphs and Applications: Proc. First Colorado Graph Theory and Applications Symposium, Wiley, New York (1985) 53-67.
[B3] B. Bollobás, On graphs with at most three independent paths connecting any two vertices. Studia. Sci. Math. Hungar. 1(1966) 137-140.
[B4] J.A. Bondy, Properties of graphs with constraints on degrees. Studia. Sci. Math. Hungar. 4(1969) 473-375.
[CS1] L Caccetta and W.F. Smyth, A Characterization of edgemaximal diameter-critical graphs. (preprint).
[CH1] G. Chartrand and F. Harary, Graphs with prescribed connectivities. Theory of Graphs, Akadémiai Kiadó, Budapest (1968) 61-63.
[CKLL1] G. Chartrand, S.F. Kapoor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[CKL1] G. Chartrand, A. Kaugars and D.R. Lick, Critically nconnected graphs. Proc. Amer. Math. Soc.32(1972) 63-68.
[CKMO1] G. Chartrand, S.F. Kapoor, T.A. McKee and O.R. Oellermann, The mean integrity of a graph.Recent Studies in Graph Theory (V.R. Kull, ed.) Vishwa International Publications, Gulbarga, India, 1989.
[CL1] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd Edition, Wadsworth \& Brooks/Cole, Monterey, CA,m 1986.
[CS2] G. Chartrand and M.J. Stewart, The connectivity of linegraphs. Math. Ann. 182 (1969) 170-174.
[C1] V. Chvátal, Tough Graphs and Hamilton circuits, Discrete Math. 5(1973) 215-228.
[CEF1] L.H. Clark, R.C. Entringer, and M.R. Fellows, Computational complexity of integrity. J. Combin. Math. Combin. Comput. 2(1987) 179-191.
[C2] C.J. Colbourn, The Combinatorics of Network Reliability. Oxford University Press, New York (1987).
[CMS1] M. Cozzens, D. Moazzami and S. Stueckle, The tenacity of a graph (to appear in SIAM J. of Discr. Math).
[CMS2] M. Cozzens, D. Moazzami and S. Stueckle, The tenacity of. the Harary Graphs (to appear in J. Comb. Math. and Comb. Comput.)
[CW1] M.B. Cozzens and S.-S. Y. Wu, Extreme Values of the Edge-Neighbor-Connectivity, Ars. Combinatoria, to appear.
[C3] W.H. Cunningham, Computing the binding number of a graph, Discrete Appl. Math. 27(1990) 283-285.
[DM1] A. D'Atri and M. Moscarini, Distance-hereditary graphs, Steiner trees and connected domination. SIAM J. Comput. 17(1988) 521-538.
[D1] G.A. Dirac, In abstrakten Graphen verhandene vollständig.e 4-Graphen und ihre Unterteilungen. Math. Nachr. 22(1960) 61-85.
[D2] G.A. Dirac, Généralizations du théorème de Menger. C.R. Acad. Sci. Paris 250(1960) 4252-4253.
[EFS1] P. Elias, A. Feinstein and C.E. Shannon, A note on the maximum flow through a network. IRE Trans. Inform. Theory IT-2(1956) 117-119.
[EJKS1] H. Enomoto, B. Jackson, P.Katarinis and A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 8795.
[ES1] R.C. Entringer and P.J. Slater, A theorem on critically 3connected graphs. Nanta Math. 11 (1978) 141-145.
[FS1] M.R. Fellows and S. Stueckle, The immersion order, forbidden subgraphs and the complexity of network integrity. J. Combin. Math. Combin. Comput. (to appear).
[FF1] L.R. Ford Jr. and D.R. Fulkerson, Maximal flow through a network. Canad. J. Math. 8(1956) 399-404.
[FF2] L.R. Ford Jr. and D.R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canad. J. Math. 9(1957) 210-218.
[GJ1] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the Theory of NP-Completeness. Freeman, New York (1979).
[G2] W. Goddard, On the Vulnerability of Graphs. Ph.D. thesis, University of Natal, Durban, S.A. 1989.
[G3] W. Goddard, The Binding Number of a Graph Revisited (preprint).
[G4] W. Goddard, Measures of vulnerability (to appear).
[GS1] W. Goddard and H.C. Swart, On the integrity of combinations of graphs. J. Combin. Math. Combin. Comput. 4(1988), 3-18.
[GS2] W.D. Goddard and H.C. Swart, On some Extremal Problems in Connectivity. Graph Theory, Combinatorics and Applications (Y. Alavi et al eds.), Wiley, 1 (1991) 535-551.
[GS3] W. Goddard and H.C. Swart, Integrity in graphs: Bounds and basics. J. Combin. Math. Combin. Comput. 7 (1990) 139-151.
[GS4] W. Goddard and H.C. Swart, On the toughness of a graph. Quaes. Math. 13 (1990), 217-232.
[G1] D.L. Goldsmith, The Functional Edge-Connectivity of a graph (preprint).
[HM1] P.L. Hammer and F. Maffray, Completely separable graphs. Discrete Applied Math. 27(1990) 85-100.
[H3] F. Harary, The Maximum connectivity of a graph. Proc. Nat. Acad. Sci. U.S.A. 48 (1962) 1142-1146
[H1] B. Hedman, A sufficient condition for n-short-connectedness, Math. Mag. 47 (1974), 156-157.
[H4] B. Hedman, Diameters of iterated clique graphs. Hadronic J. 9(1986) 273-276.
[H2] E. Howorka, A characterization of distance hereditary graphs. Quart. J. Math. Oxford 28(1977) 417-420.
[KMH1] V.G. Kane, S.P. Mohanty and R.S. Hales, Product Graphs and Binding Numbers, Ars. Combinatoria 11 (1981) 201224.
[KQ1] S.F. Kapoor and H. Quaif, Classification and enumeration of minimum $(d, 1,3)$-graphs and $(d, 2,3)$-graphs. J. Combin. Theory 23B(1977) 83-93.
[LSP1] R. Laskar, S. Stueckle and B. Piazza, On the edge-integrity of some graphs and their complements. (To appear.)
[M1] W. Mader, Über die Maximahlzahl kreuzungfreier H-Wege, Arch. Math. 31(1978/79) 387-402.
[MS1] D. Mann and S. Stueckle, Tenacity of trees (preprint).
[MS2] S.B. Maurer and P.J. Slater, On k-critical n-connected graphs. Discrete Math. 20(1977) 255-262.
[M2] K. Menger, Zur allgemeinen Kurventheorie. Fund. Math. 10 (1927) 96-115.
[M3] B.R. Myers, The Klee and Quaife minimum (d, 1,3)-graphs revisited. IEEE Trans. Circuits Syst. 27 (1980) 214-220.
[M4] B.R. Myers, The minimum-order three-connected cubic graphs with specified diameters. IEEE Trans. Circuits Syst. 27 (1980) 698-709.
[O1] O.R. Oellermann, On the ℓ-connectivity of a graph, Graphs Combin. 3(1987) 285-291.
[O2] O.R. Oellermann, A note on the ℓ-connectivity function of a graph, Congressus Numerantium 66(1987) 181-188.
[O3] O. Ore, Diameters in graphs. J. Combin. Theory 5 (1968) 75-81.
[S1] J. Spinrad, Prime testing for split decomposition of a graph. SIAM J. Discrete Math 2(1989) 590-599.
[S2] S. Stueckle, The tenacity of a graph (to appear).
[T1] W.T. Tutte, A theory of 3-connected graphs. Indag. Math. 23(1961) 441-455.
[WTL1] J. Wang, S. Tian and J. Liu, The Binding Number of Product Graphs, Lecture Notes in Maths V1073(1984) 119-128.
[W1] H. Whitney, Congruent graphs and the connectivity of graphs. Amer. J. Math. 54(1932) 150-168.
[W2] D.R. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory Ser. B29(1973) 27-46.
[WC1] S.S.Y. Wu and M.B. Cozzens, The Minimum Size of Critically m-Neighbour-Connected Graphs, Ars. Combinatoria 29(1990) 149-160.
[WC2] S.S.Y. Wu and M.B. Cozzens, Vertex Neighbourhood Integrity of trees (preprint).
[Z1] T. Zamfirescu, On the line connectivity of line graphs. Math. Ann. 187(1970) 305-309.

