37 research outputs found

    Face hallucination under an image decomposition perspective

    Get PDF
    In this paper we propose to convert the task of face hallucination into an image decomposition problem, and thenuse the morphological component analysis (MCA) for hallucinating a single face image, based on a novel three-stepframework. Firstly, a low-resolution input image is up-sampled by interpolation. Then, the MCA is employed to decompose the interpolated image into a high-resolution image and an unsharp masking, as MCA can properly decompose a signal into special parts according to typical dictionaries. Finally, a residue compensation, which is based on the neighbour reconstruction of patches, is performed to enhance the facial details. The proposed method can effectively exploit the facial properties for face hallucination under the image decomposition perspective. Experimental results demonstrate the effectiveness of our method, in terms of the visual quality of the hallucinated face images

    Face image super-resolution via weighted patches regression

    Get PDF

    Face image super-resolution using 2D CCA

    Get PDF
    In this paper a face super-resolution method using two-dimensional canonical correlation analysis (2D CCA) is presented. A detail compensation step is followed to add high-frequency components to the reconstructed high-resolution face. Unlike most of the previous researches on face super-resolution algorithms that first transform the images into vectors, in our approach the relationship between the high-resolution and the low-resolution face image are maintained in their original 2D representation. In addition, rather than approximating the entire face, different parts of a face image are super-resolved separately to better preserve the local structure. The proposed method is compared with various state-of-the-art super-resolution algorithms using multiple evaluation criteria including face recognition performance. Results on publicly available datasets show that the proposed method super-resolves high quality face images which are very close to the ground-truth and performance gain is not dataset dependent. The method is very efficient in both the training and testing phases compared to the other approaches. © 2013 Elsevier B.V
    corecore