15,247 research outputs found

    Half-Integral Linkages in Highly Connected Directed Graphs

    Get PDF
    We study the half-integral k-Directed Disjoint Paths Problem (1/2 kDDPP) in highly strongly connected digraphs. The integral kDDPP is NP-complete even when restricted to instances where k=2, and the input graph is L-strongly connected, for any L >= 1. We show that when the integrality condition is relaxed to allow each vertex to be used in two paths, the problem becomes efficiently solvable in highly connected digraphs (even with k as part of the input). Specifically, we show that there is an absolute constant c such that for each k >= 2 there exists L(k) such that 1/2 kDDPP is solvable in time O(|V(G)|^c) for a L(k)-strongly connected directed graph G. As the function L(k) grows rather quickly, we also show that 1/2 kDDPP is solvable in time O(|V(G)|^{f(k)}) in (36k^3+2k)-strongly connected directed graphs. We show that for each epsilon<1, deciding half-integral feasibility of kDDPP instances is NP-complete when k is given as part of the input, even when restricted to graphs with strong connectivity epsilon k

    Packing Directed Circuits Quarter-Integrally

    Get PDF

    Packing Directed Cycles Quarter- and Half-Integrally

    Full text link
    The celebrated Erd\H{o}s-P\'osa theorem states that every undirected graph that does not admit a family of kk vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(klogk)O(k \log k). After being known for long as Younger's conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with the quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most four of the cycles, then there exists a feedback vertex set in GG of size O(k4)O(k^4). Furthermore, a variant of our proof shows that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most two of the cycles, then there exists a feedback vertex set in GG of size O(k6)O(k^6). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers aa and bb, if a directed graph GG has directed treewidth Ω(a6b8log2(ab))\Omega(a^6 b^8 \log^2(ab)), then one can find in GG a family of aa subgraphs, each of directed treewidth at least bb, such that every vertex of GG is in at most four subgraphs.Comment: Accepted to European Symposium on Algorithms (ESA '19

    New Menger-Like Dualities in Digraphs and Applications to Half-Integral Linkages

    Get PDF

    New Menger-like dualities in digraphs and applications to half-integral linkages

    Full text link
    We present new min-max relations in digraphs between the number of paths satisfying certain conditions and the order of the corresponding cuts. We define these objects in order to capture, in the context of solving the half-integral linkage problem, the essential properties needed for reaching a large bramble of congestion two (or any other constant) from the terminal set. This strategy has been used ad-hoc in several articles, usually with lengthy technical proofs, and our objective is to abstract it to make it applicable in a simpler and unified way. We provide two proofs of the min-max relations, one consisting in applying Menger's Theorem on appropriately defined auxiliary digraphs, and an alternative simpler one using matroids, however with worse polynomial running time. As an application, we manage to simplify and improve several results of Edwards et al. [ESA 2017] and of Giannopoulou et al. [SODA 2022] about finding half-integral linkages in digraphs. Concerning the former, besides being simpler, our proof provides an almost optimal bound on the strong connectivity of a digraph for it to be half-integrally feasible under the presence of a large bramble of congestion two (or equivalently, if the directed tree-width is large, which is the hard case). Concerning the latter, our proof uses brambles as rerouting objects instead of cylindrical grids, hence yielding much better bounds and being somehow independent of a particular topology. We hope that our min-max relations will find further applications as, in our opinion, they are simple, robust, and versatile to be easily applicable to different types of routing problems in digraphs

    Half-integral Erd\H{o}s-P\'osa property of directed odd cycles

    Full text link
    We prove that there exists a function f:NRf:\mathbb{N}\rightarrow \mathbb{R} such that every digraph GG contains either kk directed odd cycles where every vertex of GG is contained in at most two of them, or a vertex set XX of size at most f(k)f(k) hitting all directed odd cycles. This extends the half-integral Erd\H{o}s-P\'osa property of undirected odd cycles, proved by Reed [Mangoes and blueberries. Combinatorica 1999], to digraphs.Comment: 16 pages, 5 figure

    A unified half-integral Erd\H{o}s-P\'{o}sa theorem for cycles in graphs labelled by multiple abelian groups

    Full text link
    Erd\H{o}s and P\'{o}sa proved in 1965 that there is a duality between the maximum size of a packing of cycles and the minimum size of a vertex set hitting all cycles. Such a duality does not hold if we restrict to odd cycles. However, in 1999, Reed proved an analogue for odd cycles by relaxing packing to half-integral packing. We prove a far-reaching generalisation of the theorem of Reed; if the edges of a graph are labelled by finitely many abelian groups, then there is a duality between the maximum size of a half-integral packing of cycles whose values avoid a fixed finite set for each abelian group and the minimum size of a vertex set hitting all such cycles. A multitude of natural properties of cycles can be encoded in this setting, for example cycles of length at least \ell, cycles of length pp modulo qq, cycles intersecting a prescribed set of vertices at least tt times, and cycles contained in given Z2\mathbb{Z}_2-homology classes in a graph embedded on a fixed surface. Our main result allows us to prove a duality theorem for cycles satisfying a fixed set of finitely many such properties.Comment: 28 pages, 4 figure
    corecore